Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Genome sequencing progenies of magic mushrooms (Psilocybe subaeruginosa) identifies tetrapolar mating and gene duplications in the psilocybin pathway

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

McTaggart, A. R., James, T. Y., Slot, J. C., Barlow, C., Fechner, N., Shuey, L. S. and Drenth, A. (2023) Genome sequencing progenies of magic mushrooms (Psilocybe subaeruginosa) identifies tetrapolar mating and gene duplications in the psilocybin pathway. Fungal Genetics and Biology, 165 . p. 103769. ISSN 1087-1845

Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link.

Article Link: https://doi.org/10.1016/j.fgb.2022.103769

Publisher URL: https://www.sciencedirect.com/science/article/pii/S1087184522001141

Abstract

Knowledge of breeding systems and genetic diversity is critical to select and combine desired traits that advance new cultivars in agriculture and horticulture. Mushrooms that produce psilocybin, magic mushrooms, may potentially be used in therapeutic and wellness industries, and stand to benefit from genetic improvement. We studied haploid siblings of Psilocybe subaeruginosa to resolve the genetics behind mating compatibility and advance knowledge of breeding. Our results show that mating in P. subaeruginosa is tetrapolar, with compatibility controlled at a homeodomain locus with one copy each of HD1 and HD2, and a pheromone/receptor locus with four homologs of the receptor gene STE3. An additional two pheromone/receptor loci homologous to STE3 do not appear to regulate mating compatibility. Alleles in the psilocybin gene cluster did not vary among the five siblings and were likely homozygous in the parent. Psilocybe subaeruginosa and its relatives have three copies of PsiH genes but their impact on production of psilocybin and its analogues is unknown. Genetic improvement in Psilocybe will require access to genetic diversity from the centre of origin of different species, identification of genes behind traits, and strategies to avoid inbreeding depression.

Item Type:Article
Business groups:Horticulture and Forestry Science
Keywords:Fungal genomics Fungal siblings Genome Sexual reproduction
Subjects:Science > Botany > Cryptogams
Science > Botany > Genetics
Live Archive:13 Jan 2023 00:07
Last Modified:13 Jan 2023 00:07

Repository Staff Only: item control page