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A B S T R A C T   

In the dry savannas of northeast Australia, forage quality is just as important for cattle production as forage 
quantity. The seasonal trend of forage quality is broadly predictable by land managers, but it is more difficult to 
predict the point when quality—which depends on local climate, management, and pasture condition—falls 
below the requirement for animal maintenance. In this study we use statistical modelling to forecast how forage 
quality might change at the crucial time of year, i.e., as the summer wet season transitions to the dry winter. We 
do this with the aid of historical information associated with a long-term cattle-grazing trial in the dry savannas. 
We combined multiple years of two measures of forage quality (dietary crude protein and in vivo dry-matter 
digestibility; respectively DCP and DMD) and ground cover information (specifically the ratio of ‘green grass’ 
cover to ‘dead (i.e., non-photosynthetic) grass’ cover, derived from an archive of Landsat satellite imagery) into a 
linear mixed model that explicitly considered the correlations with time and between variables. DCP and DMD 
were estimated by near-infrared spectroscopy of fresh faecal samples; values did not have to be temporally 
coincident with the satellite imagery. With the end of May considered a nominal decision-point, we forecast 
monthly averages of forage quality for June to August, over a 12-year period at the study site. Over all months 
and all years, the median absolute error of the forecasts was DCP = 0.86%, and DMD = 0.95%. The remote 
sensing information served as a correlated, oft-sampled covariate that helped to guide the forecasts of forage 
quality. We propose summarising the forecasts (and their uncertainty) as a near-real-time graphical tool for 
decision-support. Such a product could potentially benefit cattle-grazing enterprises in the northeast of Australia, 
enabling more timely management of herds through the dry season.   

1. Introduction 

Forage quality, as distinct from quantity, is a major constraint to 
cattle production in the dry savannas of northern Australia. Forage 
quality is highest during the summer wet season, but declines rapidly 
when pastures senesce at the onset of the long dry season (McCown, 
1981). Cattle can consequently lose body condition and substantial mass 
during the dry season, even if there appears to be abundant forage 
(Norman, 1965; Siebert and Kennedy, 1972). The seasonal variability of 
forage quality is superimposed on a background of highly variable 
rainfall, with northern Australia marked by runs of multi-year wet or dry 
periods (McKeon et al., 2021). 

It has long been known that forage quality in northern Australia is 
directly related to the availability of green leaf (McCown, 1981; McIvor, 

1981; Poppi et al., 1981). The seasonal trend of forage quality is thus 
broadly predictable, but the nature of the transition to low-quality 
forage can vary markedly, depending on the distribution and amount 
of rainfall (McCown, 1981). For example, very wet years with large 
growth events can lead to nutrient dilution, while the converse may be 
true in droughts. 

Managers can respond to the decline in forage quality by marketing 
cattle early, moving the cattle, or providing supplements. In the dry 
savannas, non-protein nitrogen, in the form of urea (Callaghan et al., 
2014), is widely used as a supplement when dietary crude protein (DCP) 
is perceived as limiting. When energy in the diet is perceived as limiting, 
supplements such as molasses, often mixed with urea, may also be 
considered for animals with higher energy requirements (Callaghan 
et al., 2014). Deploying supplements before they are actually required is 
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an unnecessary cost. Conversely, delaying supplementation too long can 
result in reduced production. 

A key challenge facing land managers in the dry savannas is thus to 
assess forage quality in an accurate and timely matter. Typically, this is 
done vaguely, using a combination of cues such as pasture greenness, 
rainfall received (and forecast), soil moisture, and animal condition. The 
last may seem an obvious proxy, but can be associated with large un
certainty (Fordyce et al., 2013; Tolleson et al., 2020). The challenge is 
exacerbated by extremely large grazing properties (typically 
20,000–500,000 ha) and widely dispersed herds. The spatial heteroge
neity of large paddocks, coupled with the spatial variability of rainfall, 
adds further complexity. With access to paddocks usually limited, 
roadside visual assessments of forage quality are unlikely to be repre
sentative of a paddock as a whole. While some land managers may 
monitor forage quality via faecal near-infrared spectroscopic analysis 
(fNIRS; Dixon and Coates, 2009), samples still need to be collected and 
dispatched for analysis, which involves time and cost. 

An obvious potential solution is to use satellite-derived information, 
such as the Normalised Difference Vegetation Index (NDVI; Tucker, 
1979) or the Enhanced Vegetation Index (EVI; Huete et al., 2002) as a 
proxy for forage quality (Pettorelli et al., 2011). Both NDVI and EVI have 
been used to study the foraging behaviour of wild ungulates, including 
buffalo in the savannas of Africa (Ryan et al., 2012) and Australia 
(Campbell et al., 2021), chamois in Europe (Villamuelas et al., 2016) 
and bighorn sheep and bison in the USA (Creech et al., 2016; Geremia 
et al., 2019). There are fewer published applications that focus on do
mestic ungulates like cattle and sheep. Notable studies in this space are 
Phillips et al. (2009), Zengeya et al. (2013), and Panda et al. (2020), who 
each calibrated a variable related to forage quality—respectively, a C:N 
ratio, N concentration, and extractable condensed tannin—with a 
remote sensing-derived vegetation index, and extrapolated the results 
across their study areas. While insightful, these three studies were each 
limited to, at most, a single growing season, hence the inter-annual 
variability of forage quality was not considered. In Queensland’s ran
gelands, Barnetson et al. (2020) found that forage quality for grazing 
animals was correlated with the red and red-edge regions of the elec
tromagnetic spectrum. 

The vast archive of freely available Landsat imagery (landsat.gsfc.na 
sa.gov) provides a means to investigate—in greater depth than has yet 
been attempted—the relations with forage quality. In this study we 
combine Landsat imagery with 23 years of forage quality data from a 
long-term grazing trial. In contrast to some previous studies, we deter
mine forage quality by fNIRS, sampled from free-ranging cattle. Faecal 
sampling provides an integrated estimate of the diet selected over the 
preceding few days, which is more representative of forage quality than 
either oesophageal fistula or hand-cut forage samples (Coates and 
Dixon, 2007). Due to the ability of cattle to distinguish green and dead 
forage (Hendricksen et al., 1982), we contend that NDVI or EVI are sub- 
optimal variables to link with forage quality. Instead, the pixel-wise 
spectra of satellite imagery should be calibrated to biophysically 
meaningful components of green cover, dead cover, and bare soil (Scarth 
et al., 2010; Terrestrial Ecosystem Research Network, 2017). 

It would represent a novel advance for grazing manage
ment—beyond northern Australia’s savannas—to be able to forecast 
forage quality as related to the temporal dynamics of remotely sensed 
cover components. A practical difficulty in this pursuit is that forage 
quality will rarely be measured on the same day as a satellite overpass. 
This can be an important consideration, due to the variation in forage 
quality even over short time scales. A further difficulty is creating a 
framework that yields not only realistic forecasts of forage quality, but 
also realistic forecasting uncertainty. We propose that these difficulties 
can be overcome with an appropriately parameterised linear mixed 
model (Marchant et al., 2009). 

The aim of this study was to combine field observations of forage 
quality with remotely sensed cover components, to develop a linear 
mixed model that can forecast forage quality for cattle in the dry 

savannas of northeast Australia. Forecasts were to be made three months 
ahead of a key decision date, over a 12-year period. We set the date of 
interest as May 31, a time when the wet season is typically transitioning 
to the dry, and forage quality can change rapidly. Accurate forecasts, 
associated with realistic uncertainty, will potentially benefit land man
agers in northeast Australia, allowing them act in a timely manner. 

2. Methods 

2.1. Study site 

Our study focussed on the long-term cattle-grazing trial at Wambiana 
station (20◦32ʹ24′′ S, 146◦08′2′′ E), in the dry savannas, approximately 
50 km south-west of Charters Towers, Queensland, Australia (Fig. 1). 
Median annual rainfall for Trafalgar Station (17 km from the grazing 
trial) is 605 mm but 87% of this is typically received between November 
and March (Bureau of Meteorology, 2021). The site contains three main 
soil-vegetation communities (with soil nomenclature from International 
Union of Soil Sciences, Working Group WRB, 2015): Eucalyptus mela
nophloia on Ferralsol soil; an Acacia harpophylla–Eucalyptus brownii 
community on a complex of Ferralsol and Vertisol soil; and E. brownii on 
Solonetz soil. The herbaceous layer consists of a range of native C4 
tropical perennial grasses such as Aristida spp., Bothriochloa ewartiana, 
Chrysopogon fallax, Dichanthium sericeum, and various Digitaria and 
Panicum species (O’Reagain et al., 2009) as well as various annual 
species and forbs. The exotic grass Bothriochloa pertusa has emerged as a 
substantial component of pasture since 2007, and the native shrub 
Carissa ovata is particularly associated with the E. brownii community. 

The trial was conceived to test the ability of different stocking stra
tegies to cope with rainfall variability (O’Reagain et al., 2009). Its lon
gevity—and the volume of data collected—make the trial unique to 
northern Australia. In 1997 ten contiguous paddocks, all approximately 
100 ha, were randomly allocated to one of five grazing treatments (two 
replicates per treatment; Fig. 1). All paddocks contain similar pro
portions of the three main soil-vegetation communities. We focussed on 
the two treatments that have the greatest contrast: (i) moderate stocking 
rate (MSR), stocked at an average of 9.0 ha per animal equivalent (AE; 
defined as a 450-kg steer) located in paddocks A and B; and (ii) heavy 
stocking rate (HSR), stocked at an average of 6.5 ha per AE in paddocks 
C and D. Paddocks are grazed year-round with free-ranging Brahman 
steers. Following industry practice, animals are supplemented with urea 
in the dry season and phosphorous in the wet season. In severe droughts, 
cattle are supplemented with molasses and urea, or removed altogether 
(O’Reagain et al., 2009). 

2.2. Forage quality 

We quantified forage quality through two variables: dietary crude 
protein (DCP) and in vivo dry-matter digestibility (DMD). These were 
estimated by fNIRS, collected from cattle in Paddocks A–D, approxi
mately every three weeks between June 1998 and November 2019. For 
operational reasons, the collection of faecal samples temporarily ceased 
during October to December 1999, and from June 2011 to January 
2012. 

Samples were composites, collected from fresh dung pats from at 
least five animals in each paddock. Faecal samples were air-dried at 
60 ◦C for 48 h, sealed, then stored. Prior to analysis, samples were 
ground (1-mm screen, Model 1093 Cyclotec mill; Foss Tecator AB, 
Hoganas, Sweden), redried (65 ◦C), cooled in a desiccator, then scanned 
(400–2500-nm range) using a monochromator fitted with a spinning cup 
module (Foss 6500; NIRSystems, Silver Spring, MD, USA), as described 
by Coates and Dixon (2011). DCP and DMD were estimated from faecal 
spectra, using established calibration equations appropriate for the 
tropical pastures of northern Australia (Dixon and Coates, 2009; Coates 
and Dixon, 2011). 

Faecal samples collected during periods of drought-feeding were 
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excluded from the analysis, leaving a total of 1271 faecal samples from 
the four paddocks. To account for transit through the cattle, we sub
tracted three days from each sampling date. 

2.3. Satellite imagery 

Satellite imagery that intersected the study site was collated for the 
period 1st January 1997 to 29th February 2020, from Landsat-5 TM 
(Thematic Mapper; images acquired 1997–2011), Landsat-7 ETM+

(Enhanced Thematic Plus; 1999–2020), and Landsat-8 OLI (Operational 
Land Imager; 2013–2020). Imagery was pre-processed to surface 
reflectance (Flood et al., 2013). We applied a spectral-unmixing algo
rithm (Scarth et al., 2010) to every Landsat image, to split pixel-wise 
surface reflectance into cover proportions of ‘bare soil’, ‘green vegeta
tion’, and ‘dead (i.e. non-photosynthetic) vegetation’. An in-house al
gorithm then minimised the influence of tree foliage (thus converting 
‘green vegetation’ to ‘green grass’), and simultaneously further split 
‘dead vegetation’ into edible ‘dead grass’ and inedible ‘litter’ (see Sup
plementary Material). Masks were applied to filter undesirable effects 
from the imagery, e.g. cloud contamination (Zhu et al., 2015), or open 
water (Fisher et al., 2016). If, following this step, >50% of a paddock’s 
pixels were observed on a particular date—and the paddock was not 
detected as burnt in the preceding 90 days (Goodwin and Collett, 
2014)—then the ratio of paddock-average ‘green grass’ to ‘dead grass’ 
was calculated for further analysis. We herein refer to this variable as 
GDR. 

2.4. A statistical model that forecasts forage quality 

We simultaneously modelled DCP, DMD, and GDR, justifiable on the 
basis that, through their correlation, knowledge of one could help to 
forecast the other. All three variables are observed irregularly in time. 
GDR is observed more often than DCP and DMD, but not necessarily on 
the same day. For simplicity, we first describe the modelling setup as if 
there were only one response variable—represented generically as z 
—and then describe extension to the multivariate case. 

2.4.1. Basic setup—univariate case 
A linear mixed model (LMM) was used to describe the variation of z 

through time. A LMM splits z into components associated with ‘fixed’ 
and ‘random’ effects: fixed effects describe deterministic responses to 

given input variables and associated parameters (for instance, a treat
ment effect that we would like to learn about), while random effects 
describe probabilistic responses (for instance, a paddock effect that we 
would like to control for, but are not specifically interested in). The 
central assumption of the LMM is that the random effects are normally 
distributed. To this end, we transformed z to natural logarithms prior to 
fitting. Working backwards from a date of interest, only the 100 most- 
recent observations of z in each paddock were considered for model
ling, and concatenated into a column vector of length n = 400: 

z =
[
zA,1,⋯, zA,100, zB,1,⋯, zB,100, zC,1,⋯, zC,100, zD,1,⋯, zD,100

]
(1)  

where: subscript letters are paddock identifiers, and subscript numbers 
index the timing of observations, from the newest (‘1’), to oldest (‘100’). 
Note that, due to irregular sampling, time ‘1’ of one paddock does not 
necessarily equal time ‘1’ of another paddock. 

The form of the LMM was: 

z = Xβ + εt + εp + εtp (2)  

where: X was a n × q design matrix that contained the fixed effects, i.e. 
values of the q variables with which z varied linearly; β was a length-q 
vector that contained the parameters that described the relation be
tween X and z; εt was a length-n vector of random effects that described 
the time-specific variation of z (common for all paddocks); εp was a 
length-n vector of random effects that described the paddock-specific 
variation of z (common for all time); and, εtp was a length-n vector of 
random effects that described a time-by-paddock effect on the variation 
of z. We defined the fixed effects of Eq. (2) in three different ways. 

Model 1. Experimental treatments MSR and HSR only, i.e. the 
dimension of X was n× 2. The first column of X was filled wholly 
with ones; the second column was filled with ones only where the 
treatment was HSR. 
Model 2. Experimental treatments MSR and HSR, and the linear 
function ln(r+1), where r was the sum of rain received in the 28 days 
before a date of interest, averaged from five pluviometers spread 
across the grazing trial. The dimension of X was n× 3, i.e. columns 
1–2 were as above, and column 3 contained the rain information. 
Model 3. Experimental treatments MSR and HSR, plus a cyclic cubic 
regression spline (Wood, 2017) that was a function of day-of-year, 
defined with four knots and a period of 365.25 days. The 

Fig. 1. Layout of the Wambiana grazing trial. Of the ten paddocks available, we consider only Paddocks A–D for analysis, which have been under heavy or moderate 
stocking rates since 1997. Inset: the asterisk shows the location of the trial site relative to the state of Queensland (denoted ‘Q’), within Australia. 
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dimension of X was n× 4, i.e. columns 1–2 were as above, and col
umns 3–4 contained the spline. 

We denote as θ the vector of parameters that describe the random 
effects in Eq. (2). The time-specific random effects were distributed as 
εt ∼ N (0,Ct), where the n × n covariance matrix Ct = RtηtRt. Matrix ηt 
is itself the sum of two structures: 

ηt = c1f (dt) + c2g(dt,φt) (3)  

where: c1 and c2 were variance parameters; f was the nugget autocor
relation function; and g was the spherical autocorrelation function 
(range parameter of φt), applied to dt, the n × n matrix of absolute time- 
differences between observations. Following Marchant et al. (2009), Rt 

was a n × n diagonal matrix, with a value of 1.0 when the month of 
observation was February to October (inclusive), and parameter rt 

(where rt > 1.0) elsewhere. This term addressed the non-stationary 
temporal variance found during exploratory analysis (not shown); in 
other words, Rt adjusts variance upward during those months associated 
with the onset of the wet season. 

The paddock-specific random effects were distributed as 
εp ∼ N

(
0,Cp

)
, where Cp was a n × n covariance matrix. The element of 

Cp at row i and column j was coded as zero, except when the pair of 
observations was from the same paddock, in which case the element was 
coded as parameter c3. 

The time-by-paddock random effects were distributed as 
εtp ∼ N

(
0,Ctp

)
, where the n × n covariance matrix Ctp = RtpηtpRtp. The 

element of ηtp at row i and column j was coded as zero, except when the 
pair of observations was from the same paddock, in which case the 
element was coded as c4f

(
di,j
)
+ c5g

(
di,j,φtp

)
, where c4 and c5 were 

variance parameters, di,j was the absolute time difference between the 
pair, and φtp was the range parameter of the spherical autocorrelation 
function. Matrix Rtp was defined analogously to Rt, where parameter 
rtp > 1.0, depending on the month of observation. Note the constraints 
that Ctp and: 

V = Ct + Cp + Ctp (4)  

must be positive definite, while Ct and Cp must be only positive semi
definite. 

