Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea)

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Cuc, L.M., Mace, E.S., Crouch, J.H., Quang, V.D., Long, T.D. and Varshney, R.K. (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biology, 8 .

[img]
Preview
PDF
441kB

Article Link: http://dx.doi.org/10.1186/1471-2229-8-55

Publisher URL: http://www.cdc.gov//

Abstract

Background: Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut.

Results: A microsatellite- enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters. Conclusion. Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be very useful for germplasm analysis, linkage mapping, diversity studies and phylogenetic relationships in cultivated groundnut as well as related Arachis species.

Item Type:Article
Business groups:Crop and Food Science
Additional Information:© Centers for Disease Control and Prevention.
Keywords:Cultivated peanut; Arachis hypogaea L.;microsatellite; SSR; polymorphism; cultivated germplasm; SSR-positive clones; hypogaea; fastigiata.
Subjects:Plant culture > Fruit and fruit culture > Nuts
Science > Biology > Genetics
Live Archive:22 Jan 2009 02:16
Last Modified:03 Sep 2021 16:43

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics