Login | DPI Staff queries on depositing or searching to era.dpi.qld.gov.au

Items where Subject is "Experimental design"

Group by: Creators | Item Type | Date
Number of items at this level: 17.

Article

Allen, B. L., Allen, L. R., Andrén, H., Ballard, G., Boitani, L., Engeman, R. M., Fleming, P. J. S., Ford, A. T., Haswell, P. M., Kowalczyk, R., Linnell, J. D. C., David Mech, L. and Parker, D. M. (2017) Large carnivore science: Non-experimental studies are useful, but experiments are better. Food Webs . https://doi.org/10.1016/j.fooweb.2017.06.002

Burridge, C.Y. and Robins, J. B. (2000) Benefits of statistical blocking techniques in the design of gear evaluation trials: introducing the Latin Square design. Fisheries Research, 47 (1). pp. 69-79. https://doi.org/10.1016/S0165-7836(99)00125-3

Butler, D. G., Eccleston, J. A. and Cullis, B. R. (2008) On an approximate optimality criterion for the design of field experiments under spatial dependence. Australian and New Zealand Journal of Statistics, 50 (4). pp. 295-307. https://doi.org/10.1111/j.1467-842X.2008.00518.x

Cullis, B. R., Smith, A. B., Cocks, N. A. and Butler, D. G. (2020) The Design of Early-Stage Plant Breeding Trials Using Genetic Relatedness. Journal of Agricultural, Biological and Environmental Statistics, 25 . pp. 553-578. https://doi.org/10.1007/s13253-020-00403-5

Forknall, C. R., Verbyla, A. P., Nazarathy, Y., Yousif, A., Osama, S., Jones, S. H., Kerr, E., Schulz, B. L., Fox, G. P. and Kelly, A. M. (2024) Covariance Clustering: Modelling Covariance in Designed Experiments When the Number of Variables is Greater than Experimental Units. Journal of Agricultural, Biological and Environmental Statistics, 29 . pp. 232-256. https://doi.org/10.1007/s13253-023-00574-x

Hammer, G. L., Kropff, M. J., Sinclair, T. R. and Porter, J. R. (2002) Future contributions of crop modelling—from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. European Journal of Agronomy, 18 (1). pp. 15-31. https://doi.org/10.1016/S1161-0301(02)00093-X

Mayer, D. G., Belward, J.A. and Burrage, K. (1996) Use of Advanced Techniques to Optimize a Multi-dimensional Dairy Model. Agricultural Systems, 50 (3). pp. 239-253. https://doi.org/10.1016/0308-521X(95)00005-P

Mayer, D. G., Stephenson, R.A., Jones, K.H., Wilson, K.J., Bell, D.J.D., Wilkie, J., Lovatt, J.L. and Delaney, K.E. (2006) Annual forecasting of the Australian macadamia crop - integrating tree census data with statistical climate-adjustment models. Agricultural Systems, 91 (3). pp. 159-170. https://doi.org/10.1016/j.agsy.2006.02.004

Ovenden, J. R., Leigh, G. M., Blower, D. C., Jones, A. T., Moore, A., Bustamante, C., Buckworth, R. C., Bennett, M. B. and Dudgeon, C. L. (2016) Can estimates of genetic effective population size contribute to fisheries stock assessments? Journal of Fish Biology, 89 (6). pp. 2505-2518. https://doi.org/10.1111/jfb.13129

Reeves, K. L., Forknall, C. R., Kelly, A. M., Owen, K. J., Fanning, J., Hollaway, G. J. and Loughman, R. (2020) A Novel Approach to the Design and Analysis of Field Experiments to Study Variation in the Tolerance and Resistance of Cultivars to Root Lesion Nematodes (Pratylenchus spp.). Phytopathology®, 110 (10). pp. 1623-1631. https://doi.org/10.1094/PHYTO-03-20-0077-R

Smith, A. B., Thompson, R., Butler, D. G. and Cullis, B. R. (2011) The design and analysis of variety trials using mixtures of composite and individual plot samples. Journal of the Royal Statistical Society: Series C (Applied Statistics), 60 (3). pp. 437-455. https://doi.org/10.1111/j.1467-9876.2010.00755.x

Wang, M., Wang, H.-H., Koralewski, T. E., Grant, W. E., White, N., Hanan, J. and Grimm, V. (2024) From known to unknown unknowns through pattern-oriented modelling: Driving research towards the Medawar zone. Ecological Modelling, 497 . p. 110853. https://doi.org/10.1016/j.ecolmodel.2024.110853

Wijeweera, W.P.S.N., Senaratne, K. A. D. W., Dhileepan, K. and de Silva, M.P.K.S.K. (2021) Determination of the distribution of Calotropis gigantea (L.) in Sri Lanka using MaxEnt modelling technique. Ruhuna Journal of Science, 12 (2). pp. 144-154.

do Rosario, V. A., Chang, C., Spencer, J., Alahakone, T., Roodenrys, S., Francois, M., Weston-Green, K., Hölzel, N., Nichols, D. S., Kent, K., Williams, D., Wright, I. M. R. and Charlton, K. (2021) Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: A cross-over, randomized, double-blind clinical trial. Clinical Nutrition, 40 (3). pp. 879-889. https://doi.org/10.1016/j.clnu.2020.09.041

Book Section

Roche, M.B., Loch, D.S., Poulter, R.E. and Zeller, L.C. (2008) Measuring the traction profile on sportsfields: Equipment development and testing. In: II International Conference on Turfgrass Science and Management for Sports Fields. Acta Horticulturae 783. International Society for Horticultural Science, Beijing, China.

Monograph

Bessell-Browne, P., Prosser, A. J. and Garland, A. (2020) Pre-recruitment abundance indices for eastern king prawn, blue swimmer crab and snapper in south-eastern Queensland. Technical Report. State of Queensland.

Ovenden, J., Street, R., Peel, D., Peel, S., Courtney, T., Podlich, H., Basford, K. and Dichmont, C. (2004) A new data source for fisheries resource assessment: genetic estimates of the effective number of spawners. Final Report to the Fisheries Research and Development Corporation. Project Report. QO 04010. Department of Primary Industries & Fisheries. Queensland..

This list was generated on Sat Aug 30 15:29:32 2025 UTC.