Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Increasing profits and reducing risks in crop production using participatory systems simulation approaches

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Meinke, H., Baethgen, W.E., Carberry, P. S., Donatelli, M., Hammer, G.L., Selvaraju, R. and Stöckle, C.O. (2001) Increasing profits and reducing risks in crop production using participatory systems simulation approaches. Agricultural Systems, 70 (2-3). pp. 493-513. ISSN 0308-521X

Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link.

Article Link: https://doi.org/10.1016/S0308-521X(01)00057-9

Abstract

The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to ‘take stock’ and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of ‘relevance’ and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process; (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socio-economic variability and change.

Item Type:Article
Subjects:Agriculture > Agriculture (General) > Agricultural economics
Agriculture > Agriculture (General) > Methods and systems of culture. Cropping systems
Live Archive:09 Jan 2024 00:33
Last Modified:09 Jan 2024 00:33

Repository Staff Only: item control page