Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Using zero tillage, fertilisers and legume rotations to maintain productivity and soil fertility in opportunity cropping systems on a shallow Vertosol

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Armstrong, R.D., Millar, G., Halpin, N.V., Reid, D. J. and Standley, J. (2003) Using zero tillage, fertilisers and legume rotations to maintain productivity and soil fertility in opportunity cropping systems on a shallow Vertosol. Australian Journal of Experimental Agriculture, 43 (2). pp. 141-153.

[img]
Preview
PDF
176kB

Article Link: http://dx.doi.org/10.1071/EA01175

Publisher URL: http://www.publish.csiro.au

Abstract

The effect of 2 tillage practices (zero v. conventional), fertiliser application (nitrogen, phosphorus and zinc), and pulse–cereal rotation on changes in soil mineral nitrogen, plant-available water in the soil, grain yield and protein, and key soil fertility parameters (total nitrogen, organic carbon) in the Central Highlands of Queensland were examined between 1991 and 1998. Four pasture treatments (perennial legume, perennial grass, annual legume and legume–grass mixes) were included in January 1995, following previously unsuccessful attempts to grow lucerne and annual medics.

The experiment was conducted as an opportunity cropping system on an open downs soil at Gindie that is representative of a large proportion (70%) of soils in the Central Highlands. Tillage practice did not affect the amount of mineral nitrate or the plant-available water content of the soil at planting, except in 1991 and 1998 when plant-available water content was higher under conventional tillage than zero tillage. However, zero tillage improved grain yield in 2 of 4 years (wheat in 1992; sorghum in 1996), increased uptake of nitrogen in every crop and produced greater grain protein levels in both wheat crops grown than conventional tillage. There were grain responses to nitrogen + phosphorus fertilisers (wheat in 1991 and sorghum in 1997). Grain protein was increased with applications of nitrogen regardless of whether phosphorus was added in 3 of the 4 crops planted. Sowing a pulse did not significantly increase grain yields in the following crop although it did increase soil mineral nitrogen at planting. Soil nitrate remained low in control (P0N0) plots (<39 kg N/ha) when crops were planted each year but increased significantly (average 84 kg N/ha) following a long fallow of 3.5 years resulting from drought. Plant-available water content of the soil at sowing was lower where chickpeas had been grown the previous season than with wheat. Neither tillage practice nor fertiliser application affected soil organic carbon or soil total nitrogen concentrations in the topsoil. However, all pasture treatments improved soil total nitrogen compared with continuous cropping, and with the exception of annual pasture legumes, also improved soil organic carbon after only 2 seasons. Largest improvements in soil fertility (total nitrogen and organic carbon) occurred with perennial species.

It was concluded that zero tillage practices can have beneficial impacts on grain yields as well as minimising environmental degradation such as soil erosion in this region. However, if soil fertility levels are to be maintained, or improved, perennial pasture rotations will need to be used as current levels of fertiliser application or rotations with pulses had no significant beneficial effect.

Item Type:Article
Business groups:Crop and Food Science
Additional Information:Reproduced with permission from © CSIRO Publishing. Access to published version may be available via Publisher’s website.
Keywords:Zero tillage; convential tillage; fertiliser application; nitrogen; phosphorus; zinc; pulse cereal rotation; soil minerals; nitrogen; water; grain yield and protein; soil fertility; Central Highlands of Queensland; rotation.
Subjects:Agriculture > Agriculture (General) > Soils. Soil science > Soil and crops. Soil-plant relationships. Soil productivity
Agriculture > Agriculture (General) > Special aspects of agriculture as a whole > Sustainable agriculture
Agriculture > Agriculture (General) > Fertilisers
Agriculture > Agriculture (General) > Methods and systems of culture. Cropping systems
Live Archive:11 Dec 2003
Last Modified:06 Dec 2024 04:30

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics