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Abstract
Achieving yield potential in chickpea (Cicer arietinum L.) is limited by many con-

straints that include biotic and abiotic stresses. Combining next-generation sequenc-

ing technology with advanced statistical modeling has the potential to increase

genetic gain efficiently. Whole genome resequencing data was obtained from 315

advanced chickpea breeding lines from the Australian chickpea breeding program

resulting in more than 298,000 single nucleotide polymorphisms (SNPs) discovered.

Analysis of population structure revealed a distinct group of breeding lines with many

alleles that are absent from recently released Australian cultivars. Genome-wide asso-

ciation studies (GWAS) using these Australian breeding lines identified 20 SNPs

significantly associated with grain yield in multiple field environments. A reduced

level of nucleotide diversity and extended linkage disequilibrium suggested that some

regions in these chickpea genomes may have been through selective breeding for yield

or other traits. A large introgression segment that introduced from C. echinospermum
for phytophthora root rot resistance was identified on chromosome 6, yet it also has

unintended consequences of reducing yield due to linkage drag. We further inves-

tigated the effect of genotype by environment interaction on genomic prediction of

yield. We found that the training set had better prediction accuracy when phenotyped

under conditions relevant to the targeted environments. We also investigated the effect

of SNP functional annotation on prediction accuracy using different subsets of SNPs

based on their genomic locations: regulatory regions, exome, and alternative splice

sites. Compared with the whole SNP dataset, a subset of SNPs did not significantly

decrease prediction accuracy for grain yield despite consisting of a smaller number

of SNPs.

Abbreviations: BB, Billa Billa, QLD, Australia; BL, Bayesian least absolute shrinkage and selection operation; BLUE, best linear unbiased estimated; BRR,

Bayesian ridge regression; Fst, fixation index; G × E, genotype × environment; GBS, genotyping by sequencing; GGE, genotype main effect plus genotype ×
environment interaction; GS, genomic selection; GWAS, genome-wide association studies; HM, Hermitage, QLD, Australia; LD, linkage disequilibrium;

MAF, minor allele frequency; METs, multi-environment trials; MLM, mixed linear model; MNase-HS, micrococcal nuclease hypersensitive regions; MO,

Moree, NSW, Australia; RR-BLUP, ridge regression best linear unbiased estimation; SNP, single nucleotide polymorphism; UTR, untranslated region.
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1 INTRODUCTION

Chickpea (Cicer arietinum L.) is an important pulse, rich

in protein and essential micronutrients, such as magnesium,

iron, zinc, and vitamins (Wallace et al., 2016). Compared with

meat-derived protein, pulse protein is more efficient and sus-

tainable in terms of resource use. Australia was the second-

largest chickpea producer after India in 2017 according to

FAOSTAT, although the average yield of chickpea in Aus-

tralia is low (∼1.4 t ha–1) due to production constraints such as

drought (Y. Li et al., 2018; Pang et al., 2016), salinity (Atieno

et al., 2017; Khan et al., 2016), chilling stress (Kiran et al.,

2019), and plant diseases (Amalraj et al., 2019; Y. Li et al.,

2017).

Genomic selection (GS) is a cost-effective approach to

incorporate quantitative traits in breeding programs (Crossa

et al., 2014; Meuwissen et al., 2001). It uses molecular mark-

ers distributed across the whole genome to predict the breed-

ing value of an untested line, and thus shifts the focus of

marker identification to line selection. This approach assists

in selecting the best parents for crossing, reduces the cost and

time of the breeding cycle, and thus has been adopted rapidly

by many animal and plant breeding programs (Asoro et al.,

2013; Crossa et al., 2014; Hayes et al., 2009; Y. Li et al., 2018;

Weigel et al., 2010). An opportunity to implement GS in plant

breeding programs is at preliminary yield trial stages where

GS can assist in selecting lines to be progressed to the next

stage. Here, there are several questions to be considered: What

germplasm should be included in the training set? To predict

the yield of a target set at a particular environment, should the

training set be evaluated in a similar environment or multi-

ple environments with different conditions (e.g., rainfed and

irrigated)? Is it possible to predict the grain yield of a line

in a new environment based on similar or different environ-

ments by borrowing information from relevant environments?

The first objective of this study was to address these ques-

tions using genotypic data and grain yield from a set of 315

advanced chickpea lines.

The factors affecting prediction accuracy of agronomic

traits in crop species include training population size (Lorenz,

2013; Norman et al., 2017), training population composition

(Berro et al., 2019; Crossa et al., 2014; Hoffstetter et al.,

2016), marker density (Hickey et al., 2014; Norman et al.,

2018), and the specific characteristics of prediction models

used (de Los Campos et al., 2013; Heslot et al., 2012). A

large proportion of genomic selection papers published to

date are based on analysis using genotypic data from genotyp-

ing × sequencing (GBS) or single nucleotide polymorphism

(SNP) array. Reduced representation GBS is a next-generation

sequencing-based method. To reduce sequencing costs, only

a fraction of the genome is sequenced by targeting low-copy

genomic regions using restriction enzymes. SNP arrays are a

Core Ideas
∙ We recommend updating the training set with phe-

notypes from relevant environments for genomic

selection.

∙ Subsetting SNP based on its functional annotations

did not affect prediction accuracy for yield.

∙ An introgression segment for disease resistance has

unintended consequences of reducing yield.

hybridization-based genotyping method with a fixed number

of SNP markers. One disadvantage of the two genotyping plat-

forms is that they generate a relatively small number of mark-

ers, which limits the possibility of estimating the “true” upper

boundary of prediction accuracy. By contrast, whole-genome

resequencing can generate a large amount of SNP data in a

very cost-effective manner, particularly for crop species with

a relatively small genome such as chickpea and rice (Oryza
sativa L.). This opens an exciting opportunity to study the

effect of SNPs’ density on prediction accuracy. In addition,

it has been shown that SNPs located in coding and regula-

tory sequences explain a much larger proportion of genetic

variance than those from random genomic locations (Kou-

fariotis et al., 2018; Rodgers-Melnick et al., 2016). The data

acquired here provided the opportunity to study the effect of

SNP on prediction accuracy with regards to the context of

their genomic location (i.e., coding or regulatory regions).

The second objective of this study was to investigate the pre-

diction accuracy of yield based on high-density SNPs, and

their subsets (based on SNP location) generated from whole-

genome resequencing method.

2 MATERIALS & METHOD

2.1 Plant materials, sequencing, and SNP
discovery

Plant materials consisted of 315 advanced desi chickpea lines

from the Australian chickpea breeding program of Breeding

Stage 1, 2, and 3 in 2013. We extracted DNA from the young

leaf of the plant using the Qiagen DNeasy Plant Mini Kit

following the manufacturer’s instructions. Pair-end sequenc-

ing libraries were constructed for each line with insert sizes

of ∼500 bp using Illumina’s TruSeq library kit. The Illu-

mina HiSeq 2000 platform was used to generate paired-end

short reads (150 bp) with a target sequencing depth of 5–

10× per line. Sequencing reads for each line were trimmed,

filtered, and mapped to the CDC Frontier reference genome
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2.6.3 (http://www.cicer.info/databases.php) using Trimmo-

matic and SOAP2. Bam files were processed to filter out reads

with more than two base-pair mismatches. Homozygous SNPs

were identified using SAMtools and BCFtools (H. Li et al.,

2009). Nucleotide diversity (θπ) and fixation index (Fst) of the

50 greatest and 50 least yielding lines were calculated using

BCFtools. The raw sequences were deposited in the National

Center for Biotechnology Information under accession num-

ber PRJNA743728.

2.2 Phylogenetic analysis and linkage
disequilibrium

To compare the genetic relationship and diversity of the 315

advanced desi lines with other Australian genotypes, a previ-

ous SNP dataset from Y. Li et al. (2017) was merged with the

SNP dataset generated in this study, resulting in 55,195 SNP

markers with minor allele frequency (MAF) >5% and a miss-

ing rate <20%. A phylogenetic tree was constructed based on

the distance matrix estimated from this merged SNP dataset

with the neighbour-joining clustering method implemented

in TASSEL 5.0. The distance matrix was calculated using a

Euclidean distance, where a homozygous locus is 100% sim-

ilar to itself, but a heterozygous locus is only 50% similar to

itself (due to the two different alleles present). The resulting

tree was visualized with the Archaeopteryx Tree function in

TASSEL 5.0. Linkage disequilibrium (LD) was measured by

r2 using 55,255 high confidence SNPs (minimum five reads

per genotype, MAF >5%, missing rate <20%). The LD-decay

curve under the mutation-drift-equilibrium model was esti-

mated as described in in Li et al. (2011).

2.3 Field trials and phenotypic analysis

The advanced lines were measured for grain yield at three

locations: Billa Billa, Queensland (BB, 28.15˚ S lat; 150.30˚

E long), DAF Hermitage Research Facility, Queensland (HM,

28.21˚ S lat; 152.10˚ E long), and Moree, NSW (MO, 29.47˚ S

lat; 149.83˚ E long) in 2012 (128 lines) and 2013 (315 lines).

Randomized complete block design with three replicates was

used for all trials. Plots comprised of two rows with an area

of 11 m2.

Grain yield data were first analyzed separately for single-

environment analysis by fitting a mixed linear model (MLM)

in which spatial effects such as row and column were con-

sidered. The resulting best linear unbiased estimated (BLUE)

values for each genotype were used subsequently for genome-

wide association studies (GWAS) and GS analysis. In GS,

some training and target sets consist of multiple environ-

ments (i.e., 2012_BB_HM_MO). The BLUE values from

single environment analysis were used to fit a multiple-

environment MLM in which environments were treated as

random effects. Statistical significance of fixed and random

effects was assessed using Wald’s test (Wald, 1943) and the

likelihood ratio test, respectively (Van Belle et al., 2004). To

visualize genotype × environment (G × E) effect, biplot anal-

ysis of the six yield trials was performed using the genotype

main effect plus genotype × environment interaction (GGE)

Biplot function of GeneStat v19 with the BLUE values gen-

erated from the single-environment analysis.

2.4 Genome-wide association study

To minimize false-positive association, population structure

was estimated based on 298,154 SNPs (MAF > 0.05, miss-

ing rate < 50%) using ADMIXTURE (v1.23) software, apply-

ing a model-based method to calculate ancestry of unrelated

individuals (Alexander et al., 2011; Alexander et al., 2009).

The number of groups (K) in the population was estimated

from 1 to 10 and the most likely number of groups (k = 5)

was determined by the cross-validation error and knowledge

of the germplasm’s breeding history. Genome-wide associ-

ation study was conducted using the adjusted entry means

of the 315 lines with the dataset of grain yield and 298,154

SNPs (MAF > 0.05, missing rate <50%). For grain yield,

adjusted entry means of the 315 lines resulting from fit-

ting a multiple-environment MLM were used for association

study. The environments were restricted to 2012BB, 2012MO,

2013BB, and 2013MO due to large G × E effect resulting

from inclusion of the environments 2012HM and 2013HM.

The SUPER-GWAS algorithm, implemented in the GAPIT

3.0 software, was used to calculate the SNP effect, adjust-

ing for the confounding effects of population structure and

kinship (Lipka et al., 2012; Tang et al., 2016; Wang et al.,

2014). The kinship matrix was calculated using the VanRaden

method and compressed to its optimum groups subsequently

based on the P3D method to accelerate computation time (Z.

Zhang et al., 2010). To increase statistical power, the SUPER-

GWAS method calculated the kinship matrix with a subset

of markers that were not in LD with the testing markers

(Wang et al., 2014). The parameters of the SUPER-GWAS

model were Sangwich.bottom = “SUPER”, LD = 0.1, Sang-

wich.top = “MLM.” The significant p-value threshold was p-

value = 1.61 × 10–7, equivalent to the α level of .05 after

Bonferroni correction.

2.5 Genomic predictions

Three different models were used for genomic prediction

with 298,154 SNPs (MAF > 0.05, missing rate <50%):

http://www.cicer.info/databases.php
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T A B L E 1 Summary of single nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD)

Chromosome No. SNPs
Density of SNPs (no.
SNPs/10 Kb)

No. SNPs used to
estimate LDa Mean/median r2

Distance of LD extent
(r2 cut-off: 0.2 or 0.4)

Chr1 26,369 5.33 5,886 0.15/0.02 250/50 Kb

Chr2 18,115 4.85 5,802 0.10/0.02 100/20 Kb

Chr3 13,636 2.03 5,449 0.23/0.03 500/80 Kb

Chr4 52,315 8.83 10,689 0.27/0.04 1,000/180 Kb

Chr5 27,806 4.07 8,701 0.14/0.03 350/50 Kb

Chr6 129,328 19.52 9,377 0.43/0.36 7,000/900 Kb

Chr7 25,051 4.43 7,423 0.13/0.02 450/80 Kb

Chr8 5,534 2.74 1,928 0.14/0.01 150/20 Kb

Total 298,154 55,255

aSNPs with high confidence (minimum five reads per genotype, minor allele frequency >5%).

ridge regression best linear unbiased estimation (RR-BLUP),

Bayesian least absolute shrinkage and selection operation

(BL), and Bayesian ridge regression (BRR). The detailed for-

mulation of these models was described in previous papers

(de Los Campos et al., 2013; Y. Li et al., 2018) In brief,

RR-BLUP is a widely used prediction model that uses a

flexible MLM formulation. It employs a shrinkage process

that shrinks each marker effect equally toward zero with the

“infinitesimal” assumption that complex traits are controlled

by a large number of loci with very small and equal effect

(Barton et al., 2017; Hill, 2014). In contrast, BL is a Bayesian

shrinkage model with the feature of greater shrinkage of mark-

ers with small effects and less shrinkage of markers with large

effects (Tibshirani, 1996), compared with RR-BLUP. BRR is

a Bayesian version of RR-BLUP that performs homogenous

shrinkage across markers. The gpMod function in the R pack-

age ‘synbreed’ was used to fit the three models and predict

the target sets (https://synbreed.r-forge.r-project.org/). Predic-

tion accuracies were calculated as Pearson’s correlation coef-

ficient between the predicted values and observed phenotypic

values based on BLUEs.

In five-fold cross-validation, the dataset was divided into

five subsets; one of which was used as a target set while the

other four were used as a training set to train the RR-BLUP

model. This process was repeated 10 times resulting in 50

cross-validations. Prediction accuracy was then estimated as

Pearson’s correlation coefficient between the predicted values

and observed phenotypic values of the target set. To study the

effect of SNP function on prediction accuracy, SNPs were fil-

tered out based on their locations such as exome, 3′ and 5′

untranslated region (UTR), and micrococcal nuclease hyper-

sensitive regions (MNase-HS) (Rodgers-Melnick et al., 2016;

W. Zhang et al., 2012). Single nucleotide polymorphisms that

lead to missense mutation (changing amino acids) and alter-

native splicing were predicted using SnpEff 4.3 (Cingolani

et al., 2012).

3 RESULTS

3.1 Genome variation

In total, 315 advanced desi lines from Breeding Stage 1, 2,

and 3 of the Australian chickpea breeding program were rese-

quenced with a sequencing depth of 6.2× on average. After

mapping to the CDC Frontier reference genome 2.6.3, a total

of 298,154 homozygous SNPs with MAF >0.05 and missing

genotype <50% were discovered. The SNP density among the

eight chromosomes ranged from 19.5 SNPs/10 kB on chro-

mosome 6 to 2.03 SNPs/10 kB in chromosome 3 (Table 1,

Figure 1). Genetic diversity in this material measured as θπ

was 0.93× 10−4, which was higher than a previous study com-

prising 47 released Australian chickpea cultivars (Y. Li et al.,

2017). Two regions (from 5,273,564 to 11,639,389 and from

18,536,446 to 61,765,087) on chromosome 6 have a much

higher SNP density (21.2 SNPs/10 kB and 25.1 SNPs/10 kB)

compared with the rest of chromosome 6 (3.7 SNPs/10 kB).

Linkage disequilibrium, as measured by the mean of r2 on

each chromosome, ranged from 0.10 on chromosome 2 to

0.43 on chromosome 6 (Table 1 and Figure 2). Setting an

r2 threshold of 0.2, the extent of LD, ranging from 100 kb

on chromosome 2 to 7,000 kb on chromosome 6, is much

smaller (excepted for chromosome 6) than the previous study

(Y. Li et al., 2017), suggesting a higher genetic diversity in

this breeding material.

3.2 Population structure

To facilitate a comparison between Australian chickpea

released cultivars and the 315 S1, S2, and S3 advanced breed-

ing lines, SNP data from Y. Li et al. (2017) consisting of Aus-

tralian chickpea cultivars and breeding lines and an accession

(PI4899777) of the wild chickpea species Cicer reticulatum
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F I G U R E 1 Genome variation and genome-wide association

studies (GWAS) based on whole genome resequencing data. A: Single

nucleotide polymorphisms (SNPs) density. B: Nucleotide diversity (θπ)

of the 50 greatest yielding lines (in red) and the 50 least yielding lines

(in blue). C: Fixation index (Fst) genome scan of yield based on the 50

greatest and 50 least yielding lines. Extreme Fst values larger than 0.4

is highlighted in green. D: Circular Manhattan plots displaying the

GWAS-yield result. The SNP are represented by black dot, while the

SNP with significant association is represented by a red triangle

(p-values lower than 1.61 × 10–5)

F I G U R E 2 The extent of linkage disequilibrium (LD) in the

eight chickpea chromosomes. The horizontal axis indicates the physical

distance (kb), the vertical axis shows the LD between single nucleotide

polymorphisms markers measured as r2. The black horizontal lines

represent the LD extent threshold (r2 = 0.2). The curves are the trend of

LD extent in each chromosome fitted using the

mutation-drift-equilibrium model described in Li et al. (2011). The

extended view of LD extent is shown in the top right

were included in the current analysis. As expected, PI4899777

separated clearly from the cultivated species Cicer ariet-
inum (Figure 3, Supplementary Table S2). Most desi cultivars

released before 2005 clustered together whereas the modern

desi cultivars released by Pulse Breeding Australia after 2005

were more diverse. The 315 S1, S2, and S3 advanced breed-

ing lines spread across different clusters indicating the chick-

pea breeding program has made significant progress recently

on increasing the genetic diversity within the breeding pro-

gram. A cluster of 70 lines from S1 and S2 clustered with

the line 04067-81-2-1-1_B, a backcross derivative from the

wild chickpea species C. echinosperum. This line is resistant

to phytophthora root rot—a major root disease of chickpea in

Australia (Amalraj et al., 2019). These 70 lines are progeny

of 04067-81-2-1-1_B or its sister lines and have higher phy-

tophthora root rot resistance levels and yet slightly lower yield

than other lines in the analysed collection (Figure 3, Supple-

mentary Table S1).

3.3 Selection signatures of grain yield

The average yield of the 315 advanced lines in different year

and location combinations ranged from 0.48 t/ha in the rain-

fed trial 2012MO to 4.13 t ha–1 in the irrigated trial 2012HM

(Table 2, BB: Billa Billa; HM: Hermitage; MO: Moree). The

genotypic effect for all trials was highly significant and corre-

lations of yield among different trials were mostly positive and

significant except for trials 2012HM and 2013HM (Table 3).

The GGE biplot analysis of multi-environment trials (METs)

also showed the 2012HM and 2013HM trials clearly separated

from other trials. The 2012HM trial had a negative correlation

(opposite direction) with the rest of the trials (Supplementary

Figure S1), pointing to a strong G × E effect.

Genome-wide association study was performed for

adjusted entry means of grain yield obtained only from the

rainfed yield trials 2012BB, 2013BB, 2012MO, and 2013MO

to avoid a strong G × E effect introduced by irrigated yield

trials 2012HM and 2013HM. We identified 20 significant

SNPs in total; 19 on chromosome 6 and one on chromosome

5 (Figure 1, Supplementary Table S3). Natural and human

selection can shape the genome and often leave signals of

selection. The nucleotide diversity (θπ) of the 50 greatest

yielding lines was lower than that of the 50 least yielding

lines in specific regions of the genome (Figure 1). One

representative region is a 43.8 Mb region on chromosome

6 spanning chromosome 6:18,00,000 to 61,800,000 with

high SNP density. This region was further confirmed by the

Fst genome scan, an allele frequency approach to identify

selection signatures, showing divergence between high and

low yielding groups. Haplotype analysis revealed two major



6 of 13 LI ET AL.The Plant Genome

F I G U R E 3 (a) Phylogenetic tree of the 315 lines and the Australian chickpea cultivars from Li et al. (2017) based on 57K high-quality single

nucleotide polymorphisms. (b) Boxplot of grain yield in the progenies of the backcross line derived from C. echinosperum and the rest of the lines.

The 58 released Australian cultivars and wild species C. reticulatum are colored in black. Stage 1 and Stage 2 lines are colored in red. Stage 3 lines

are colored in green. The Pulse Breeding Australia cultivars are colored in blue. The name of the lines can be found in Supplemental Table S2

T A B L E 2 Summary of phenotypic data

Trials Traits No. of lines Mean (median) Min. Max. Genotypic effect
2012BB Yield (t ha–1) 128 1.98 (1.94) 1.64 2.45 <0.001

2012HM Yield (t ha–1) 128 4.13 (4.18) 3.40 4.59 <0.001

2012MO Yield (t ha–1) 128 0.48 (0.46) 0.16 0.78 <0.001

2013BB Yield (t ha–1) 315 1.53 (1.57) 0.42 1.90 <0.001

2013HM Yield (t ha–1) 315 1.94 (1.88) 0.64 3.41 <0.001

2013MO Yield (t ha–1) 315 1.15 (1.19) 0.35 1.58 <0.001

Note. BB, HM, and MO represent yield trials at Billa Billa (QLD), Hermitage (QLD), and Moree (NSW), respectively. 2012 and 2013 are the years that the yield trials

were conducted.

haplotypes in this chromosome 6 region; one haplotype

shared by the wide species C. echinospermum backcross-

derivative 04067-81-2-1-1_B, the other representing the

C. arietinum lines in the collection. Approximately, two

thirds of the 50 least yielding lines contain the wild-species

haplotype. The wild species C. echinospermum is known

for providing sources of resistance to Phytophthora root rot

for the Australian chickpea breeding program. This 43.8 Mb

region is likely an introgression segment that introduced

from C. echinospermum for Phytophthora root rot resistance,

yet it also has the unintended consequence of reducing

yield due to linkage drag. Previous studies have identified

molecular markers that can help in selecting and intro-

gressing Phytophthora root rot resistance more precisely in

chickpea (Amalraj et al., 2019). It remains to be seen whether

maker-assisted selection can break the linkage drag in this

region.

3.4 Genomic selection of grain yield

Because of the polygenic nature of yield, a genomic selec-

tion/prediction approach was used to better understand the

underlying mechanisms of inheritance. To mimic a common

practice of evaluating advanced lines in plant breeding

programs, earlier datasets were used as training sets to

predict latter datasets. The 2012BB and 2012MO yield

datasets (training sets) predicted the 2013BB and 2013MO

datasets (target sets) with accuracies ranging from r = 0.14

to 0.39, whereas they predicted the 2013HM dataset poorly

(r = −0.02 to 0.12, Table 4). The 2012HM dataset predicted

the 2013 datasets poorly, reiterating the Biplot GGE analysis

that showed the G × E effect among BB and MO trials to be

much smaller than that of the 2012HM and 2013HM trials, an

effect most likely due to the rainfed vs. irrigated nature of the

trials.
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T A B L E 3 Correlations of grain yield in six different trials with 128 overlapping lines

2012BB 2012HM 2012MO 2013BB 2013HM 2013MO
2012BB –

2012HM −0.36*** –

2012MO 0.38*** −0.36*** –

2013BB 0.42*** −0.10 0.18* –

2013HM 0.43*** −0.24** 0.33*** −0.01 –

2013MO 0.51*** −0.08 0.25** 0.50*** 0.21* –

Note. BB, HM, and MO represent yield trials at Billa Billa (QLD), Hermitage (QLD), and Moree (NSW), respectively. 2012 and 2013 are the years that the yield trials

were conducted. Two-sided test of correlations different from zero.

*p < .05.

**p < .01.

***p < .001.

T A B L E 4 Prediction accuracies for the yield of the new advanced lines using their close relatives as training sets

Training sets (N = 128)
Target sets
(N = 187) RR-BLUP BL BRR

2012BB 2013BB 0.33*** 0.34*** 0.31***

2012BB 2013HM 0.08† 0.10† 0.06†

2012BB 2013MO 0.38*** 0.39*** 0.37***

2012HM 2013HM −0.02† −0.01† −0.02†

2012HM 2013BB −0.32*** −0.06 ns −0.28***

2012HM 2013MO −0.34*** −0.04 ns −0.28***

2012MO 2013MO 0.22** 0.17** 0.19***

2012MO 2013BB 0.19* 0.14* 0.17*

2012MO 2013HM 0.10† 0.12† 0.07†

Note. BB, HM, and MO represent yield trials at Billa Billa (QLD), Hermitage (QLD), and Moree (NSW), respectively. 2012 and 2013 are the years that the yield trials

were conducted. The training sets consist of 128 breeding lines from 2012 Stage 1 and 2; the target sets consist of 187 new breeding lines from 2013 Stage 1. Two-sided

test of correlations different from zero. RR-BLUP, ridge regression best linear unbiased estimation; BL = Bayesian least absolute shrinkage and selection operation; BRR

= Bayesian ridge regression.

*p < .05.

**p < .01.

***p < .001.

†ns, nonsignificant at p > 0.05.

To further investigate the G × E effect, training sets

(2012_BB_HM_MO and 2012_BB_MO), comprising the

adjusted means (BLUE) of genotypes from the three

2012 trials (2012BB, 2012HM, and 2012MO), were used

to predict 2013 trials 2013BB, 2013HM, 2013MO, and

2013_BB_HM_MO (Table 5, Table 6). Depending on the

environment used, prediction accuracies either increased

or decreased compared with analysis using a single 2012

trial as a training set. Prediction accuracies increased when

2012_BB_MO (compared with 2012_BB or 2012_HM or

2012_MO) was used as a training set to predict 2013BB,

2013HM, and 2013MO. However, prediction accuracies

decreased when using 2012_BB_HM_MO (compared with

2012_BB or 2012_HM or 2012_MO) as a training set to pre-

dict 2013BB, 2013HM, and 2013MO. This observation can

be explained by G × E interaction from the 2012HM trial

(rainfed vs irrigated). This finding has important implications

for the process of applying a training set across multiple envi-

ronments. Evaluation of a training set in multiple environ-

ments can increase prediction accuracy as long as the envi-

ronments have at least an intermediate phenotypic correlation

(Table 3).

To test the effect of SNP functions (based on their

location in the genome) on prediction accuracy, the

298,154 SNPs were divided into different classes: (a)

exome+3′&5′UTR+MNase-HS, (b) exome, and (c) missense

+ alternative splicing in the exome. Prediction accuracies

were estimated using a cross-validation approach based on

these different classes and yield data from three yield trials.

Prediction accuracies using all SNPs in different trials ranged

from 0.30 in 2013HM to 0.58 in 2013MO (Table 6). Predic-

tion accuracies using the three different classes did not differ
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T A B L E 5 Prediction accuracy of the yield of new advanced lines using close relatives in the presence of G × E effects

Training set (N = 128) Target set (N = 187) RR-BLUP BL BRR
2012_BB_HM_MO 2013_BB_HM_MO 0.23** 0.27*** 0.22**

2012_BB_HM_MO 2013BB 0.18* 0.23** 0.16*

2012_BB_HM_MO 2013HM 0.10† 0.11† 0.11†

2012_BB_HM_MO 2013MO 0.25*** 0.30*** 0.23

2012_BB_MO 2013_BB_MO 0.48*** 0.49*** 0.45***

2012_BB_MO 2013BB 0.45*** 0.46*** 0.41***

2012_BB_MO 2013HM 0.15† 0.17† 0.12†

2012_BB_MO 2013MO 0.49*** 0.49*** 0.46***

Note. BB, HM, and MO represent yield trials at Billa Billa (QLD), Hermitage (QLD), and Moree (NSW), respectively. 2012 and 2013 are the years that the yield trials were

conducted. The training sets consist of 128 breeding lines from 2012 Stage 1 and Stage 2; the target sets consist of 187 new breeding lines from 2013 stage 1. Two-sided

test of correlations different from zero. RR-BLUP, ridge regression best linear unbiased estimation; BL = Bayesian least absolute shrinkage and selection operation; BRR

= Bayesian ridge regression.

*p < .05.

**p < .01.

***p < .001.

†ns, nonsignificant at p > .05.

T A B L E 6 The effects of single nucleotide polymorphism (SNP) functional annotations on prediction accuracies of grain yield using a five-fold

cross-validation approacha

SNP locations in the genome (no. of SNPs)

Trials
Whole-genome
(298K)

Exome+3′&5′UTR+MNase-
HSb

(117K) Exome (29K)
Missense & alternative splicing
in exome (11K)

2013BB 0.57 ± 0.01 0.57 ± 0.01 0.58 ± 0.00 0.56 ± 0.01

2013HM 0.30 ± 0.01 0.27 ± 0.01 0.32 ± 0.01 0.28 ± 0.01

2013MO 0.58 ± 0.01 0.57 ± 0.01 0.58 ± 0.01 0.55 ± 0.00

aFive-fold cross-validation: the dataset was divided into five subsets; one of which was used as a target set while the rest of four were used as a training set to train the

ridge regression best linear unbiased estimation model. This process was repeated 10 times resulting in 50 cross-validation. Prediction accuracy was then estimated as

Pearson’s correlation coefficient between the predicted values and observed phenotypic values of the target set. bMicrococcal nuclease hypersensitive regions (MNase-HS)

are open chromatin regions that are often associated with the level of gene expression and recombination hotspots, thus explaining a large proportion of heritable variance

(Rodgers-Melnick et al., 2016).

significantly compared with using all SNPs, regardless of trial

datasets.

4 DISCUSSION

Chickpea was first introduced to Australia in the late 1970s

and has gradually become the most widely grown pulse in

recent years. Being a relatively newly cultivated crop in Aus-

tralia, chickpea is a good example to study how crop species

adapt to new environments. Genetic diversity is essential

for a plant breeding program, which is particularly true for

inbreeding crops such as chickpea, that are often characterized

by narrow genetic diversity following domestication. Com-

pared with historical Australian chickpea cultivars, we were

able to demonstrate a substantial genetic diversity present in

the Australian chickpea breeding program, a result based on

genetic analysis of 315 advanced breeding lines with whole-

genome resequencing data. This has important implications

for implementing GS in the chickpea breeding program, as

genetic diversity was shown to be rapidly depleted when a GS

breeding scheme was implemented in wheat and maize breed-

ing program (Daetwyler et al., 2015; Muller et al., 2018).

4.1 Genome-wide association study of grain
yield

In general, mapping resolution based on association study is

determined mainly by population size, the number of DNA

markers across the genome, and the extent of LD surrounding

causal loci. The GWAS studies based on low-density marker

often identify markers far away from causal genes and thus

could not be validated/used in the application populations due

to low levels of linkage disequilibrium between markers and

causal genes. For a similar reason, it is recommended to use a
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large number of markers in GS when resources allow (Lorenz,

2013; Riedelsheimer et al., 2013). In this study, more than

298K SNPs were discovered in 315 advanced breeding lines

using a whole-genome resequencing method and subsequent

GWAS identified 20 SNPs significantly associated with grain

yield. These SNPs could be grouped into five regions based on

the extent of surrounding LD (900 Kb, r2 = 0.4). In total, 158

functionally annotated genes were found in these regions and

47 of them have been deposited in the KEGG database (Sup-

plementary Table S4). They were classified into six major

functional categories—protein families: genetic information

processing (15), protein families: signaling and cellular pro-

cesses (7), genetic information processing (6), carbohydrate

metabolism (3), cellular processes (3), and other (13). A few

candidate genes were involved in grain yield based on the

literature. For example, sugar transporters are members of

the major facilitator superfamily that play an important role

in source sink partitioning, plant growth, and seed develop-

ment (Doidy et al., 2012; Wobus et al., 1999). The E2FB tran-

scription factor is a cell growth and cell division regulator in

Arabidopsis and found to accelerate flowering and increase

fruit yield in tomato (Solanum lycopersicum L.) (Abraham

et al., 2012; Magyar et al., 2005). However, the involvement

of those candidate genes in determining grain yield in chick-

pea should be interpreted with caution, and further func-

tional validation such as RNAi or CRISPR-Cas9 is needed

to confirm their influence on grain yield. In addition, a fine

mapping approach using diverse material with more genetic

recombinations could be used toward narrowing down the

regions.

4.2 Genomic selection based on
whole-genome resequencing data

Many of the papers published to date regarding genomic

selection in plants are based on DNA markers generated

through GBS or SNP array platforms (Crossa et al., 2014;

Norman et al., 2018; Roorkiwal et al., 2016). Although cost-

effective, these platforms produce a relatively small number

of markers and often have limitations, such as a large propor-

tion of missing values in the case of GBS, or ascertainment

bias towards SNPs present in the populations used for dis-

covery during the SNP array design phase (Chu et al., 2020;

Malomane et al., 2018). Ascertainment bias of SNP array is

well documented and could affect estimating any population

genetic parameters that rely on the site frequency spectrum,

such as nucleotide diversity, Fst, and LD (Clark et al., 2005;

Lachance et al., 2013). As the cost of sequencing technol-

ogy continues to fall, it is becoming more practical to use

a much larger number of DNA markers from whole-genome

resequencing platforms in genomic selection, particularly for

species with a small genome size such as chickpea and rice.

However, beyond the associated higher genotyping cost, there

are some challenges when implementing greater numbers of

markers in a GS strategy. Most current GS software packages

such as Synbreed, BGLR, and GAPIT are designed for low-

density marker applications and not suitable for parallel com-

puting. For example, it took approximately 4 h (a PC with

2.9-GHz CPU with 16 GB RAM) to perform a five-fold cross-

validation for ∼300 genotypes with 298K SNP using the BL

model from the Synbreed package. The most time-consuming

part of the Bayesian analysis is the Markov chain Monte Carlo

process where the posterior distributions are approximated. A

fast and efficient algorithm has been developed in other statis-

tical applications and could be employed in genomic predic-

tion (Calderhead, 2014; Quiroz et al., 2019; Waldmann et al.,

2008).

Another challenge of using a large number of markers

relates to overfitting a model, where residual variances are

assigned to the markers unintentionally (Hickey et al., 2014).

While overfitting a model could produce high prediction accu-

racy in the training population, it will likely perform poorly

on the other datasets such as selection candidates. Some stud-

ies have shown that Bayesian models, employing either vari-

able selection or shrinkage procedures, were able to ease

the problems of overfitting a model and increased predic-

tion accuracy while others failed to achieve that (Fikere et al.,

2018; Wimmer et al., 2013). A few published studies present

approaches to reduce the total number of markers by choos-

ing a subset of markers with significant marker–trait associ-

ations (Y. Li et al., 2018; Spindel et al., 2016). For example,

Y. Li et. al (2018) showed that using subsets of SNPs signif-

icantly associated (p-values between .05–.01) with yield and

yield components in chickpea increased prediction accuracies

up to two-fold compared with that using the full 144K SNP

dataset.

Another approach involves preselection of markers based

on functional annotation. A study using 28.3 million whole

genome sequence variants from more than 16,000 dairy cat-

tle found that sequence variants located in gene coding and

regulatory regions (particularly the alternative splice site)

explained a larger percentage of the total variance than

expected by chance (Koufariotis et al., 2018). But other stud-

ies did not find significant improvement on prediction and

suggested that this approach is likely trait-dependent due

to different genetic architecture of each trait (de las Heras-

Saldana et al., 2020; Do et al., 2015). In this study, 298K SNPs

were subdivided into several classes according to their func-

tional annotations. Compared with the 298K whole-genome

SNPs, the subsets of markers did not influence prediction

accuracy of gain yield significantly despite consisting of a

much smaller number of markers. For example, the pre-

diction accuracy based on 29K SNP located only in the

exome of the chickpea genome was as good as accuracy

derived from all SNP in all four trials. This suggests that an
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exome-capture genotyping platform could generate prediction

accuracy as high as WGS. This could potentially decrease the

cost of genotyping significantly, particularly in crop species

with a large and complex genome such as wheat and oat. It is

worth pointing out that extensive LD in this germplasm could

limit the ability to study prediction accuracies among various

functional classes, however, the extent of LD can vary greatly

in local regions and some SNPs within the same gene have

very low LD.

4.3 Updating the training set with
phenotypes from relevant environments for
genomic selection

In the context of genomic selection, a training set is a collec-

tion of germplasm with genotypic and phenotypic data. The

marker effects are estimated/calibrated in the training set and

used to predict the phenotypes or breeding values for a tar-

get set of germplasm using only genotypic data. Therefore,

the training set should have a close relationship with the tar-

get set so that marker effects estimated in the training set are

applicable to the target set where DNA markers are still in

high LD with the causal genes. For example, genomic predic-

tion of testcross values of maize was halved when less related

material of target set was used (Albrecht et al., 2011). Similar

results were observed in wheat, rice (Berro et al., 2019; Crossa

et al., 2014; Norman et al., 2018), and livestock (Meuwissen

et al., 2016; Toosi et al., 2010). In this study, advanced lines

were used to predict the next cohort of advanced lines in the

same breeding program with encouraging results.

Another important factor that needs to be considered when

updating the training set is the environment where phenotypes

are generated. For complex traits with low heritability, such

as grain yield, environmental and G × E variances are usu-

ally large. In this study, we showed that adding another unre-

lated yield trial (rainfed vs. irrigated) in the training set did

not increase but instead decreased prediction accuracy prob-

ably due to G × E interaction. A similar phenomenon was

observed in barley where N. Heslot et al. (2013) addressed this

issue by using a new method to remove less predictive envi-

ronments from the training set. These examples suggest that

careful consideration is needed when updating the training set

with new phenotypes. The G×E interaction is a long-standing

problem that complicates the plant breeding process. This is

conventionally addressed in plant breeding through evaluation

of METs so that these environments capture the true breeding

values/phenotypes of the plants. Plant physiologists tend to

view G × E interaction from the angle of phenotypic plastic-

ity, where plant genotypes perform differently in response to

environmental gradients and often use a reaction-norm model

to handle G × E interaction (Jarquin et al., 2014; Sadras et al.,

2016). X. Li et al. (2018) went a step further to make use of

genomic information to reveal the interplay of genomic and

environmental gradients on G × E interaction. If G × E is

present in the target environment, the choice of which envi-

ronments to include in the training set is critical for prediction,

as demonstrated here in this study. Thanks to the rapid devel-

opment of sensing and monitoring technology on-farm, envi-

ronmental characterizations (climatic data, soil parameters,

nitrogen level, etc.) in the field are becoming easily accessi-

ble and could be useful for choosing appropriate environments

where the training set is to be evaluated. These environmen-

tal conditions could show differences in abiotic stresses such

as drought, heat, and frost. N. Heslot et al. (2014) proposed

an integrated model where environmental variables and crop

growth modeling were used in a genomic selection framework

to handle G × E interaction in wheat. Accuracy in predict-

ing line performance in untested environments with climatic

data increased by about 11% on average. Another recent study

further improved this model by selecting a subset of environ-

mental variables derived from a crop growth model and cal-

culating the covariance matrices using an AMMI decomposi-

tion method (Rincent et al., 2019). X. Li et al. (2018) included

an environmental index defined by photothermal time in the

reaction-norm model and found that they can predict the flow-

ering time of a sorghum recombinant inbred line mapping

population in untested environments as high as r = 0.74 on

average. It will be interesting to see if this approach also works

well with a more complex trait such as yield in more diverse

germplasm.
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