Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Broiler farming practices using new or re-used bedding, inclusive of free-range, have no impact on Campylobacter levels, species diversity, Campylobacter community profiles and Campylobacter bacteriophages

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Chinivasagam, H.N., Estella, W., Finn, D., Mayer, D. G., Rodrigues, H. and Diallo, I. (2024) Broiler farming practices using new or re-used bedding, inclusive of free-range, have no impact on Campylobacter levels, species diversity, Campylobacter community profiles and Campylobacter bacteriophages. AIMS Microbiology, 10 (1). pp. 12-40. ISSN 2471-1888

[img]
Preview
PDF
1MB
[img]
Preview
PDF (Supplementary)
258kB

Article Link: https://doi.org/10.3934/microbiol.2024002

Publisher URL: https://www.aimspress.com/article/doi/10.3934/microbiol.2024002

Abstract

A multi-stage option to address food-safety can be produced by a clearer understanding of Campylobacter's persistence through the broiler production chain, its environmental niche and its interaction with bacteriophages. This study addressed Campylobacter levels, species, genotype, bacteriophage composition/ levels in caeca, litter, soil and carcasses across commercial broiler farming practices to inform on-farm management, including interventions.Broilers were sequentially collected as per company slaughter schedules over two-years from 17 farms, which represented four commercially adopted farming practices, prior to the final bird removal (days 39–53). The practices were conventional full clean-out, conventional litter re-use, free-range–full cleanout and free-range–litter re-use. Caeca, litter and soil collected on-farm, and representative carcases collected at the processing plant, were tested for Campylobacter levels, species dominance and Campylobacter bacteriophages. General community profiling via denaturing gradient gel electrophoresis of the flaA gene was used to establish the population relationships between various farming practices on representative Campylobacter isolates. The farming practice choices did not influence the high caeca Campylobacter levels (log 7.5 to log 8.5 CFU/g), the carcass levels (log 2.5 to log 3.2 CFU/carcass), the C. jejuni/C. coli dominance and the on-farm bacteriophage presence/levels. A principal coordinate analysis of the flaA distribution for farm and litter practices showed strong separation but no obvious farming practice related grouping of Campylobacter. Bacteriophages originated from select farms, were not practice-dependent, and were detected in the environment (litter) only if present in the birds (caeca).This multifaceted study showed no influence of farming practices on on-farm Campylobacter dynamics. The significance of this study means that a unified on-farm risk-management could be adopted irrespective of commercial practice choices to collectively address caeca Campylobacter levels, as well as the potential to include Campylobacter bacteriophage biocontrol. The impact of this study means that there are no constraints in re-using bedding or adopting free-range farming, thus contributing to environmentally sustainable (re-use) and emerging (free-range) broiler farming choices.

Item Type:Article
Corporate Creators:Department of Agriculture and Fisheries, Queensland
Business groups:Animal Science, Biosecurity Queensland
Keywords:Campylobacter bacteriophages broiler litter free-range re-use
Subjects:Science > Microbiology
Science > Microbiology > Bacteria
Animal culture > Poultry
Animal culture > Poultry > Chickens
Animal culture > Housing and environmental control
Animal culture > Equipment and supplies
Animal culture > Feeds and feeding. Animal nutrition
Live Archive:06 Mar 2024 02:03
Last Modified:06 Mar 2024 02:07

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics