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Abstract    
Microbiomes play vital roles in insect fitness and health and can be influenced by interactions between insects and their 
parasites. Many studies investigate the microbiome of free-living insects, whereas microbiomes of endoparasitoids and their 
interactions with parasitised insects are less explored. Due to their development in the constrained environment within a 
host, endoparasitoids are expected to have less diverse yet distinct microbiomes. We used high-throughput 16S rRNA gene 
amplicon sequencing to characterise the bacterial communities of Dipterophagus daci (Strepsiptera) and seven of its tephritid 
fruit fly host species. Bacterial communities of D. daci were less diverse and contained fewer taxa relative to the bacterial 
communities of the tephritid hosts. The strepsipteran’s microbiome was dominated by Pseudomonadota (formerly Proteo-
bacteria) (> 96%), mainly attributed to the presence of Wolbachia, with few other bacterial community members, indicative 
of an overall less diverse microbiome in D. daci. In contrast, a dominance of Wolbachia was not found in flies parasitised 
by early stages of D. daci nor unparasitised flies. Yet, early stages of D. daci parasitisation resulted in structural changes in 
the bacterial communities of parasitised flies. Furthermore, parasitisation with early stages of D. daci with Wolbachia was 
associated with a change in the relative abundance of some bacterial taxa relative to parasitisation with early stages of D. 
daci lacking Wolbachia. Our study is a first comprehensive characterisation of bacterial communities in a Strepsiptera species 
together with the more diverse bacterial communities of its hosts and reveals effects of concealed stages of parasitisation 
on host bacterial communities.
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Introduction 

Insects have associations with diverse microbial commu-
nities that are important in host biology, host fitness and 
immunity and can provide protection against pathogens, 
parasitoids and toxins [1–3]. Symbiotic microbes can reside 
within the digestive tract, in particular the gut lumen [4, 5], 
on the surface of the insect host (ectosymbionts) and within 
host cells and tissues (endosymbionts) [6, 7]. The most com-
mon endosymbionts are maternally inherited Wolbachia 
(Alphaproteobacteria) that occur in over 50% of insects and 

other arthropod species [8, 9]. In many hosts, they manipu-
late host reproduction to enhance the production of infected 
females and thereby their prevalence in populations [9, 10]. 
For example, the induction of cytoplasmic incompatibility 
(CI) results in embryonic mortality when infected males 
mate with uninfected females or females infected with an 
incompatible Wolbachia strain; however, this CI is overcome 
in embryos of females infected with the same or a compat-
ible Wolbachia strain, which can rescue the CI effect [9, 10]. 
Besides reproductive manipulation, Wolbachia strains may 
be beneficial to their hosts. Some strains confer protection 
to their hosts against parasites, viruses and other pathogens 
[11–13]. Other Wolbachia strains can synthesise vitamins 
deficient in host diets; for instance Wolbachia provides B 
vitamins to the bedbug, Cimex lectularius [14, 15]. Wol-
bachia can also influence the microbiome of hosts [16–18]. 
For instance, Wolbachia alters the relative abundance of bac-
terial taxa within microbial communities in the parasitoid 
wasp Nasonia vitripennis [18], the cabbage root fly Delia 
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radicum [19] and adult mosquitoes [16]. Conversely, other 
symbiotic bacteria can influence Wolbachia prevalence and 
abundance, for example, Asaia can impede the establishment 
and stable transmission of Wolbachia in mosquitoes [20].

Many studies of host-microbe interactions have been per-
formed on free-living insects, but less so on parasites [21] 
such as endoparasitoids that develop entirely within free-
living insects. So far, the microbiomes of Strepsiptera, an 
endoparasitic insect order, have not yet been investigated 
[22], likely due to its extraordinary characteristic of extreme 
endoparasitism. Strepsiptera consists of 630 known species 
that parasitise hosts belonging to the seven insect orders Blat-
todea, Diptera, Hemiptera, Hymenoptera, Mantodea, Orthop-
tera and Zygentoma [23]. All strepsipteran species are obli-
gate endoparasitoids and almost entirely complete their life 
cycle within their hosts [24, 25]. Adult strepsipterans display 
stark sexual dimorphism, with adult males that have external 
morphological features of a free-living adult insect, while 
the females are neotenic (lacking adult features) and fully 
endoparasitic within their hosts, except for adult females of 
one strepsipteran family, the Mengenillidae (suborder Men-
genillidia) which are free-living [25, 26]. Parasitisation of the 
host occurs via the first instar larvae (planidia), which leave a 
parasitised host to then enter a new host where they undergo 
hypermetamorphosis to the fourth larval instar [26, 27]. In 
Mengenillidae, the fourth larval instars of both sexes leave 
and pupate on the outside of their hosts, while in all other 
families (all contained within the suborder Stylopidia), both 
male pupae and neotenic females extrude through the hosts’ 
cuticle [26, 27]. Males then emerge from the pupae within 
the host while females remain fully endoparasitic. Therefore, 
parasitisation by strepsipterans becomes visible as stylopisa-
tion in the later stages of strepsipteran development, while 
early stages of Strepsiptera may remain concealed in hosts 
and may only be detected by dissection or molecular tools 
[28]. Furthermore, strepsipterans are koinobionts which 
means that the hosts continue to live and feed while these 
endoparasitoids develop within their insect host [26].

Host-parasite interactions can be shaped by microbes asso-
ciated with either the host or the parasite [21, 29]. Microbes 
can protect their hosts against parasites, for instance, a bac-
terial symbiont of aphids, Hamiltonella defensa, can protect 
its hosts against the parasitoid wasp Lysiphlebus fabarum 
[30, 31]. In contrast, the host microbiome can also aid in the 
establishment of parasites in their insect hosts, as seen in the 
interaction between the tapeworm Hymenolepis diminuta and 
its intermediate host, the grain beetle Tenebrio molitor [32]. 
Strepsiptera have an intimate relationship with their hosts and 
depend entirely on their hosts for nourishment [33]. There-
fore, endoparasitoids may compete with the hosts’ microbiota 
for resources. Furthermore, host-associated microbes can 
also influence host immunity. For instance, altering the bacte-
rial communities of the fruit fly Drosophila melanogaster by 

antibiotic treatment influenced its resistance to the parasitoid 
wasp Asobara tabida by moderating the encapsulation rate of 
the parasitoid eggs by the host [34]. Conversely, parasitisa-
tion can affect the host microbiome, such as seen in larvae of 
the two moth species Diatraea saccharalis and Spodoptera 
frugiperda parasitised by the parasitoid wasp Cotesia flavi-
pes, which changed the bacterial community composition and 
structure of the moth larvae [35].

While some host species may have few or no microbial 
associations [36], parasites and parasitoids may have less 
diverse microbiomes than their hosts due to the relatively 
small size, their life cycle and exclusive dependence on their 
hosts for resources. For example, a parasitic plant, the obli-
gate parasite Orobanche hederae, exhibits a reduced micro-
biome compared to its host plant Hedera [37]. Similarly, 
the bacterial alpha diversity is lower within the intestinal 
tapeworm Eubothrium than in its host, the Atlantic salmon 
[38], and the microbiomes associated with entomopatho-
genic nematodes used in the biological control of insect 
pests are of relatively low complexity [39]. Yet, an amplicon 
sequencing study of one of the smallest insects, the parasi-
toid wasp Megaphragma amalphitanum, has revealed that 
it still carries a diverse variety of bacteria, albeit different in 
composition from other larger parasitoid wasp species [40].

Strepsipteran neotenic females reproduce viviparously 
and obtain nutrients exclusively from the host hemolymph 
[33]. Strepsipteran larvae have a gut, and nutrient uptake 
from the host hemolymph occurs in the midgut; however, 
after extrusion of the females, the strepsipteran gut is degen-
erate and filled with hemolymph [41], and nutrient uptake 
from the host hemolymph occurs via a particular structure, 
the apron [42].Therefore, due to the complete dependence 
of Strepsiptera on their hosts, it could be predicted that they 
have a less diverse microbiome. Such microbiome simplicity 
in parasites may be a parallel feature to the reduced mor-
phological and genomic characteristics observed in several 
parasitic, ectosymbiotic and endosymbiotic organisms [26, 
43–45] including the reduced genomic characteristics exhib-
ited by bacterial endosymbionts [46, 47].

Our study focused on Dipterophagus daci, a strepsipteran 
endoparasitoid of tephritid fruit flies [48] belonging to the 
family of Halictophagidae [28]. To date, D. daci is the only 
described strepsipteran endoparasitoid of Diptera (besides 
other undescribed strepsipteran endoparasitoids of platys-
tomatid flies from Papua New Guinea) and has been reported 
from 22 species of the tephritid subfamily of Dacini in Aus-
tralia and the Solomon Islands [28, 48, 49]. A recent study 
revealed that the presence of two Wolbachia strains previ-
ously detected in flies of seven Australian tephritid species 
[50, 51] was due to concealed parasitisation of these flies 
with early developmental stages of D. daci [28]. This recent 
study also concluded that D. daci is the actual host of the 
two Wolbachia strains wDdac1 and wDdac2, which occur at 
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high prevalence in this host, and D. daci without Wolbachia 
is found in only about 10% of parasitised flies [28]. The two 
strains wDdac1 and wDdac2 belong to the Wolbachia super-
group A and have previously been characterised using the 
Wolbachia surface protein (wsp) gene and five multi locus 
sequence typing (MLST) loci [50].

Tephritid fruit fly species are diverse and can infest 
diverse host plants but also different plant parts [52, 53]. 
Furthermore, tephritids have bacterial communities that 
can vary in diversity and structure depending on life stage, 
fly species and phylogeny, host plant species, diet and 
rearing environment [54–56]. For example, the bacterial 
communities of the island fly, Dirioxa pornia, differs from 
those of Bactrocera species, and this could be due to their 
different life histories [54]. Furthermore, bacterial com-
munities with diverse compositions were observed among 
different Bactrocera species suggesting that several factors 
such as host plant specialisation and domestication play a 
role in shaping the microbiome of tephritid fruit flies [54].

Our study aimed to explore the diversity and composi-
tion of bacterial communities of the strepsipteran D. daci. 
We hypothesised that due to its endoparasitic life cycle, the 
bacterial communities of D. daci consist of only few taxa 
and are distinct from the bacterial communities of its fruit fly 
hosts. Furthermore, we expected that Wolbachia would dom-
inate the microbiome of D. daci but not of the parasitised 
fruit fly species. We also tested whether early stages of D. 
daci parasitisation influenced the fruit fly microbiome, and 
whether this was influenced by the presence of Wolbachia 
in D. daci. To address these questions, we performed high-
throughput next generation amplicon sequencing analyses 
of the commonly used and conserved bacterial marker gene, 
the 16S rRNA gene, of (i) D. daci male pupae, (ii) fruit 
flies parasitised by early stages of Wolbachia-positive D. 
daci, (iii) fruit flies parasitised by early stages of Wolbachia-
negative D. daci and (iv) unparasitised fruit flies.

Materials and Methods

Fruit Fly Collection and DNA Extraction

We sequenced and analysed the bacterial 16S rRNA gene 
diversity of total genomic DNA extracts of 84 adult male 
fruit flies and 17 D. daci male pupae (Table S1) [28, 50, 51]. 
The 84 adult male fruit flies comprised individuals of seven 
species including Bactrocera bryoniae (n = 4), Bactrocera 
decurtans (n = 2), Bactrocera frauenfeldi (n = 11), Bac-
trocera neohumeralis (n = 22), Bactrocera tryoni (n = 32), 
Dacus axanus (n = 2) and Zeugodacus strigifinis (n = 11), 
collected from Queensland in 1998, 2001, 2012, 2013 and 
2019 using male lure traps with malathion as part of fruit 
fly monitoring programs (Table S1) [57]. After emptying of 
traps, the trapped fruit fly specimens were kept dry and at 
room temperature for identification and then stored in etha-
nol at − 20 °C until DNA extraction. The D. daci male pupae 
were dissected from visibly parasitised (stylopised) male 
fruit flies of six species (Bactrocera breviaculeus, B. frau-
enfeldi, Bactrocera mayi, Bactrocera pallida, B. neohumer-
alis and B. tryoni; Table S1) collected from Queensland in 
2019 [28]. The pupae were removed from the cephalotheca 
extruding from the abdomen of the parasitised fruit flies 
(Fig. 1a and b). In contrast to these stylopised individuals, 
the 84 adult male flies were either parasitised by concealed 
stages of D. daci (D. daci-positive by PCR) or unparasitised 
(D. daci-negative by PCR) (Fig. 1c) [28]. Prior to DNA 
extraction, the male fruit fly specimens and D. daci male 
pupae were surface-treated with 4% sodium hypochlorite 
to remove any external microorganisms and then washed 
with 0.2% Triton-X and rinsed thoroughly using Milli-Q 
water [51].

Total genomic DNA was extracted from individual fruit 
fly male abdomens and individual whole D. daci pupae 
using GenElute DNA Miniprep Kit (Sigma-Aldrich) as 

Fig. 1   Field-caught male teph-
ritid fruit flies collected using 
male lure traps. A Stylopised 
male fruit fly (Bactrocera neo-
humeralis); B Dipterophagus 
daci male pupa dissected from a 
stylopised male fruit fly (green 
circle shows the cephalotheca 
containing a male pupa); C 
non-stylopised male fruit fly 
(Bactrocera bryoniae) 
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per the manufacturer’s instructions. The DNA quality was 
determined using NanoDrop and gel electrophoresis, and 
the extract was then stored at − 20 °C for subsequent experi-
ments. The fruit fly and D. daci DNA extracts were screened 
by PCR using specific primers for the wsp and 16S rRNA 
genes [50, 51] and the D. daci cytochrome c oxidase I (cox1) 
gene [28]. Based on the PCR results, the samples were cat-
egorised into four groups: (i) D. daci male pupae (Dd) which 
were all positive for Wolbachia (n = 17), (ii) fruit flies para-
sitised by early stages of Wolbachia-positive D. daci (Flies-
DdW) (n = 30), (iii) fruit flies parasitised by early stages 
of D. daci without detectable Wolbachia (FliesDd) (n = 19) 
and (iv) unparasitised fruit flies (Flies) (n = 35) (Table S1). 
It is noted that Wolbachia-negative D. daci are relatively 
rare [28], and, therefore, flies parasitised by early stages of 
D. daci without detectable Wolbachia were preferentially 
included in our amplicon sequencing study to obtain a fair 
representation when compared to flies parasitised by early 
stages of Wolbachia-positive D. daci.

Bacterial 16S rRNA Gene Amplification 
and Sequencing

The DNA extracts were submitted for 16S rRNA gene 
amplicon sequencing on an Illumina MiSeq platform at the 
Western Sydney University Next Generation Sequencing 
Facility. Primers 341F (5′ CCT​ACG​GGNGGC​WGC​AG) 
and 805R (5′ GAC​TAC​HVGGG​TAT​CTA​ATC​C) were used 
to amplify the V3–V4 region of the 16S rRNA gene with a 
total read length of 2 × 301 bp. A bacterial mock community 
(Microbial Community DNA Standard, ZymoBiomics) pro-
vided by the sequencing facility was included.

Sequence Analysis

After sequencing, the sequence reads were pre-processed, 
quality filtered and analysed using Quantitative Insight 
into Microbial Ecology (QIIME 2, v. 2019.7). Raw 
demultiplexed Illumina fastq sequence (Phred33 applied 
for quality control) and mapping files were imported into 
QIIME 2 for downstream processes. The manifest file 
was created by concatenating the forward and the reverse 
sequences. The DADA2 pipeline was used for denois-
ing, quality filtering, dereplication and chimera removal 
[58]. Quality analysis was performed by trimming the 
primers and truncating the reads using the commands 
–p-trim-left-f 17, –p-trim-left-r 21, –p-trunc-len-f 290 
and –p-trunc-len-r 210. A naive Bayes classifier was 
trained using the Greengenes 99% sequence similarity 
threshold for calling operational taxonomic units (OTUs) 
at the V3–V4 region of the 16S rRNA gene. Amplicon 
sequence variants (ASVs) from DADA2 were used for 
taxonomic classification at a 99% similarity threshold 

using QIIME 2 q2-feature-classifier plugin [59] and sam-
ple taxonomic composition, and structure was visualised 
using QIIME 2 bar plot and plotted in R version 3.6.3 
(R core Team, 2020, https://​www.R-​proje​ct.​org/). The 
core-metrics-phylogenetic pipeline was used to construct 
the phylogenetic tree. A rarefaction curve was used to 
assess adequate sampling of the microbial communities. 
Based on the rarefaction curve, the overall alpha and beta 
diversity analyses were performed at a sampling depth 
of 6120, and at 1000 upon filtering out the Wolbachia 
reads, to avoid biases using the q2-diversity plugin. We 
estimated the alpha diversity among the four groups of 
samples using Shannon diversity index and Pielou’s 
evenness. Beta diversity was assessed using weighted 
UniFrac distance (phylogenetic relationships and rela-
tive abundance) and Bray–Curtis distance (relative abun-
dance) to determine the microbial community variation 
in the four sample groups (Dd, FliesDdW, FliesDd and 
Flies) with pairwise comparisons (PERMANOVA) using 
qiime diversity beta-group-significance in QIIME 2 (v. 
2019.7). Beta diversity results were also visualised using 
principal coordinates analysis (PCoA) plots in R. To con-
firm that the Wolbachia ASV of our study corresponded 
to the Wolbachia previously characterised from D. daci, 
we compared it in a multiple sequence alignment using 
CLUSTALW together with 16S rRNA gene sequences 
of wDdac1 and wDdac2 extracted from genome reads 
obtained from the Wolbachia-positive sample B. frauen-
feldi 485 as part of a whole genome sequencing project 
[28, 43] and with a cloned Wolbachia 16S rRNA gene 
(GenBank accession KC775794) sequence obtained from 
B. neohumeralis [51].

Differential Relative Abundance Analysis

To determine whether early stages of D. daci parasiti-
sation had an impact on the microbiome of the host 
fruit f ly, we compared the relative abundance of bac-
terial taxa in the fruit f lies parasitised by early stages 
of D. daci without detectable Wolbachia (FliesDd) to 
the unparasitised fruit f lies (Flies) (Table S1). Sim-
ilarly, we assessed whether parasitisation by early 
stages of Wolbachia-positive D. daci had an impact 
on the host fruit f ly microbiome by comparing the 
FliesDd samples to the FliesDdW samples (Table S1). 
For these comparisons, we used the original taxo-
nomic assignments of ASVs (at 99% identity) with 
the Wolbachia reads excluded. OTU datasets gener-
ated in QIIME and summarised at genus level were 
imported into Phyloseq for downstream analysis. The 
differential relative abundance was then performed 
in edgeR [60].

https://www.R-project.org/
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Results

Sequence Read Analysis

The 101 sequenced 16S rRNA gene amplicon libraries 
(Table S1) included 17 D. daci male pupae (Dd), 30 fruit 
flies parasitised by Wolbachia-positive D. daci (FliesDdW), 
19 fruit flies parasitised by D. daci without detectable Wol-
bachia (FliesDd) and 35 unparasitised fruit flies (Flies) 
across seven tephritid species (B. bryoniae, B. decurtans, 
B. frauenfeldi, B. neohumeralis, B. tryoni, D. axanus and Z. 
strigifinis). After quality control and filtering, we obtained 
a total of 2,274,402 sequence reads, with a mean sequence 
read number of 22,519 per sample (between 42 and 120,845 
sequence reads per sample). After normalising the sequence 
read number at a sampling depth of 6120 to minimise biases, 
we excluded one fruit fly specimen that contained fewer 
than 6120 sequences (one D. axanus Flies sample with 42 
sequence reads) from the subsequent analysis (Table S1). A 
total of 1808 ASVs were identified in this study (Table S2).

Bacterial Community of D. daci

The bacterial community of D. daci pupae was dominated 
by the class Alphaproteobacteria, accounting for 79.2% of 
the total sequence reads (Fig. 2a, Table S3). Other classes 
include Gammaproteobacteria (16.2%), Bacilli (2.1%), 

Deltaproteobacteria (0.6%), Flavobacteria (0.66%), Bacte-
roidia and various other classes with a combined relative 
abundance of < 1% (Fig. 2a, Table S3). The ASV with the 
highest relative abundance was one Wolbachia 16S rRNA 
gene sequence accounting for 78.7% of all sequence reads 
and was present in all 17 D. daci pupae (Fig. 2b, Table S4). 
The 16S rRNA gene sequences from wDdac1 and wDdac2 
obtained from a previous whole genome sequencing project 
did not vary in the V3–V4 region (402 bp) and were identi-
cal to the dominant Wolbachia ASV obtained in this study 
(Fig. S1). An additional 15 Wolbachia ASVs, all singletons, 
consisted of sequences with up to 2 mismatches to the domi-
nant ASV. The Wolbachia 16S rRNA gene sequence previ-
ously obtained in a molecular cloning experiment from the 
Wolbachia-positive B. neohumeralis was also identical to 
the wDdac1 and wDdac2 16S rRNA gene sequences albeit 
in another region (349 bp) (Fig. S1) further confirming that 
the two Wolbachia strains cannot be differentiated in the 
V3–V4 region. Other genera that were relatively abundant 
included Serratia (5.6%), Trabulsiella (2.4%), Enterobac-
ter (1.6%), one unknown Pasteurellales ASV (2.4%), one 
unknown Enterobacteriaceae ASV (1.4%) and Lactococcus 
(1.09%) (Fig. 2b, Table S4).

