Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Use of short-term breath measures to estimate daily methane production by cattle

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Velazco, J. I., Mayer, D. G., Zimmerman, S. and Hegarty, R. S. (2016) Use of short-term breath measures to estimate daily methane production by cattle. animal, 10 (01). pp. 25-33. ISSN 1751-7311

Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link.

Article Link: http://dx.doi.org/10.1017/S1751731115001603

Abstract

Methods to measure enteric methane (CH4) emissions from individual ruminants in their production environment are required to validate emission inventories and verify mitigation claims. Estimates of daily methane production (DMP) based on consolidated short-term emission measurements are developing, but method verification is required. Two cattle experiments were undertaken to test the hypothesis that DMP estimated by averaging multiple short-term breath measures of methane emission rate did not differ from DMP measured in respiration chambers (RC). Short-term emission rates were obtained from a GreenFeed Emissions Monitoring (GEM) unit, which measured emission rate while cattle consumed a dispensed supplement. In experiment 1 (Expt. 1), four non-lactating cattle (LW=518 kg) were adapted for 18 days then measured for six consecutive periods. Each period consisted of 2 days of ad libitum intake and GEM emission measurement followed by 1 day in the RC. A prototype GEM unit releasing water as an attractant (GEM water) was also evaluated in Expt. 1. Experiment 2 (Expt. 2) was a larger study based on similar design with 10 cattle (LW=365 kg), adapted for 21 days and GEM measurement was extended to 3 days in each of the six periods. In Expt. 1, there was no difference in DMP estimated by the GEM unit relative to the RC (209.7 v. 215.1 g CH4/day) and no difference between these methods in methane yield (MY, 22.7 v. 23.7 g CH4/kg of dry matter intake, DMI). In Expt. 2, the correlation between GEM and RC measures of DMP and MY were assessed using 95% confidence intervals, with no difference in DMP or MY between methods and high correlations between GEM and RC measures for DMP (r=0.85; 215 v. 198 g CH4/day SEM=3.0) and for MY (r=0.60; 23.8 v. 22.1 g CH4/kg DMI SEM=0.42). When data from both experiments was combined neither DMP nor MY differed between GEM- and RC-based measures (P>0.05). GEM water-based estimates of DMP and MY were lower than RC and GEM (P<0.05). Cattle accessed the GEM water unit with similar frequency to the GEM unit (2.8 v. 3.5 times/day, respectively) but eructation frequency was reduced from 1.31 times/min (GEM) to once every 2.6 min (GEM water). These studies confirm the hypothesis that DMP estimated by averaging multiple short-term breath measures of methane emission rate using GEM does not differ from measures of DMP obtained from RCs. Further, combining many short-term measures of methane production rate during supplement consumption provides an estimate of DMP, which can be usefully applied in estimating MY.

Item Type:Article
Business groups:Animal Science
Keywords:methane, cattle, measurement, greenhouse gases
Subjects:Agriculture > Agriculture (General) > Agricultural chemistry. Agricultural chemicals
Agriculture > Agriculture (General) > Agriculture and the environment
Animal culture > Cattle
Live Archive:09 Aug 2016 01:40
Last Modified:03 Sep 2021 16:50

Repository Staff Only: item control page