We optimised θ =
[
c1, c2,⋯, rt, rtp

]T by using the Nelder-Mead sim
plex (Nelder and Mead, 1965) to maximise the residual log-likelihood 
function (Patterson and Thompson, 1971), with the aid of scripts 
custom-written for the R statistical software (R Core Team, 2020). 
Appropriate values for φt and φtp were pre-determined for each model 
prior to analysis, based on a grid search, and held constant throughout. 
The parameters β were available analytically for any given combination 

of values in θ, through generalised least-squares. 
The ultimate aim of the modelling was to forecast DCP and DMD. We 

cycled through the dataset according to the procedure described in Box 
1, optimising θ once per year, based on z formed at the end of May, i.e. 
approximately when land managers in the dry savannas decide what to 
do with their herd in the coming dry season. Forecasts were made three 
months ahead, on the basis that they would cover the period when a 
management decision is essential; little further change in the grazing 
system is expected between September and the start of the next wet 
season. 

For a year of interest, y, we define the forecasting target tp as a 
length- np column vector of days in a forecasting month, e.g. for June 
tp = [t1,⋯, t30]

T, for an unsampled paddock. We take θ from y and 
calculate the empirical best linear unbiased predictor (EBLUP) for z at tp 

, and its associated covariance matrix, Gp (Marchant et al., 2009): 

ẑ
(
tp
)
=
(
Xp − VpoV− 1X

)
β̂ + VpoV− 1z (5)  

Gp =
(
Xp − VpoV− 1X

)
P− 1(X0 − VpoV− 1X

)T + Vpp − VpoV− 1VT
po (6)  

where: β̂ is the vector of estimated fixed effects; X is the design matrix 
for the fixed effects at the observation days; V is from Eq. (4); Xp is the 
design matrix for the fixed effects at tp; Vpo is the np × n matrix of co
variances between the forecasting target and the data, defined analo
gously to V; P = XTV− 1X ; and, Vpp is the np × np matrix of total 
covariance for the prediction target (i.e. between the forecasting days in 
the unsampled paddock), defined analogously to V. When forecasting, 
we ensured conservative values by defining Vpo using only the contri
butions from time-specific covariance (Eq. (3)); the paddock-specific 
and time-by-paddock covariance terms were set to zero. An advantage 
of using random effects to model differences between paddocks is that 
we can learn a more general model about what might happen in other 
paddocks. Our forecasting setup represents naivety about localised 
paddock effects, which would be the case if the model were applied 
outside Wambiana (although such a case would require stringent 
validation). 

While ̂z
(
tp
)

and Gp convey all necessary information about a forecast 
for z, they do so at the temporal resolution of a single day. To forecast the 
monthly mean, we used ẑ

(
tp
)

and Gp to simulate 10,000 realisations of 
correlated multivariate normal deviates. We back-transformed the de
viates, then averaged them to create the length-10000 vector S. The 
forecast value for the month was the mean of S, and the 95% prediction 
interval given by its 2.5th and 97.5th percentiles (Fig. 2). 

2.4.2. Extended setup—multivariate case 
We follow Marchant and Lark (2007) and Marchant et al. (2009) in 

extending a LMM to include DCP, DMD, and GDR as response variables. 

Box 1 
. Procedure to split the dataset for modelling.  

Specify the set of years: Y = {2008,⋯,2019}
Choose y ∈ Y  
Training  
• Make z from the 100 most-recent observations of ln(DCP), ln(DMD) and ln(GDR) in each paddock, available to 31 May of y   
• Fit a linear mixed model 
Forecasting  
• Use the linear mixed model to simulate 10,000 forecasts of ln(DCP) and ln(DMD), daily between 1 June and 31 August of y   
• Back-transform to DCP and DMD  
• Average the simulated daily forecasts by month    
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In this multivariate case, z becomes a concatentation of the response 
variables, and the dimensions of the remaining terms of Eqs. (2–6) are 
similarly altered. The most complex aspect of extension concerns the 
random-effect parameters. These are more numerous in a multivariate 
case, because it is necessary to account for cross-covariance between 
each pair of response variables. As in the univariate case, the random- 
effect parameters must satisfy the condition that Ctp and V are posi
tive definite, with Ct and Cp positive semidefinite. These constraints are 
pragmatically satisfied by assuming the random effects conform to a 
linear model of coregionalisation (Marchant and Lark, 2007). In total, 
the multivariate model has 38 parameters but, for further pragmatism, 
we only fitted the 15 cross-covariance parameters under the multivar
iate model; fitted values for auto-covariance parameters and rt and rtp 

were inserted from the corresponding univariate models, and held 
constant. 

2.5. Model performance 

The splitting procedure in Box 1 created a set of withheld data (i.e. 
the observations from June to August each year from 2008 to 2019), 
against which model forecasts could be compared. We assessed the 
forecasting performance of Models 1–3 for each response variable with: 
(i) the median absolute error (MAE), where observations in the withheld 
subset were averaged by month for each paddock, to enable a mean
ingful comparison; and, (ii) the mean squared deviation ratio (MSDR; 
Webster and Oliver, 2001): 

MSDR =
1

n0,j

∑n0,j

i=1

({
zi,j − ẑi,j

}
2

σ̂2
i,j

)

(7)  

where: n0,j was the number of withheld observations associated with the 
jth response variable; zi,j was the ith withheld log-transformed observa
tion; ẑi,j was the corresponding log-transformed forecast; and, σ̂2

i,j was 
the corresponding prediction variance, from Eq. (6). For MAE, the 
smaller the value, the better the model. The log-normal nature of the 
response variables meant that a conventional measure of model per
formance, e.g., root-mean-square-error might be impacted by a small 
number of large prediction errors. MAE is less dominated by these errors 
and is preferred here. MSDR is used to assess the goodness-of-fit of the 
model parameters: the target value of 1.0 indicates that the prediction 
uncertainty is realistic, and that, by extension, the optimised random- 
effect parameters are appropriate for the data. 

3. Results 

3.1. Exploratory analysis 

The observations of DCP, DMD, and the four cover proportions show 
prominent seasonality (Fig. 3). Peaks in the time-series of DCP and DMD 
and green grass tended to have a shorter duration than troughs, 
reflecting the relatively long dry season that is typical of dry savannas. 
Note that the density of the cover observations decreased in periods 
when there was only one Landsat satellite available, i.e. prior to 2003, 
and 2010–2012. 

The three log-transformed response variables were positively corre
lated, as expected (Table 1), i.e. as the observations of one variable 
increased, the others tended to increase too, and vice versa. In regard to 
the potential utility of remote sensing, GDR had a stronger correlation 
with forage quality than NDVI. The distributions of the log-transformed 
response variables were approximately normal (not shown). 

3.2. Model diagnostics 

Over the 12 years of analysis, the mean length of time covered by the 
100 most-recent observations was 7.4 years for DCP and DMD, and 4.5 
years for GDR. These lengths reflect the approximately three-weekly 
sampling interval of DCP and DMD at Wambiana, and the (at best) 8- 
day sampling interval for GDR. 

For all years, treatments and paddocks, we judged Model 3 to give 
the most reliable forecasts of the response variables (Table 2). Compared 
with Models 1 and 2, Model 3 is associated with the smallest values of 
MAE. Given the data-range of each forage-quality variable (DCP =
2.1–16.1%, DMD = 45.0–70.4%; Fig. 3), DMD was forecast with better 
relative accuracy than DCP. For MSDR, Model 1 consistently over
estimated the forecasting uncertainty of the response variables. And 
while Model 2 gave realistic forecasting uncertainties for DCP and DMD, 
GDR was poorly represented. Model 3 underestimated the forecasting 
uncertainties for DCP and GDR to about the same extent that it over
estimated that for DMD. The MSDR values for Model 3 are further from 
1.0 than desired, and suggest that some parameters were not completely 
optimised. This is not surprising given: (i) the pragmatic way that we 
fitted the 38 parameters of the model, joining univariate optimisations 
with multivariate; and, (ii) applying MSDR in a forecasting framework is 
a relatively harsh test, because the model is extrapolating, not 
interpolating. 

We investigated Model 3 further. Optimum values of the range pa
rameters, found by a preliminary grid search then held constant over all 
years, were φt = φtp = 182.6 days. Over all years, the average amount of 

Fig. 2. Forecasting the monthly mean of a response variable, three months ahead from the end of May in a given year. A model is fitted to the 100 most-recent 
observations of the response variable (only the 10 most recent are shown; note the irregular sampling times). Grey lines are values that comprise the vector S (i. 
e. 10,000 monthly forecasts simulated from the model). The mean value for the forecast and its 95% prediction interval (PI) are obtained from S. 
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variance explained by the fixed effects, Xβ̂, was 40% for ln(DCP), 56% 
for ln(DMD), and 49% for ln(GDR). In comparison with Model 1—where 
the corresponding values were all ≤ 1%—the cyclic cubic splines were a 
key inclusion, enabling Model 3 to capture a substantial amount of the 
response variables’ seasonality, which in turn yielded more sensible 
values in θ, especially in regard to GDR. When forecasting three months 
ahead from the end of May, the model reproduced some of the observed 

correlation of DCP with DMD (Fig. 4), but non-linearity meant that the 
five largest values of DCP were not well predicted. Three of these five 
values were from the winter of 2016, which was atypical for two rea
sons. First, a large outlying observation of DCP collected in early July 
was associated with a sample that contained an unusually large pro
portion of non-grass, suggesting that the cattle had found a localised 
patch of legumes or forbs. Second, there was a 90-mm downpour on 18 
July that followed a run of relatively dry summers. This out-of-season 
rain provided a burst of new plant growth and DCP for the cattle, as 
grasses were suddenly able to access the mineral N that had been 
accumulating in the soil. 

The inclusion of experimental treatments MSR and HSR in the fixed 
effects of Model 3 enables a test of the null hypothesis that forage quality 
is unaffected by stocking rate (Table 3). Over all years, DMD was more 
sensitive to stocking rate than DCP, with DMD tending to be significantly 
lower under heavy stocking rates. The strength of the stocking-rate ef
fect from year to year was associated with summer rainfall, being greater 
in the run of relatively dry years from 2013 onward. This implies that 
utilisation rate (i.e. the ratio of pasture eaten to pasture grown) is 
important for determining forage quality. 

It is illuminating to see the forecasts of Model 3 compared with 
corresponding observations as a function of time (Fig. 5). According to 
the procedure in Box 1, each year is associated with a different set of 
fitted parameters, and data collected after May 31 are withheld. The 
monthly forecasts are reasonably accurate in most years, with all three 
response variables generally declining, as expected, as each winter 
progressed. Prediction uncertainty increased with each passing month, 
which was also an expected result. The summer of 2014–2015 was 
especially dry (Table 3), so forage quality in the post-growth period was 
particularly poor. As noted above, the winter of 2016 was atypical, so 
the forecasts and observations diverged strongly. 

Fig. 3. Observations of relevant variables through time, coloured by stocking rate (MSR = moderate; HSR = heavy).  

Table 1 
Pearson correlation coefficients of the log-transformed response variables. Log- 
transformed NDVI is included for comparative purposes. Results have been 
pooled over paddocks and years.   

ln(DMD) ln(GDR) ln(NDVI) 

ln(DCP)  0.79  0.65  0.54 
ln(DMD)   0.63  0.56 
ln(GDR)    0.82  

Table 2 
MAE (median absolute error) and MSDR (mean squared deviation ratio) when 
forecasting up to three months ahead from the end of May. Results have been 
pooled over paddocks, forecasting months, and years. Note that MSDR applies to 
values of the log-transformed response variable.   

MAE MSDR 

Response 
variable 

Model 
1 

Model 
2 

Model 
3 

Model 
1 

Model 
2 

Model 
3 

DCP (%) 1.17 1.49 0.86 0.83 0.96 1.28 
DMD (%) 1.83 2.07 0.95 0.69 0.94 0.71 
GDR 0.21 0.25 0.07 0.46 0.45 1.31  
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4. Discussion 

4.1. Implications for cattle management 

To the best of our knowledge, our study is the first to successfully link 
forage quality for cattle with remotely sensed groundcover information, 
over a > 20-year period. Previous research at the Wambiana grazing 
trial has linked forage quantity, in the form of total standing dry matter, 
with remotely sensed information (Schmidt et al., 2016), but did not 
examine forage quality. The results of our study suggest that, in a 
southern hemisphere dry savanna that is dominated by C4 grassland, it is 
possible to forecast monthly-average forage quality ahead from the end 
of the summer wet season (approximately May) into the first three 
months of the winter dry season, albeit with increasing uncertainty. The 
end of the wet season is a critical time of year, when early management 
intervention can prevent future losses in animal production. 

A number of previous studies have related forage quality to remotely 

sensed information: some from faecal sampling (Ryan et al., 2012; Vil
lamuelas et al., 2016; Tolleson et al., 2020); some with forage quality 
determined from less-desirable hand-clipped samples (Phillips et al., 
2009; Zengeya et al., 2013; Ferner et al., 2015; Barnetson et al., 2020). 
Of these studies, the period of forage-quality sampling was, at most, five 
years. While Geremia et al. (2019) tracked pasture green-up with sat
ellite data over 16 years, actual forage quality was only measured in a 
single five-month period. Possibly the longest study is that of Creech 
et al. (2016), who tracked diet quality estimated from faecal N in desert 
bighorn sheep over an 11-year period. In comparison, our study is based 
on 23 years of forage-quality data, collected from cattle faeces at 
approximately 3-week intervals. In regard to remote sensing, our anal
ysis was driven by the variable GDR, defined as the cover ratio of ‘green 
grass’ to ‘dead grass’. GDR had a stronger correlation with forage quality 
than the conventional NDVI (Table 1), and makes biological sense given 
that cattle select for green, rather than dead, forage (Hendricksen et al., 
1982). Furthermore, by correcting for leaf-litter (see Supplementary 
Material), we hope that our Landsat-based GDR values can be robustly 
extrapolated to different landscapes. A disadvantage of Landsat is that it 
does not sense in the red-edge of the electromagnetic spectrum, which 
has been shown to correlate with forage quality (Barnetson et al., 2020). 
This suggests a future role for Sentinel-2 satellites, which, in contrast to 
Landsat, sense with four red-edge bands (sentinels.copernicus.eu/ 
web/sentinel/missions/sentinel-2). 

We have shown that forage quality, particularly DMD, tended to be 
significantly lower under heavy stocking (Table 3), although this was 
dependent on rainfall. The HSR treatment has become associated with a 
scarcity of palatable perennial species, due to overgrazing. The lower 
quality diet of cattle in the HSR treatment leads to reduced liveweight 
gain (O’Reagain et al., 2018). However, in years with well-distributed 
rainfall, the constant supply of short-lived, green regrowth in the HSR 
treatment allows cattle to select a diet that is, at least in terms of DCP, of 
relative high quality. 

There is a demand for decision-support tools that assist land man
agers in the extensive grazing enterprises of northeast Australia to make 
more frequent, better-informed decisions (McCartney, 2017; Paxton, 
2019). Following appropriate testing at other sites, we ultimately 
anticipate packaging forecasts of forage quality as a simple graphical 
product (Fig. 6). In May of a year of interest, the product would be 
available on request for a particular paddock, delineated by the user. 
The optimised parameters of Model 3 would then be combined with the 
100 most-recent local observations of GDR and user-provided DCP or 
DMD. Predictions for May (the ‘nowcast’) and forecasts for June to 
August would be returned. Included in this product is the ratio of protein 
to metabolisable energy: 

H = (10.0 × DCP)/(0.17 × DMD − 2.0) (8)  

which has units of g MJ− 1. The denominator of Eq. (8) is taken from 
Standing Committee on Agriculture, Ruminants Subcommittee, 1990, 
p.9). A separate model is not needed to estimate H ; its distribution is 
found by simply plugging in the simulated daily predictions for DCP and 
DMD, then averaging by month, as in Fig. 2. We follow Dixon and Coates 
(2010) and set 6% as a general threshold for DCP less than the 
requirement for cattle maintenance, but acknowledge that operationally 
the value depends on factors such as the class of cattle and the target 
market. In the example in Fig. 6, it is apparent that the forecast is less- 
than-desirable. 

A graphical product such as Fig. 6 could, when combined with other 
sources of information such as seasonal forecasts of ground cover (e.g. 
www.longpaddock.qld.gov.au), prompt a land manager to intervene 
with supplementation, or to perhaps reduce the number of animals held. 
Such a system would be an advance on the conventional industry 
practice, where forage quality is acknowledged to be crucial to cattle 
production but is difficult to monitor. May is an important period for 
land managers in northern Australia, but our analysis is not restricted to 

Table 3 
The estimated fixed-effect parameter, β̂, in Model 3 that corresponded to the 
effect of the high stocking-rate treatment (HSR) on ln(DCP) and ln(DMD), 
relative to moderate stocking rate. Tests of significance were done on the log- 
transformed scale (+ = P < 0.1; * = P < 0.05; ** = P < 0.01), but for conve
nience β̂ has been back-transformed to represent a multiplicative effect, i.e. a 
value < 1 indicates HSR proportionately decreased the response variable, and 
vice versa. Summer rain is accumulated between November (of the previous 
year) and March, based on pluviometers located across the study site.   

exp(β̂)

Year DCP DMD Summer rain (mm) 

2008  1.039  0.978** 998 
2009  1.040  0.982* 665 
2010  1.046  0.986+ 768 
2011  1.028  0.987 666 
2012  1.007  0.985+ 703 
2013  0.958  0.984* 352 
2014  0.917**  0.986* 450 
2015  0.928**  0.984* 215 
2016  0.927**  0.985** 410 
2017  0.934**  0.986* 344 
2018  0.965  0.985** 509 
2019  0.973  0.990+ 462  

Fig. 4. Monthly-averaged observations and forecasts of Model 3 for DCP and 
DMD for June–August, pooled over years and paddocks. 
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that month alone; it could conceivably be run each month continuously, 
over the landscape as new Landsat imagery is acquired. Ultimately, we 
aim to forecast not just forage quality, but animal liveweight gain. The 
data to support such an advance are currently too limited. 

4.2. Model calibration and behaviour 

The cyclic cubic regression spline used as a fixed-effect in Model 3 
adequately captured the seasonal behaviour of DCP, DMD, and GDR. 
When this seasonality was combined with coregionalised random ef
fects, the result was the most reliable of the models investigated, able to 
forecast with a MAE of 0.86% for DCP and 0.95% for DMD (Table 2). 
Model 1 was naïve about the recent behaviour of the green signal, so its 
forecasting accuracy suffered. Despite the inclusion of information 
about recent rainfall as an explanatory variable, Model 2 performed 
even worse than Model 1 in terms of MAE, which suggests that recent 
rainfall at Wambiana is no indicator of future rainfall. The uncertainty of 
the forecasts, summarised by MSDR in Table 2, was difficult to realis
tically represent, especially for GDR in Model 1 and Model 2. Note that, 
to fit the various models, DCP, DMD, and GDR did not have to be 
temporally coincident, nor did we have to introduce spurious un
certainties into the workflow by ad hoc interpolation to common days. 

We pragmatically specified that only the 100 most-recent observa
tions of DCP, DMD, and GDR were used for fitting and forecasting the 
model in each year. The number could be increased, but at an expo
nential cost to the computing time. The (at best) 8-day sampling interval 
between overpasses of Landsat satellites meant that 4.5 years were 
needed, on average, to accumulate the 100 most-recent observations of 
GDR. If another source of satellite imagery were added into the mix—e. 
g. Sentinel-2, with its (at best) 5-day temporal resolution—then the 4.5 
years would reduce greatly, with the resultant GDR time-series possibly 
becoming too short to detect seasonal variability. For further pragma
tism we also combined the optimised parameter values of both univar
iate and multivariate runs of the LMM. 

Given that fNIRS is not routinely conducted on all cattle properties, 
the prediction intervals shown in Fig. 5 are probably best-case scenarios. 

However, consistent Landsat coverage means that all grazing properties 
in northeast Australia will always have available the 100 most-recent 
observations of GDR. Thus, if applying our model to a new area, the 
typical case will be for few observations of DCP and DMD (perhaps even 
just a single approximate mean for each), and the full quota of GDR 
observations. This exemplifies the ‘undersampling’ scenario discussed 
by Webster and Oliver (2001, p. 206) where multivariate modelling 
brings benefit over univariate modelling: because correlations are 
explicitly parameterised, the densely sampled variable will guide the 
predicted values of a sparsely sampled variable, and do so with greater 
precision than a univariate method. Model performance in this situation 
will, however, require rigorous testing. 

Four aspects of this study require further exploration. First, we need 
to incorporate into the model the forage-quality and GDR data from 
other short-term grazing studies in Australia, e.g. Burrows et al. (2010). 
Second, to forecast robustly over a very large area, the model will 
inevitably need to consider climate and soil information as explanatory 
variables. Tolleson et al. (2020) demonstrated, for example, the utility of 
growing degree days for predicting forage quality, but we speculate that 
it may have limited applicability in Australia due to the sparsity of 
weather stations in rural areas. Third, greater explanatory power at the 
paddock scale may be achieved by relating forage quality to a weighted 
function of greenness at the scale of a Landsat pixel. Such an idea might 
help to streamline the number of random-effect parameters, because the 
remote sensing information would be used as an explanatory, rather 
than a response, variable. Finally, we have not yet considered how to 
deal with local outliers, such as the unusually large DCP datum collected 
in the winter of 2016 (Fig. 5). 

An ultimate limit on forecasting accuracy might well be the error 
inherent in the fNIRS calibrations relative to wet chemistry, with typical 
standard errors of cross-validation of 0.9–1.5% for DCP, and 1.1–3.2% 
for DMD (Dixon and Coates, 2009). As the calibrations improve, so too 
will our model. Regardless of the form of the model, accurate forecasting 
of DCP and DMD, guided by GDR, will always be challenging, because it 
effectively involves calibrating a mass-based quantity from a cover- 
based quantity, which is a strongly non-linear and complex relation 

Fig. 5. Monthly forecasts of the response variables for each winter of each year, for the moderate stocking rate (MSR) treatment. The orange line is the predicted 
mean; the yellow region is the 95% prediction interval. For comparison, observed daily values are also presented. MSR paddocks were destocked for the winter of 
2011, so no observations of forage quality were made. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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(Carter et al., 2015). 

4.3. Model assumptions and alternatives 

As is necessary for any statistical modelling, we invoked a number of 
assumptions for this study. The first was that fNIRS indicates what cattle 
have eaten three days before. Three days reasonably approximates the 
mean retention time of 65 h reported for cattle (Bartocci et al., 1997), 
but the same study also found that retention time could be as little as 19 
h. Retention time is partly a function forage quality; it may be possible to 
explicitly incorporate this effect into the modelling, but it would intro
duce a number of further assumptions, e.g. animal breed, age, and 
pregnancy. 

The assumptions that underly the multivariate LMM are quite 
stringent. The random effects of the LMM must be normally distributed 
(which we tried to satisfy with transformation to natural logarithms), 
and also conform to a coregionalisation (which determines how the 
random-effect parameters are constrained, to ensure positive definite 
covariance; Marchant and Lark, 2007). As a result of the coregionali
sation, ln(DCP) and ln(DMD) were linearly correlated; upon back- 
transformation, some non-linearity in the correlation was evident, 
which agrees with the finding of Lukas et al. (2005). Non-linearity 
meant that our model could not forecast well the largest values of 
DCP in winter (Fig. 4). Furthermore, temporal variation was modelled 
by a spherical autocorrelation function. The φ parameter of the two 
spherical functions of Model 3 (see Eq. (3)) meant that there was no 
correlation between observations more than six months apart. A 

periodic correlation function would be more biologically sensible 
(Pringle, 2013), but would not enable the use of sparse matrices, whose 
computational efficiency will help to scale the model-fitting procedure 
as the dataset inevitably grows. Eventually, the dataset may grow to a 
point where we need to seek an alternative to a coregionalisation-based 
model anyway, e.g. the kernel convolution approach (Fanshawe and 
Diggle, 2012). 

Related to assumptions around parameterisation is our use of the 
Nelder-Mead simplex (Nelder and Mead, 1965) to minimise the residual 
log-likelihood function. Simulated annealing is an alternative method 
for the linear model of coregionalisation (Lark and Papritz, 2003), but in 
our opinion is too slow to converge. Further alternatives may lie in 
particle swarm optimisation (Freitas et al., 2020), or perhaps a more 
sophisticated optimisation/interpretation framework such as the PEST 
(‘parameter estimation’) software suite (Doherty, 2015). 

5. Conclusion 

Cattle production in the dry savannas of northern Australia 
conventionally relies on a combination of experience, intuition, and 
hope. In this region, the quality of forage is held to be as important as 
forage quantity. At the end of the summer wet season each year, typi
cally in May, land managers must make a decision about what to do with 
their stock in the coming winter dry season: sell, move, or supplement. 
In this study we have proposed a decision-support tool for land man
agers, where a statistical model is used to forecast forage qual
ity—defined by dietary crude protein and dry-matter digestibility—as 

Fig. 6. A prototype summary of results for an individual paddock, representing: the ‘nowcast’ at the end of May (current status); forecasts for the three following 
months; and the critical zone (coloured), within which animal nutrition will decline. This example is for the study site at the end May in 2019, assuming that stocking 
rates are moderate. DCP = digestible crude protein; DMD = in vivo dry-matter digestibility; H = ratio of protein to metabolizable energy (Eq. (8)). 
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monthly-average values for the period June to August. The uncertainty 
of each forecast value is explicitly acknowledged, which is an honest 
admission of our model’s imperfections, and helps the user ultimately 
set their own thresholds for action. 

To the best of our knowledge, our study is the first to link > 20 years 
of on-ground measurements of forage quality for cattle with the infor
mation derived from satellite imagery. The remote sensing-based in
formation used was the ratio of ‘green grass’ cover to ‘dead (i.e. non- 
photosynthetic) grass’ cover, derived from an archive of Landsat 
surface-reflectance imagery. Dietary crude protein was forecast with a 
median absolute error (MAE) of 0.86%; dry-matter digestibility was 
forecast with MAE = 0.95%. Model forecasts were generally consistent 
over a 12-year validation period, but broke down if there was atypical 
winter rain. 

Two particularly difficult aspects of the study that we overcame 
were: (i) how forage-quality measurements were rarely coincident with 
a satellite overpass; and, (2) how to pragmatically manage computa
tional loads when fitting the model. Future research will involve testing 
the current model at more locations and investigating alternative 
explanatory variables for the model. 
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Scarth, P., Röder, A, Schmidt, M., 2010. Tracking grazing pressure and climate 
interaction—the role of Landsat fractional cover in time series analysis. In: 
Proceedings of Australasian Remote Sensing and Photogrammetry Conference, Alice 
Springs, 13–17 September. URL: figshare.com/articles/Tracking_Grazing_Pressur 
e_and_Climate_Interaction_-_The_Role_of_Landsat_Fractional_Cover_in_Time_Series_ 
Analysis/94250/1 (accessed 23 November 2021). 

Schmidt, M., Carter, J., Stone, G., O’Reagain, P., 2016. Integration of optical and X-band 
radar data for pasture biomass estimation in an open savannah woodland. Remote 
Sens. 8, 989. https://doi.org/10.3390/rs8120989. 

Siebert, B.D., Kennedy, P.M., 1972. The utilization of spear grass (Heteropogon contortus). 
I. Factors limiting intake and utilization by cattle and sheep. Aust. J. Agr. Res. 23, 
35–44. https://doi.org/10.1071/AR9720045. 

Standing Committee on Agriculture, Ruminants Subcommittee, 1990. Feeding Standards 
for Australian Livestock: Ruminants. CSIRO Publications, Melbourne.  

Tolleson, D.R., Angerer, J.P., Kreuter, U.P., Sawyer, J.E., 2020. Growing degree day: 
noninvasive remotely sensed method to monitor diet crude protein in free-ranging 
cattle. Rangeland Ecol. Manage. 73 (2), 234–242. https://doi.org/10.1016/j. 
rama.2019.12.001. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 
vegetation. Remote Sens. Environ. 8 (2), 127–150. https://doi.org/10.1016/0034- 
4257(79)90013-0. 

Villamuelas, M., Fernández, N., Albanell, E., Gálvez-Cerón, A., Bartholomé, J., 
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