Alpha diversity analysis revealed low Shannon diversity 
and Pielou’s evenness indices in D. daci, whereas both indices 
were higher for flies (Kruskal–Wallis, p < 0.05, Fig. 3a and 
b, Table S5). Beta diversity analysis of bacterial communi-
ties using weighted UniFrac and Bray–Curtis PCoAs showed 
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that D. daci bacterial communities clustered separately from 
those of the host fruit flies (Fig. 3c and d, Table S6 and S7). 
PERMANOVA analyses based on Bray–Curtis results also 
revealed the distinct clustering of D. daci bacterial communi-
ties from those of host fruit flies (Table 1).

Comparison of Bacterial Communities Among Fruit 
Fly Species

The weighted UniFrac analysis showed no distinct clus-
tering pattern in the fruit fly species (Fig. 4a, Table S8). 

However, Bray–Curtis PCoA revealed a distinct separa-
tion in the bacterial communities of Z. strigifinis and 
the remaining six fruit fly species (Fig. 4b, Table S9). 
Therefore, the fruit f ly bacterial communities of Z. 
strigifinis, B. bryoniae, B. frauenfeldi, B. neohumeralis 
and B. tryoni were investigated to determine the differ-
ences in relative abundances (B. decurtans and D. axanus 
were not included due to low sample numbers). Prior 
to this, the alpha diversity analysis of the five fruit fly 
species was performed. Both Shannon diversity and Pie-
lou’s evenness indices revealed a significant difference in 

Fig. 3   Alpha and beta diversity 
analysis of Dipterophagus daci 
male pupae (Dd), unparasitised 
fruit flies (Flies), fruit flies 
parasitised by early stages of 
D. daci without detectable 
Wolbachia (FliesDd) and fruit 
flies parasitised by early stages 
of Wolbachia-positive D. 
daci (FliesDdW). A Shannon 
diversity, B Pielou’s evenness, 
C weighted UniFrac and D 
Bray–Curtis principle coordi-
nate analysis (PCoA) plots. Dif-
ferent letters indicate significant 
differences in Kruskal–Wallis 
comparisons (p < 0.05)
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bacterial communities of B. frauenfeldi and Z. strigifinis 
compared to other fruit f ly species (Kruskal–Wallis, 
p < 0.05, Fig. S2, Table S10).

Bacterial genera with the highest abundance in all fruit flies 
were Vagoccoccus (27.8%), one unknown Pasteurellales ASV 
(19.0%), one unknown Enterobacteriacea ASV (7.7%), Acine-
tobacter (6.4%), Providencia (6.2%), Enterobacter (4.6%), one 
unknown Desulfovibrionaceae ASV (3.9%), Dysgonomonas 
(3.6%), Klebsiella (2.5%), Citrobacter (2.1%), Serratia (1.7%), 
Trabulsiella (1.6%), Lactococcus (0.63%) and others (all remain-
ing bacteria combined, 12.4%) (Fig. 4c, Table S11). Bar plots 
representing the diversity of the fruit fly bacterial communities 
revealed variability in the relative abundance of bacteria (Fig. 4c). 

The most striking difference was the low relative abundance of the 
one unknown Pasturellales ASV in Z. strigifinis (1%) compared 
to the other fruit fly species which contained this bacterium at 
relative abundances ranging from 13 to 35% (Fig. 4c, Table S11). 
Interestingly, Acinetobacter bacteria were relatively more abun-
dant in Z. strigifinis (21%) compared to B. bryoniae (0.2%), B. 
frauenfeldi (8.9%), B. neohumeralis (0.01%) and B. tryoni (1.4%) 
(Fig. 4c, Table S11). PERMANOVA pairwise analyses based on 
both weighted UniFrac and Bray–Curtis results showed significant 
differences (p < 0.05, PERMANOVA) in bacterial communities 
of B. frauenfeldi compared to the other fruit fly species (Table 2). 
This could be attributed to the one unknown Enterobacteriaceae 
ASV that had a relative abundance of 15.1% in B. frauenfeldi, 

Table 1   Summary of PERMANOVA results assessing pairwise beta 
diversity  metrics differences between groups of samples: Dipter-
ophagus daci male pupae (Dd), fruit flies parasitised by early stages 
of Wolbachia-positive D. daci (FliesDdW), fruit flies parasitised by 

early stages of D. daci without detectable Wolbachia (FliesDd) and 
unparasitised fruit flies (Flies). Comparisons that are significantly dif-
ferent are shown in bold

PERMANOVA Weighted UniFrac Bray–Curtis

Sample size Permutations pseudo-F p Value pseudo-F p Value

Flies-Dd 51 999 41.014 0.001 18.898 0.001
FliesDd-Dd 36 999 47.850 0.001 22.044 0.001
FliesDdW-Dd 47 999 39.167 0.001 19.437 0.001
Flies- FliesDd 53 999 0.688 0.598 0.904 0.577
Flies-FliesDdW 64 999 0.708 0.615 1.058 0.341
FliesDd-FliesDdW 49 999 1.329 0.236 1.103 0.307
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Fig. 4   Analyses of fruit fly samples groups. A Weighted UniFrac and 
B Bray–Curtis beta diversity principle coordinate analysis (PCoA) 
plots to visualise the clustering and similarity of the fruit fly sample 
groups. The ellipses drawn based on the standard deviation show the 
clustering of the Bactrocera and Zeugodacus samples. C Bar plot of 
the most common bacterial genera in the host fruit flies Bactrocera 

bryoniae, Bactrocera frauenfeldi, Bactrocera neohumeralis, Bac-
trocera tryoni and Zeugodacus strigifinis. Analysis was performed 
on fruit fly specimens from all sample groups including unparasitised 
fruit flies (Flies), fruit flies parasitised by early stages of Dipteropha-
gus daci without detectable Wolbachia (FliesDd) and fruit flies para-
sitised by early stages of Wolbachia-positive D. daci (FliesDdW)
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while the other fruit fly species had relative abundances of this 
unknown Enterobacteriaceae ASV ranging from 2.05 to 9.7% 
(Fig. 4c, Table S11). No significant differences were observed in 
comparisons among the bacterial communities of B. bryoniae, B. 
neohumeralis and B. tryoni (Table 2). 

Influence of Early Stages of D. daci Parasitisation 
on Bacterial Communities in Fruit Fly Hosts

A comparison of the fruit flies parasitised by early stages 
of D. daci without detectable Wolbachia (FliesDd) and 

unparasitised flies (Flies) was performed to determine 
the impact of early D. daci parasitisation on the fruit 
f ly bacterial diversity. The OTU datasets used were 
retrieved from QIIME and summarised to genus level. 
This comparison revealed an impact of early parasiti-
sation by D. daci on the relative abundance of Pseu-
domonadota (formerly  Proteobacteria) and Bacillota 
(formerly Firmicutes) in fruit flies (Fig. 5a, Table S12). 
The relative abundance of nine bacterial genera includ-
ing Proteus, one unknown Enterobacteriaceae ASV, 
Klebsiella ,  one unknown Acetobacter iacea ASV, 

Table 2   Summary of 
PERMANOVA results assessing 
beta diversity metrics pairwise 
differences between host 
fruit fly species: Bactrocera 
bryoniae, Bactrocera 
frauenfeldi, Bactrocera 
neohumeralis, Bactrocera 
tryoni and Zeugodacus 
strigifinis (Bactrocera decurtans 
and Dacus axanus were not 
included due to low sample 
numbers). Comparisons that are 
significantly different are shown 
in bold

PERMANOVA Weighted UniFrac Bray–Curtis

Sample size Permutations pseudo-F p Value pseudo-F p Value

B. bryoniae-B. frauenfeldi 15 999 4.967 0.011 3.026 0.002
B. bryoniae-B. neohumeralis 26 999 1.348 0.246 1.548 0.068
B. bryoniae-Z. strigifinis 15 999 5.532 0.005 15.058 0.001
B. bryoniae-B. tryoni 36 999 2.398 0.065 1.778 0.017
B. frauenfeldi-B. neohumeralis 33 999 7.010 0.001 2.431 0.002
B. frauenfeldi-Z. strigifinis 22 999 13.883 0.001 7.418 0.001
B. frauenfeldi-B. tryoni 43 999 3.863 0.004 1.851 0.004
B. neohumeralis-Z. strigifinis 33 999 9.187 0.001 11.844 0.001
B. neohumeralis-B. tryoni 54 999 1.790 0.134 1.324 0.113
Z. strigifinis-B. tryoni 43 999 14.541 0.001 10.172 0.001
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Fig. 5   Scatter plot of the bacterial taxa with differential relative abun-
dance in A fruit flies parasitised by early stages of Dipterophagus 
daci without detectable Wolbachia (FliesDd) compared to unpara-
sitised fruit (Flies) and in B fruit flies parasitised by early stages of 
Wolbachia-positive Dipterophagus daci (FliesDdW) compared to 

fruit flies parasitised by early stages of D. daci without detectable 
Wolbachia (FliesDd). A log fold change of logFC > 0 indicates that 
the abundance of the genera increased, whereas logFC < 0 indicates 
that the abundance of the genera decreased. The taxa with signifi-
cantly different relative abundances are coloured by phylum
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Ochrobactrum, Morganella, Providencia, three unknown 
Pasteurellales ASVs and Enterococcus were increased 
in FliesDd, while three bacterial genera (Enterobacter, 
Citrobacter and one unknown Halomonadacea ASV) 
decreased in FliesDd (Fig. 5a, Table S12).

Similarly, we compared the relative abundance of bacte-
rial taxa between flies parasitised by D. daci with and with-
out detectable Wolbachia. Sequences used in this analysis 
were corrected for Wolbachia and normalised to a sequenc-
ing depth of 1000, based on the minimum number of reads 
after excluding Wolbachia. We found that the relative abun-
dance of 11 genera comprising Proteus, Providencia, Dys-
gonomonas, Morganella, one unknown Acetobacteriacea 
ASV, two unknown Pasteurellales ASVs, Vagococcus, Ser-
ratia, one unknown Enterobacteriaceae ASV, Staphylococ-
cus and Enterobacter were decreased in FliesDd, while the 
relative abundances of Klebsiella, Trabulsiella, Myroides 
and Citrobacter were increased (Fig. 5b, Table S13).

Discussion

We used 16S rRNA gene amplicon sequencing to characterise 
the bacterial communities involved in the interactions between 
tephritid fruit flies and the strepsipteran endoparasitoid D. daci. 
With this we have performed, according to our knowledge, the 
first comprehensive characterisation of bacterial communities 
in a species of the endoparasitic insect order Strepsiptera [23]. 
The bacterial communities of D. daci were dominated by Wol-
bachia; however, this dominance was not observed in fruit flies 
parasitised by early stages of Wolbachia-positive D. daci (and 
Wolbachia was completely absent in flies not parasitised by D. 
daci), supporting previous findings that D. daci is the host of 
Wolbachia in this host-parasitoid interaction [28]. We found 
that the bacterial communities of D. daci are not as diverse but 
distinct when compared to the more diverse bacterial communi-
ties of the fruit fly hosts. Furthermore, early stages of D. daci 
parasitisation and presence of Wolbachia in D. daci altered the 
microbiome of parasitised fruit flies. We also found that the 
bacterial communities of Z. strigifinis were distinct from the 
bacterial communities of the Bactrocera species and this may 
be linked to their different ecologies, with Z. strigifinis develop-
ing in cucurbit flowers, whereas the analysed Bactrocera spe-
cies develop in fruit [53, 61].

Dipterophagus daci Has a Less Diverse Microbiome

The most abundant bacterial phylum in D. daci was Pseu-
domonadota comprising 96.2% of the total bacterial 
sequence reads, followed by Bacillota and Bacteroidota at a 
substantially lower relative abundance. A high relative abun-
dance of Pseudomonadota and Bacillota has previously been 
detected in fruit flies [54, 62] and other insect species [55, 

63]; however, the relative abundance of  Pseudomonadota in 
D. daci pupae found in our study was generally higher and 
mostly just consisted of Wolbachia. This indicates that bac-
terial communities in D. daci are not very diverse, which is 
perhaps due to its parasitic life cycle. The strepsipteran D. 
daci and all other Strepsiptera are almost fully endopara-
sitic in their host and depend exclusively on the host for 
nourishment [24, 26, 33]. The high presentation of Pseu-
domonadota in D. daci was due to Wolbachia, a member of 
the Alphaproteobacteria, in combination with Gammapro-
teobacteria, Bacilli, Deltaproteobacteria, Bacteroidia and 
Flavobacteriia at substantially lower relative abundance. It 
needs to be noted that we were only able to characterise the 
bacterial communities of D. daci in isolation from its host by 
carefully dissecting pupae out of the cephalotheca extruding 
from the abdomen of parasitised fruit flies, followed by sur-
face treatment to minimise contamination. We do not know 
how bacterial communities in D. daci change throughout 
its development. Given the endoparasitic life cycle of D. 
daci, it is likely that exposure to environmental bacteria is 
limited, which could impact the observed low levels of bac-
terial diversity in D. daci. Therefore, bacterial symbionts 
detected in D. daci pupae are either maternally inherited or 
horizontally acquired from the host fly or from the environ-
ment during the short period that planidial larvae search for 
new hosts. It is perhaps less likely that bacteria acquired by 
adult D. daci males are then paternally transmitted. We did 
not obtain free living males of D. daci as they would require 
different sampling techniques such as light trapping or col-
lection of adult males emerging from parasitised flies and 
are, therefore, more difficult to collect than parasitised flies.

The Microbiome of D. daci is Dominated 
by Wolbachia and Distinct from the Fruit Fly Hosts' 
Bacterial Communities

Wolbachia is a common maternally inherited endosym-
biont of insects and other arthropods that can manip-
ulate host reproduction to increase its prevalence in 
host populations [8, 64, 65]. In several host species, 
Wolbachia provides fitness benefits which can also 
maintain this endosymbiont in host populations [66]. 
For several insect species, it has been found that, when 
present, Wolbachia can dominate bacterial communities 
within hosts [67, 68]. Our findings of the dominance 
of Wolbachia in bacterial communities within D. daci 
(but not in the bacterial communities within fruit flies) 
further confirms that the two Wolbachia strains first 
detected in fruit f lies [50, 51] are actually associated 
with D. daci and had previously been detected in these 
fruit flies because of parasitisation by concealed early 
stages of Wolbachia-positive D. daci [28]. Additionally, 
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alpha diversity analysis revealed low Shannon diversity 
and Pielou’s evenness values in D. daci bacterial com-
munities (a consequence of the Wolbachia dominance) 
while this was not observed in fruit flies parasitised by 
early stages of Wolbachia-positive D. daci.

Previous analyses have found that Wolbachia occurs 
at high prevalence in D. daci [28], and D. daci is depau-
perate in mitogenome diversity across large parts of its 
geographic distribution [28, 43]. Because of maternal 
co-inheritance with mitochondria, Wolbachia may have 
caused a selective sweep of mitochondria due to either 
reproductive manipulation or beneficial host fitness 
effects. Previous analyses of whole genome sequenced 
specimens have not detected the presence of Wolbachia 
genes involved in reproductive manipulations, and, there-
fore, it is likely that Wolbachia confers a fitness benefit 
to D. daci [28], for example, by providing a key nutrient 
and/or supporting immunity; however, this will need fur-
ther investigation. Most strepsipteran life stages are fully 
endoparasitic except for the free-living first instar larvae 
(planidia) and adult males and are therefore fully depend-
ent on the host for nourishment [42]. The host may not 
always provide all the essential nutrition, and therefore 
endoparasitoids may form beneficial interactions with 
maternally inherited endosymbionts like Wolbachia. In 
the bedbug, Cimex lectularius, a Wolbachia supergroup 
F strain, provides B vitamins which are deficient in the 
bedbug’s diet [14]. Similarly, a Wolbachia supergroup 
A strain provides D. melanogaster with metabolic sup-
port in periods of nutritional stress [69], and Wolbachia 
supergroup B strains have been associated with synthe-
sis of biotin and riboflavin to increase host fitness in 
the small brown planthopper Laodelphax striatellus and 
the brown planthopper Nilaparvata lugens [15]. Further-
more, Wolbachia supergroup A strains provide protection 
against pathogens such as RNA viruses in several insect 
species such as Drosophila [11, 13, 70] and mosquitoes 
[71, 72]. Throughout its entire development, D. daci is 
exposed to the fruit flies’ immune system and the host’s 
viruses. It has recently been found that the tephritid host 
species of D. daci have a very high incidence and preva-
lence of insect-specific RNA viruses [73] with vertical 
and horizontal transmission modes [74]. Future research 
should investigate how these viruses interact with fruit 
fly hosts and D. daci.

Furthermore, the weighted UniFrac and Bray–Curtis 
beta diversity analyses revealed that the bacterial com-
munity of D. daci was distinct from the bacterial com-
munities of its fruit f ly host species. This may be due 
to the phylogenetic distance between the strepsipteran 
and its fruit f ly hosts, or the differences in host life 
cycle and diet. It also indicates that D. daci and the 
fruit f ly hosts do not share microbiome components.

Variable Bacterial Communities in Fruit Fly Host 
Species

Our analyses of the bacterial communities in fruit flies 
with the presence of several Enterobacteriaceae taxa (one 
unknown Enterobacteriaceae ASV, Acinetobacter, Provi-
dencia, Enterobacter, Klebsiella, Citrobacter and Serratia) 
confirmed their importance in tephritid fruit fly microbiomes 
as found in previous studies [54, 56, 75]. However, we also 
found an abundance of bacterial taxa such as Vagoccoccus, 
one unknown Pasteurellales ASV, Trabulsiella, one unknown 
Desulfovibrionaceae ASV and Dysgonomonas, which were 
different bacterial community members when compared 
to previous studies on tephritid fruit flies. This difference 
could be attributed to our sample collection and handling 
procedures (samples were collected in male lure traps with 
an insecticide and kept dry and at room temperature until 
identification). Additionally, for our study, we specifically 
selected individuals that were parasitised by early stages of 
D. daci and this could also have resulted in a sampling bias.

Tephritid fruit fly species exhibit diverse life histories 
and host plant preferences [52, 53, 61], and these can affect 
their microbiomes [53, 54, 76]. The Shannon diversity 
and Pielou’s evenness showed significant difference in B. 
frauenfeldi and Z. strigifinis bacterial communities com-
pared to the other fruit flies. Additionally, the Bray–Curtis 
PCoA revealed that bacterial communities associated with 
Z. strigifinis were distinct from those of Bactrocera spe-
cies, possibly suggesting a fly genus effect, albeit we only 
included one Zeugodacus species in our study. Furthermore, 
there could be a host plant effect as Z. strigifinis is a pest 
of Cucurbitaceae flowers while B. tryoni, B. neohumeralis, 
B. frauenfeldi and B. bryoniae infest fruits [53, 61]. The 
weighted UniFrac analysis, however, did not show any dis-
tinct clustering, suggesting that the variation between the 
bacterial communities of Z. strigifinis and the Bactrocera 
species may only be in the relative abundance of the bac-
terial taxa that may have similar function. This difference 
may be due to the unknown ASVs of Pasteurellales and Aci-
netobacter. In addition to the different bacterial communi-
ties observed in Z. strigifinis, PERMANOVA revealed that 
B. frauenfeldi were also different in bacterial community 
structure when compared to B. bryoniae, B. tryoni and B. 
neohumeralis. Bactrocera tryoni and B. neohumeralis are 
closely related sibling species [77]; hence, this may explain 
the similarity of their bacterial communities [54], while it 
is unclear why B. bryoniae grouped with these two species.

Dipterophagus daci Parasitisation Alters Structure 
of Bacterial Communities

We observed a significant decrease in the relative abun-
dance of nine bacterial genera in fruit flies parasitised by 
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D. daci without Wolbachia, while three bacterial genera 
increased in their relative abundance, suggesting that D. 
daci parasitisation affects the relative abundance of bac-
terial taxa in host bacterial communities. Furthermore, 
despite the low relative abundance of Wolbachia in fruit 
flies parasitised by Wolbachia-positive D. daci, we found 
a decrease in the relative abundance of 11 bacterial genera 
in flies parasitised by Wolbachia-positive D. daci, while 
the relative abundance of four bacterial genera increased. 
This suggests that parasitisation by D. daci and presence 
of Wolbachia in D. daci affect bacterial communities in 
flies. This is in line with other research that has shown that 
microbes can influence host-parasite interactions [19, 29, 
32, 35, 78]

Conclusions

According to our knowledge, our study is the first compre-
hensive characterisation of the bacterial communities of a 
strepsipteran using a next generation amplicon sequencing 
approach. We demonstrated that bacterial communities of 
D. daci are not very diverse, dominated by Wolbachia and 
distinct from those of its host fruit fly species, and this could 
be attributed to the differences in host life cycles, life his-
tories and phylogeny. Further studies should investigate the 
role of the two Wolbachia strains in D. daci, in particular as 
it is clear from previous genome analyses that they lack the 
capacity to manipulate host reproduction yet have an overall 
high prevalence in D. daci [28]. Furthermore, we observed 
variability in the relative abundance of bacterial taxa across 
fruit fly species, irrespective of parasitisation by D. daci, 
suggesting that phylogeny, host plant preference and host 
plant use play a role in shaping bacterial communities in 
fruit flies [54]. In addition, early stages of D. daci parasitisa-
tion affected the relative abundance of bacteria in microbial 
communities of host fruit flies. Hence, parasitisation can 
also shape the microbiome of insects and should therefore 
be considered in host-microbiome studies.
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