Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Effects of climate-driven primary production change on marine food webs: Implications for fisheries and conservation

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Brown, C.J., Fulton, E.A., Hobday, A.J., Matear, R.J., Possingham, H. P., Bulman, C., Christensen, V., Forrest, R.E., Gehrke, P.C., Gribble, N.A., Griffiths, S.P., Lozano-Montes, H., Martin, J.M., Metcalf, S., Okey, T.A., Watson, R. and Richardson, A.J. (2010) Effects of climate-driven primary production change on marine food webs: Implications for fisheries and conservation. Global Change Biology, 16 (4). pp. 1194-1212.

Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link.

Article Link: https://doi.org/10.1111/j.1365-2486.2009.02046.x

Abstract

Climate change is altering the rate and distribution of primary production in the world's oceans. Primary production is critical to maintaining biodiversity and supporting fishery catches, but predicting the response of populations to primary production change is complicated by predation and competition interactions. We simulated the effects of change in primary production on diverse marine ecosystems across a wide latitudinal range in Australia using the marine food web model Ecosim. We link models of primary production of lower trophic levels (phytoplankton and benthic producers) under climate change with Ecosim to predict changes in fishery catch, fishery value, biomass of animals of conservation interest, and indicators of community composition. Under a plausible climate change scenario, primary production will increase around Australia and generally this benefits fisheries catch and value and leads to increased biomass of threatened marine animals such as turtles and sharks. However, community composition is not strongly affected. Sensitivity analyses indicate overall positive linear responses of functional groups to primary production change. Responses are robust to the ecosystem type and the complexity of the model used. However, model formulations with more complex predation and competition interactions can reverse the expected responses for some species, resulting in catch declines for some fished species and localized declines of turtle and marine mammal populations under primary productivity increases. We conclude that climate-driven primary production change needs to be considered by marine ecosystem managers and more specifically, that production increases can simultaneously benefit fisheries and conservation. Greater focus on incorporating predation and competition interactions into models will significantly improve the ability to identify species and industries most at risk from climate change. © 2009 Blackwell Publishing Ltd.

Item Type:Article
Business groups:Animal Science
Keywords:Climate change Ecological interactions Fisheries Food web model Marine biodiversity biodiversity catch statistics climate effect community composition fishery management food web marine ecosystem modeling primary production sensitivity analysis trophic level Australia Animalia Chondrichthyes Mammalia Testudines
Subjects:Agriculture > Agriculture (General) > Agriculture and the environment
Agriculture > Agriculture (General) > Agricultural meteorology. Crops and climate
Agriculture > Agriculture (General) > Agricultural conservation
Aquaculture and Fisheries > Fisheries > Fishery conservation
Aquaculture and Fisheries > Fisheries > Fishery management. Fishery policy
Live Archive:17 Jan 2023 03:32
Last Modified:15 Aug 2023 01:09

Repository Staff Only: item control page