Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Eight novel diagnostic markers differentiate lineages of the highly invasive myrtle rust pathogen Austropuccinia psidii

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Luo, Z., Feng, J., Bird, A., Moeller, M., Tam, R., Shepherd, L., Murphy, L., Singh, L., Graetz, A., Amorim, L., Massola Júnior, N. S., Prodhan, M. A., Shuey, L. S., Beattie, D., Gonzalez, A. T., Tobias, P., Padovan, A., Kimber, R. B. E., McTaggart, A. R., Kehoe, M., Schwessinger, B. and Boufleur, T. R. (2024) Eight novel diagnostic markers differentiate lineages of the highly invasive myrtle rust pathogen Austropuccinia psidii. Plant Disease (ja). null.

[img]
Preview
PDF
4MB

Article Link: https://doi.org/10.1094/PDIS-10-24-2111-SR

Publisher URL: https://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-10-24-2111-SR

Abstract

Austropuccinia psidii is the causal agent of myrtle rust in over 480 species within the family Myrtaceae. Lineages of A. psidii are structured by their hosts in the native range, and some have success in infecting newly encountered hosts. For example, the pandemic biotype has spread beyond South America, and proliferation of other lineages is an additional risk to biodiversity and industries. Efforts to manage A. psidii incursions, including lineage differentiation, relies on variable microsatellite markers. Testing these markers is time-consuming, complex, and requires reference material that is not always readily available. We designed a novel diagnostic approach targeting eight selectively chosen loci including the fungal mating-type HD (homeodomain) transcription factor locus. The HD locus (bW1/2-HD1 and bE1/2-HD2) is highly polymorphic, facilitating clear biological predictions about its inheritance from founding populations. To be considered as potentially derived from the same lineage, all four HD alleles must be identical. If all four HD alleles are identical six additional markers can further differentiate lineage identity. Our lineage diagnostics relies on PCR amplification of eight loci in different genotypes of A. psidii followed by amplicon sequencing using Oxford Nanopore Technologies (ONT) and comparative analysis. The lineage-specific assay was validated on four isolates with existing genomes, uncharacterized isolates, and directly from infected leaf material. We reconstructed alleles from amplicons and confirmed their sequence identity relative to their reference. Genealogies of alleles confirmed the variations at the loci among lineages/isolates. Our study establishes a robust diagnostic tool for differentiating known lineages of A. psidii based on biological predictions and available nucleotide sequences. This tool is suited to detecting the origin of new pathogen incursions.

Item Type:Article
Corporate Creators:Department of Agriculture and Fisheries, Queensland
Business groups:Horticulture and Forestry Science
Keywords:Myrtaceae, Diagnostics, Oxford Nanopore Technologies, mating-type, Homeodomain genes
Subjects:Science > Invasive Species > Plants
Science > Botany > Genetics
Plant pests and diseases > Plant pathology
Forestry > Research. Experimentation
Forestry > Conservation and protection
Live Archive:21 Oct 2024 03:56
Last Modified:21 Oct 2024 03:56

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics