Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Evaluating plant breeding strategies by simulating gene action and dryland environment effects

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

Chapman, S., Cooper, M., Podlich, D. and Hammer, G. (2003) Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agronomy Journal, 95 (1). pp. 99-113.

[img]
Preview
PDF
2MB

Publisher URL: http://www.agronomy.org/

Abstract

Functional genomics is the systematic study of genome-wide effects of gene expression on organism growth and development with the ultimate aim of understanding how networks of genes influence traits. Here, we use a dynamic biophysical cropping systems model (APSIM-- Sorg) to generate a state space of genotype performance based on 15 genes controlling four adaptive traits and then search this space using a quantitative genetics model of a plant breeding program (QU-- GENE) to simulate recurrent selection. Complex epistatic and gene x environment effects were generated for yield even though gene action at the trait level had been defined as simple additive effects. Given alternative breeding strategies that restricted either the cultivar maturity type or the drought environment type, the positive (+) alleles for 15 genes associated with the four adaptive traits were accumulated at different rates over cycles of selection. While early maturing genotypes were favored in the Severe-Terminal drought environment type, late genotypes were favored in the Mild-Terminal and Midseason drought environment types. In the Severe-Terminal environment, there was an interaction of the stay-green (SG) trait with other traits: Selection for + alleles of the SG genes was delayed until + alleles for genes associated with the transpiration efficiency and osmotic adjustment traits had been fixed. Given limitations in our current understanding of trait interaction and genetic control, the results are not conclusive. However, they demonstrate how the per se complexity of gene x gene x environment interactions will challenge the application of genomics and marker-assisted selection in crop improvement for dryland adaptation.

Item Type:Article
Corporate Creators:Department of Employment, Economic Development and Innovation (DEEDI), Agri-Science, Crop and Food Science
Business groups:Crop and Food Science
Additional Information:Reproduced with permission from © American Society of Agronomy.
Keywords:Crop modeling; genomics; simulation of plant breeding.
Subjects:Plant culture > Field crops > Grain. Cereals
Plant culture > Propagation
Science > Biology > Genetics
Science > Statistics > Simulation modelling
Live Archive:19 Mar 2004
Last Modified:03 Sep 2021 16:43

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics