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Abstract. Remotely sensed ground cover data play an important role in Australian rangelands research development and
extension, reflecting broader global trends in the use of remotely sensed data.We tested the relationship between remotely
sensed ground cover data and field-based assessments of grazing land condition in the largest quantitative analysis of its

type to date.We collated land condition data from 2282 sites evaluated between 2004 and 2018 in the Burdekin and Fitzroy
regions of Queensland. Condition was defined using the Grazing Land Management land condition framework that ranks
grazing land condition on a four point ordinal scale based on dimensions of vegetation composition, ground cover level and

erosion severity. Nine separate ground cover derived indices were then calculated for each site. We found that all indices
significantly correlated with grazing land condition on corresponding sites. Highest correlations occurredwith indices that
benchmarked ground cover at the site against regional ground cover assessed over several years. These findings provide

some validation for the general use of ground cover data as an indicator of rangeland health/productivity. We also
constructed univariate land condition models with a subset of these indices. Our models predicted land condition
significantly better than random assignment though only moderately well; no model correctly predicted land condition

class on .40% of sites. While the best models predicted condition correctly at .60% of A and D condition sites,
condition at sites in B and C condition sites was poorly predicted. Several factors limit how well ground cover levels
predict land condition. The main challenge is modelling a multidimensional value (grazing land condition) with a
unidimensional ground cover measurement. We suggest that better land condition models require a range of predictors to

address this multidimensionality but cover indices can make a substantial contribution in this context.

Keywords: degradation, grazing lands, ground cover, land condition, remote sensing, rangelands.

Received 24 March 2021, accepted 30 August 2021, published online 14 September 2021

Introduction

A key principle of sustainable landscape management is the
need to measure and monitor the state and trend of landscape

attributes and processes (West 2003). In Australia, as in other
regions, this has driven investment in site-based tools and sys-
tems to monitor biophysical change in the rangelands (e.g.

Tongway and Hindley 2004; Eyre et al. 2006; Thackway and
Leslie 2006;Watson et al. 2007). These site-based approaches to
landscape monitoring vary in both method and the landscape

attributes that they target, but generally share the assumption
that assessments of the site can be extrapolated to the broader
landscape.

The Grazing Land Management (GLM) land condition

framework (Chilcott et al. 2003) is another example of such

tools. It has been widely adopted bymanagers and researchers in
the northern Australian rangelands (e.g. Scanlan et al. 2014;
Walsh and Cowley 2016) including the Great Barrier Reef

catchments along the east Australian coast (e.g. Karfs et al.

2009a; McIvor 2012;Willis et al. 2017). Categorising condition
on a four-point ordinal scale fromA (Good) toD (Very poor), the

GLM framework defines grazing land condition as both the
capacity of grazing land to respond to rain and produce useful
forage, and how well the grazing ecosystem is functioning

(DPI&F 2004). Many users of this framework have assessed
condition using various methods and tools from purely visual
assessments (e.g. Karfs et al. 2009b) to detailed site measure-
ments (Aisthorpe and Paton 2004; Abbott and Corfield 2012).

However, all take into account simultaneous assessment of soil,
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pasture and woodland attributes to deliver a single site condition
assessment as per the guidelines of the GLM framework
(Table 1). The wide adoption of the GLM framework by

multiple research and extension agencies has created a large
archive of temporally and spatially diverse land condition
records. Note that unless otherwise stated, the terms ‘condition’,
‘land condition’ and ‘grazing land condition’ are used inter-

changeably throughout this paper and refer specifically grazing
land condition as defined under the GLM framework (above).

Another significant feature of rangelandmonitoring has been

the continued emergence of remote sensing as a tool for
rangeland assessment. In theAustralian context, this work began
more than 30 years ago (Pickup 1989) and has incorporated a

range of approaches and objectives (e.g. Pickup and Chewings
1994; O’Neill 1996; Wallace et al. 2006; Jafari et al. 2007).
More recently quantified ground cover measurement (as a

proportion of land surface) has been a particular focus for remote
sensors (Schmidt et al. 2010; Trevithick et al. 2014; Barnetson
et al. 2017). There is now multi-decadal ground cover imagery
for the entire continent (Clancy et al. 2013; Stewart et al. 2014)

available for use in monitoring ground cover levels across the
landscape and through a variety of tools and programs. Perhaps
more interestingly, remotely sensed ground cover data have also

assisted in mapping other landscape attributes such as erosion
(Ellis and Searle 2013) and land condition (Karfs et al. 2009b;
Bastin et al. 2012; Beutel et al. 2014). If the targeted landscape

attribute correlates with ground cover, this approach offers the
significant advantage that ground cover data (which are built in
regular, landscape-wide images) provide a useful vehicle tomap
the targeted attribute through time and space.

Quantifying condition (both as defined under both the GLM
framework and other methodologies (e.g. Wallace et al. 2006))
has been a particular target for users of ground cover data in

Australian rangelands. Consequently, several different indices
based on ground cover data have been used to index and map
land condition. Themost basic of these is a simple summary (e.g.

mean, median, trend) of ground cover pixel values on the site of
interest (e.g. Wallace et al. 2006; Thornton and Elledge 2018;
State of Queensland 2019). This approach fundamentally

assumes positive correlation between ground cover and a land
condition where more cover generally indicates better land
condition. While this assumption holds some truth, it does not
account for variation in ground cover levels that are unrelated to

land condition. For example, this index would assume that two

sites with similar ground cover levels are of equal land condi-
tion, even if their landscape strata have naturally different levels
of ground cover. It would also assume that temporal changes in

ground cover level on a site are indicative of land condition
change, even though events such as rainfall and fire can impact
ground cover but not land condition.

Bastin et al. (2012) developed a ground cover index to

quantify grazing land condition called the Dynamic Reference
Cover Method (DRCM). This approach benchmarks ground
cover per pixel by calculating the ground cover difference

between the focal pixel and pixels with relatively high ground
cover in a surrounding window. Under this model, lower DRCM
values equate to poorer land condition. DRCM imagery that

maps these values across the landscape are available (TERN
AusCover 2020) and can be summarised per site, making the
DRCM product an attractive index of landscape health/condi-

tion (Bastin and the ACRIS–MC 2008; Wilkinson et al. 2014).
Bastin et al. (2012) used the DRCM in below average rainfall
periods only when pixels of resilient cover were more obvious,
but others (e.g. Xie et al. 2019) have deployed it over a wider

range of dates and thus outside very dry periods. A key advan-
tage of DRCM over simple mean or median ground cover is that
it accounts for the effect of rainfall on ground cover level and in

so doing, provides a more direct evaluation of management
impacts on land condition. Similar to simple mean or median
ground cover, current versions of the DRCM do not take into

account strata such as land type, so that a pixel from one
landscape stratum may be benchmarked against a population
of pixels largely from other strata. This can result in statistical
artefacts in the mapped DRCM product and is most visible

where two extensive strata with contrasting cover levels abut.
The resulting DRCM imagery for these areas tends to show a
halo of low DRCM values in low cover areas immediately

around high cover features (where the DRCM benchmark is
most inflated by cover in the high cover feature) (Fig. 1).
Consequently, the exclusion of landscape strata from DRCM

production may incorporate some local biases in its application.
A third approach, called regional comparison, is available

through both the VegMachine.net and FORAGE (longpaddock.

qld.gov.au) websites for Queensland, with thousands of regional
comparison reports delivered to Queensland grazing property
managers and associated extension and research personnel in
recent years (Zhang and Carter 2018; Beutel et al. 2019).

Regional comparison ranks median ground cover on the target

Table 1. Description of the GLM land condition classes (modified from Aisthorpe and Paton 2004)

Condition Description

A (Good) Good coverage of perennial grasses dominated by 3P species (perennial, palatable, productive) for that land type.Mostly.70%ground cover.

Few weeds and no significant infestations. No erosion. No sign or early signs of woodland thickening.

B (Fair) Similar to A condition but with one or more of the following; some decline in health/density of 3P grasses, increase in other species (less

favoured grasses, weeds), mostly 40–70% ground cover, some signs of previous erosion and current signs of erosion risk, some thickening

in density of woody plants.

C (Poor) Similar to B condition but with one ormore of the following; general decline in health/density of 3P grasses, large amounts of annuals and less

favoured species, ground cover mostly ,40%, obvious signs of past erosion and/or current susceptibility to erosion is high, general

thickening in density of woody plants.

D (Very poor) One or more of the following features; general lack of perennial grasses and forbs with mostly bare ground, severe erosion or scalding

(resulting in a hostile environment for plant growth), thickets of woody plants cover most of area.
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site among ground cover values from the surrounding region. It

is similar to the DRCM approach in that it benchmarks site
ground cover against regional ground cover, accounting for
rainfall effects to better highlight management impacts on

ground cover. Regional comparison also assumes a positive
correlation between the benchmarked cover and land condition
such that median cover on better condition sites ranks higher

against regional cover levels. A key difference of regional
comparisons to the other approaches described above is that it
also incorporates land type (a landscape stratification based on

landform, vegetation and soil features) (State of Queensland
2017). In both VegMachine.net and FORAGE, regional com-
parisons the ground cover in each of the site’s land types is
ranked only against cover in the identical regional land types.

This ensures more appropriate benchmarking, especially impor-
tant for sites with land types atypical of the surrounding region.
It should also be noted that regional comparison rankings are not

typically provided for a single point in time; both VegMachine
and FORAGE calculate regional comparisons values for a site
each season (1990–present) and display the results in a time

series plot. This has several advantages including capacity to
retrospectively reviewmanagement impacts on ground cover, to
follow trends in regional comparison rankings rather than one-
off measures, and to see short-term fluctuations in a wider

historical context.
Equating any of these three remote sensing approaches to

land condition makes sense up to a point but ignores the fact that

land condition is multidimensional (vegetation composition,
ground cover level and erosion severity) while ground cover
values are not. Consequently, ground cover indices have a limit

as land condition surrogates, and this raises several questions.
Perhaps the most important is how reliable are these indices at
predicting condition, both in an absolute sense and relative to

each other? Prior studies have assessed the relationship between
land condition and ground cover indices (e.g. Karfs et al. 2009a;
Bastin et al. 2012; Xie et al. 2019), but side-by-side comparisons
of multiple indices have not been published. Such comparisons

offer several benefits, in particular quantifying the absolute

value of these indices as land condition surrogates and identify-
ing their relative strengths as predictors of land condition.

This paper examines the relationship between grazing land
condition as defined by the GLM framework and three remotely

sensed ground cover indices at more than 2000 sites in the
Burdekin and Fitzroy regions of Queensland, Australia. We
compare how well the three indices (median ground cover,

DRCM and regional comparison) correlate with land condition.
We also test whether averaging these indices over more than one
date improves their value as a land condition surrogate. Finally,

we build simple models of land condition class (A, B, C or D)
using a range of these indices to quantify their power to predict
land condition class.

Materials and methods

The study area comprises the combined Fitzroy and Burdekin
regions of Queensland, Australia (Fig. 2). The region covers
297000 km2 in eastern Australia and 70% of the Great Barrier

Reef catchment area. It has an average annual rainfall ranging
between 2000 mm in the north-east and 500 mm in the south-
west. About 83% of the region is grazing land (QLUMP 2017),
supporting ,4.6 million cattle (MLA 2019).

Land condition assessments were collected at 2282 sites
evaluated during historical studies between 2004 and 2018
(Table 2). For each site, we collated the land condition rating,

the date of land condition assessment (one per site when sites
were assessed on .1 occasion) and the spatial boundary of the
site in a digital shape file. Sites varied in size (Table 2) with the

extent of any site determined by the particular goals andmethods
of the study. All evaluations were made by one or more
experienced assessors with a clear understanding of the GLM

land condition framework, training in the specific assessment
method used (below), and prior experience in field assessment of
land condition. All assessments were based on conditions at the
single time of assessment.

0

(a) (b)
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Fig. 1. Corresponding (a) TGC and (b) DRCM imagery for far south-west

Queensland (spring 2019). The respective grayscale ramps indicate the

range of values in each image; TGC are measured as percent cover and

DRCM as difference in percent cover from a regionally high benchmark

(Bastin et al. 2012). Where extensive areas of higher ground cover adjoin

extensive areas of lower ground cover, a halo of lowerDRCMvalues is often

visible in the DRCM imagery around the high cover areas. Black bar (right)

length ¼ 200 km.
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Fig. 2. The study area and centroids of the 2282 study sites.
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While all the included studies followed the principles of the
ABCD framework to assign a land condition class to a site, they

relied on a range of assessmentmethods varying in terms of both
the detail collected and data collection methods. Consequently,
we divided all sites into three groups (Observe, Measure and

Consensus) based on the methods used at those sites to deter-
mine land condition. The Observe group (n ¼ 1508) were
collected in roadside assessments of grazing land condition
from2004 to 2018. These sites were visually assessed, almost all

from the edge of the site (generally from the road corridor
boundary looking into the grazed paddock) by experienced land
condition assessors. The Measure group (n ¼ 581) were col-

lected from 2006 to 2013 and these sites were assessed from
within the site boundary using more detailed equipment/meth-
ods including line transects, detailed pasture observations and

land condition calculators (Aisthorpe and Paton 2004; Abbott
and Corfield 2012). The final group (Consensus, n ¼ 193)
included properties and land parcels where condition was

assigned by consensus at a meeting of regional extension and
scientific staff in 2018 (T. S. Beutel, unpubl. data). These
assessments were thus made off-site and based on assessors’
personal knowledge of land condition on those parcels.

In this study, we correlated remotely sensed ground cover
indices with land condition ratings at each of the 2282 sites, and
we used total ground cover (TGC) imagery (TERN AusCover

2020) to construct these indices. TGC data are derived from a
fractional cover algorithm that segments landscape cover at pixel
scale into green, non-green and bare ground fractions (Scarth et al.

2015). Fractional cover measurements are then adjusted to
account for cover under woody vegetation (Trevithick et al.

2014) resulting in a fractional ground cover product that is used
in areas of ,60% woody cover. TGC is the inverse of the bare

ground fraction and includes green and non-green vegetation,
logs, litter, dung and cryptogams. TGC images have 30 m pixel
resolution and are available in seasonal composite (Flood 2013)

images (four images per year) from 1990 to present. TGC in the
study region generally has highest coefficient of variation in this
spring (September to November) (Fig. 3) and grazing impacts on

ground cover are easier to observe at this time due to that greater
variation. Consequently, we limited our analyses to spring TGC

images on the expectation that indices derived from these data
would better reflect any relationship between ground cover and

grazing land condition.
Three different index types (Type) were compared across all

sites; median cover (MC), DRCM and regional comparison (RC)

andwe also further assessed their relationshipwith land condition
when calculated over three separate time spans (Span; T1, T3 and
T5). For a given site and index type, the T1 index was calculated

from imagery for the spring image nearest to the date of the land
condition assessment. T3 indices were calculated for the T1
season as well as the two preceding springs, then averaged across

the three springs to give a single T3 value for the site. T5 index
values were calculated as per T3 but averaged over the T1 season
plus the four preceding springs togive a singleT5value for the site

Table 2. Summary statistics and groupings of grazing land condition datasets used in this study

Source and description n Site size (ha) Assessment date(s) Group

Karfs et al. 2009a; Beutel et al. 2014. Aggregated roadside assessments of land condition in the

Fitzroy and Burdekin region.

1508 1 2004–2018 Observe

Unpubl. data. Local expert consensus of property / parcel land condition from 2018 regional

workshop. Evaluations took into account expert knowledge of site ground cover, pasture and

weed cover and composition, erosion and woody cover levels.

193 25–87055 2018 Consensus

Eyre et al. 2011. On site Stocktake (Aisthorpe and Paton 2004) assessment of land condition. 52 1 2006–2009 Measure

Hall et al. 2014. Aggregated quadrat assessments of cover, composition and erosion per paddock

and land type.

32 1–3240 2009 Measure

Karfs et al. 2009b. Transect based assessments of cover, composition and erosion. Methods

as per Karfs and Beutel 2008.

100 1 2006–2008 Measure

Karfs and Beutel 2008. Transect based assessments of cover, composition and erosion. 43 1 2006 Measure

Beutel et al. 2014. Transect based Patchkey (Abbott andCorfield 2012) land condition assessments. 146 1.5 2011–2012 Measure

Unpubl. data. Site based Stocktake (Aisthorpe and Paton 2004) land condition assessments. 208 3 2013 Measure
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based on 5 seasons of spring imagery (Table 3). This process
produced nine different ground cover index values for each site.

For each Group of land condition sites (Observe, Measure

and Consensus), we calculated the correlation between land
condition rating and each of the nine ground cover indices using
Kendall’s rank correlation coefficient (t), which is appropriate
for ordinal data that includes ties. These t values were com-
pared in a 3�3 (Type� Span) weighted ANOVA (weighted for
Group size) with Groups as replicates to test the effects of

Type and Span on the correlation between land condition and
cover index.

Finally, we developed several univariate ordinal regression

models that predicted land condition rating using individual
ground cover indices. For thiswork, the 2282 sites were randomly
split into training (n¼ 1597) and independent test datasets

(n¼ 685). All models were developed from the training data
and predictive skill summarised frommodel fit to the independent
test data. The aim of this work was to quantify the extent to which

Table 3. Calculation methods for ground cover indices used in this work

Index type Variant Calculation method Data required

Median cover (MC) MC.T1, MC.T3, MC.T5 1. Extract pixel values inside site boundary in the year

land condition was assessed.

2. Calculate 50th percentile of these values (MC.T1).

3. Repeat steps 1 and 2 on preceding four years of

imagery.

4. Calculate mean of values from steps 2 and 3 for the

three years up to and including assessment year

(MC.T3).

5. Calculate mean of values from steps 2 and 3 for

the five years up to and including assessment year

(MC.T5).

1

Regional comparison (RC) RC.T1, RC.T3, RC.T5 1. Extract pixel values inside each separate land type in

the site boundary in the year land condition was

assessed.

2. Calculate 50th percentile of these values for each

land type.

3. In the same ground cover image as step 1, sample

each site land type at 2000 random points in the

region (grazing land,20 km beyond site boundary).

4. For each site land type, calculate the proportion of

values from step 3 # value from step 2.

5. Calculate the weighted mean of values from step 4.

Weight¼ the land type area within the site. (RC.T1).

6. Repeat steps 1 to 5 with the images of the preceding

four years.

7. Calculate mean of values from steps 5 and 6 for the

three years up to and including assessment year

(RC.T3).

8. Calculate mean of values from steps 5 and 6 for the

five years up to and including assessment year

(RC.T5).

1, 2, 3

Dynamic reference cover method (DRCM) DRCM.T1, DRCM.T3, DRCM.T5 1. Extract pixel values inside site boundary in the year

land condition was assessed.

2. Calculate 50th percentile of these values

(DRCM.T1).

3. Repeat steps 1 and 2 on preceding four years of

imagery.

4. Calculate mean of values from steps 2 and 3 for the

three years up to and including assessment year

(DRCM.T3).

5. Calculate mean of values from steps 2 and 3 for the

five years up to and including assessment year

(DRCM.T5).

4

1TGC imagery. (http://www.auscover.org.au/purl/landsat-seasonal-ground-cover).
2Grazing land management land types. (File identifier: 9AB3EE68–039C-40E1–96DF-06E407CD4CCD. http://www.data.qld.gov.au/).
3Queensland land use mapping. (https://www.qld.gov.au/environment/land/vegetation/mapping/qlump-datasets).
4Seasonal DRCM imagery. (http://data.auscover.org.au/xwiki/bin/view/Productþpages/SeasonalþDynamicþReferenceþCoverþMethod).
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ground cover indices can distinguish different land condition
classes in a statistical model.We selected three of the nine indices

and for each trialled models with all 16 combinations of:

� four link functions (probit, logit, log, complementary log-log);

and
� four index transformations (x,

ffiffiffi

x
p

, log(xþ1), 1/(xþ1)).

Land condition observations were weighted inversely to the

number of cases in each land condition class to compensate for
the unbalanced number of sites in each land condition class
(Kuhn and Johnson 2013). The final model for each index was

selected based on residual deviance and adequate residual plots
(Greenwell et al. 2018; Liu and Zhang 2018). The three models
then classified each site, and their relative predictive success
was compared using several metrics.

Results

Fig. 4 shows the Kendall’s t values for correlation between land
condition rating and ground cover index for sites in each of
combination of Group, Type and Span. Correlation coefficients

ranged between 0.17 and 0.47 and all were significantly greater
than 0 (P, 0.001). The 3�3 (Type� Span) ANOVA indicated
significant effects for both index Type (F2,16¼ 21.07; P, 0.001)
and Span (F2,16¼ 6.99; P, 0.01), but not their interaction. Pair-

wise comparisons (Tukey’s range test) of treatmentmeans showed
that MC indices correlated significantly less with land condition
rating than either the RC (P, 0.001) or DRCM (P, 0.01) index

groups, but DRCM and RC indices were not significantly differ-
ent. T5 indices also correlated significantly better with land con-
dition rating than single date T1 indices (P, 0.01).

Table 4 summarises three ordinal logistic regressions of land
condition built with individual ground cover indices as their
predictor and applied to independent test data (n¼ 685). The

models respectively use the RC.T5, DRCM.T5 and MC.T1
indices at each site to predict land condition rating. The RC.T5
and DRCM.T5 models use the ground cover indices with the
most effective combinations of Index (RC or RCM and Span

T5). Conversely, the MC.T1 model includes the least effective
combination of Type and Span, so together, the three models
should represent a range skill to predict land condition. All

three models were significant (68.2 $ x2 $ 165.3; d.f.¼ 1;
P, 0.001), clearly outperforming random assignment. The RC.

T5 and DRCM.T5 models also outperformed the MC.T1 model
on several criteria including better classification in each land
condition class, lower rates of large errors (predicted condition

.1 condition class from observed condition class), and lower
AIC. All three models correctly classified A and D condition
sites better than B and C condition sites (Table 4).

Discussion

In the Australian rangelands, remotely sensed TGC data have
taken on an increasingly important role in monitoring the graz-
ing landscape and evaluating the impacts of management and
investment in those landscapes (e.g. Bastin et al. 2009;

Wilkinson et al. 2014; State of Queensland 2019; Waters et al.
2020), facilitated by a growing suite of tools that deliver the
data to users in a range of formats and products (Australian

Government 2010; Zhang and Carter 2018; Beutel et al. 2019).
In this context, appropriate and informed use of remotely sensed
TGCdata and its derived indices is critical. In this paper,we have

shown that all tested ground cover indices correlated signifi-
cantly with observed land condition across our study sites, and
we used ground cover indices to predict land condition with a
statistically significant skill level. The results show that ground

cover indices, and particularly multi-date time ground cover
indices, are useful predictors of grazing land condition and
support the broader use of remotely sensed ground cover as a

metric of rangeland health and productivity. This is not a parti-
cularly surprising outcome, but it is themost extensive test so far
for the use of ground cover indices as surrogates for grazing land

condition and provides important support for the way ground
cover data are increasingly used in the Australian rangelands.
Future work might look across other regions and finer scaled

landscape strata since predictive power may vary across both.

Factors affecting the ground cover–land condition
relationship

We identified two strategies to improve the value of ground

cover indices in that surrogate role. The first of these is
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Fig. 4. Kendall’s tB value for correlation between each cover index and land condition

rating in each of the three groups of sites (Consensus, Measured and Observed).
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benchmarking TGC at the target site against regional levels of
ground cover outside the site. The RC and DRCM indices both

do this (by slightly different means), and both performed sig-
nificantly better than theMC indiceswhich are not benchmarked
against the surrounding region. Since sites and their surrounding
region share a rainfall history, any disparity in their respective

TGC levels is unlikely to result from rainfall. This effectively
removes rainfall impacts from the index value, making bench-
marked indices a better indicator of management impact, which

is a key driver of rangeland health (Bastin et al. 2012; Beutel
et al. 2019). This is likely why benchmarked cover indices
performed better in this work and will likely perform better

elsewhere. RC and DRCM indices performed quite similarly
even though only the former benchmarks ground cover within a
specific land type. One useful future line of research may look at
whether DRCM indices adjusted for land type perform better

than the DRCM indices that do not (as was used here). Con-
structing DRCM imagery is computationally expensive and
incorporating landscape strata in its construction would add

significant cost and complexity, but it seems a reasonable ave-
nue to improve how well we can predict land condition using
ground cover data.

A second strategy to better predict land condition using
remotely sensed TGC is to summarise ground cover indices

over multiple rather than single dates. This was shown by the T5
indices outperforming the T1 indices. Averaging cover indices
over multiple dates dampens the statistical influence of short-
term events like fires, heavy grazing and isolated storms that

affect ground cover but not necessarily land condition in the year
of condition assessment. Consequently, averaging indices over
several years removes noise in the ground cover signal that

might otherwise confound land condition measurement. We
tested spans up to five dates (four years) but averaging over
longer periods is possible (e.g. Karfs et al. 2009a). Predictive

skill improved in our work from T1 to T5, and while longer
spans may perform better still, presumably skill begins to
decline as span extends to the point that the calculated index is
more representative of past than present land condition.

These two strategies are also available to users in the
Australian rangelands through a variety of channels. Users in
Queensland have access to regional comparison analyses

through both VegMachine.net and the longpaddock.qld.gov.au
websites. While neither of these services explicitly averages
regional comparisons over five dates to provide RC.T5 values

Table 4. Classification skill of three ordinal regressionmodels that respectively use theMC.T1, RC.T5 and DRCM.T5 ground cover indices as land

condition predictors at 685 independent test sites

The ‘Random’ column indicates theoretical results under random site assignment. ‘Predicted | Observed’ rows indicate the number of sites in each possible

combination of predicted and observed condition class. ‘Error’ rows show the percent of sites where the predicted condition class was 0 (A|A, B|B, C|C orD|D),

1 (A|B, B|A, B|C, C|B, C|D or D|C), 2 (A|C, B|D, C|A or D|B) or 3 (A|D or D|A) condition classes from the observed condition class. ‘Skill’ rows show the

percent of sites in each condition class that were predicted correctly. ‘Fit’ rows provide the Chi-square goodness-of-fit and theAIC statistic for eachmodel’s fit

to the test data

Model

MC.T1 RC.T5 DRCM.T5 Random

Predicted|Observed A|A 125 134 132 52.75

A|B 109 99 99 53

A|C 86 55 59 49.25

A|D 12 4 8 16.25

B|A 22 34 31 52.75

B|B 17 38 30 53

B|C 22 31 33 49.25

B|D 5 6 4 16.25

C|A 39 30 36 52.75

C|B 51 44 61 53

C|C 35 57 55 49.25

C|D 13 14 10 16.25

D|A 25 13 12 52.75

D|B 35 31 22 53

D|C 54 54 50 49.25

D|D 35 41 43 16.25

Error 0 30.9% 39.4% 38.0% 25%

1 39.6% 40.3% 41.5% 39.9%

2 24.1% 17.8% 17.7% 25%

3 5.4% 2.5% 2.9% 10.1%

Skill A 59.2% 63.5% 62. 6% 25%

B 8.0% 17.9% 14.2% 25%

C 17.8% 28.9% 27.9% 25%

D 53.8% 63.1% 66.2% 25%

Fit x2 68.2 153.2 165.3 NA

AIC 4096 3829 3855 NA

Ground cover and grazing land condition The Rangeland Journal 61



for a target site, both present RC.T1 data in time series plots that

users could visually assess over multiple dates to approximate
RC.T5 values. Seasonal DRCM imagery (1990–present) is also
available for the Northern Territory and Queensland (TERN

AusCover 2020), so users with technical capacity to manipulate
this imagery could calculate DRCM.T5 values for sites of
interest in these regions. Finally, VegMachine.net can calculate
and export median seasonal ground cover (MC.T1) values for

any site in Australia, and these exported time series can be
converted toMC.T5 values by applying a moving average to the
time series. Users should consider these approaches and data

sources if their goal is to index land condition using TGC.

Modelling land condition

While the raw correlations discussed above indicate the relative
strength of association between each ground cover index and
condition class, they do not clearly compare the absolute level of

predictive skill in each cover index, and this motivated con-
structing simple predictivemodels of land condition, each using a
different ground cover index as the single model predictor. It

should be noted that thesemodelswere developed for comparison
purposes only and are not proposed as ready-to-use predictive
models. In all models, the correlation between each ground cover

index and land conditionwas significant, but still onlymoderately
predictive. The best models predicted condition correctly for
,40% of sites, and while A and D condition sites were correctly

classed in.60%of cases, classification ofB andC condition sites
was worse than random assignment in some cases. The lack of
discrimination between B and C condition is particularly unfor-
tunate as the B to C transition delineates relatively healthy/pro-

ductive areas (fair condition) from land that is clearly degraded
(poor condition). Future modelling in this area should pay par-
ticular attention to how well intermediate condition levels are

predicted. In the interim, users of ground cover indices should be
particularly aware that they may not discriminate B and C land
condition well. Below, we discuss two potential reasons for lim-

ited predictive power to aid interpretation of our results and
inform future efforts to model grazing land condition.

One factor that probably limited our capacity to model

grazing land condition using ground cover indices is the quali-
tative nature of the GLM land condition framework. While the
framework is an excellent conceptual model for extension and
engagement, it can be more problematic as a field assessment

tool. We used condition assessments from multiple studies, all
collected by trained practitioners. However, even the most
rigorous assessments can incorporate subjectivity. This derives

from the qualitative nature of the framework descriptors (e.g.
some decline vs general decline in health/density of 3P grasses;
Table 1) and a corresponding lack of quantitative thresholds that

would assist clear cut assessment. For this reason, it is possible
for two experienced practitioners to disagree on the exact
condition rating of a site. It is likely that some of the challenge
that we experienced in modelling grazing land condition was

derived directly from the way grazing land condition is defined,
and consequently measured in the field. This may be a difficult
problem to correct but use of more rigorous field assessment

tools (e.g. Aisthorpe and Paton 2004; Abbott and Corfield 2012;
Hassett 2020) should provide some benefit, as suggested in our

own data where Measured group correlations were generally

higher than those for the Observed group ratings (Fig. 4).
As noted above, a second and probably more significant

difficulty in modelling condition using ground cover indices is

that land condition is multidimensional (Table 1) while TGC is
not. This can produce challenging scenarios, such as where
ground cover is high but composed of annual or weed species so
that condition is poor, or where fire on good condition land

reduces cover but does not affect the land condition at the site.
An effective land condition model would need to account for
dimensions of condition including vegetation composition and

erosion severity, and TGC does not appear to do this fully as
shown in our results. Since there is an upper limit to how well
ground cover indices can explain variation in grazing land

condition, it won’t be a sufficient predictor for all purposes
and users. However, in terms of building better models, we
suggest incorporating a wider range of predictors. We built very
simple land condition models in this work specifically to

compare the predictive skill of several ground cover indices in
a modelling context. Realistically though, a concerted effort to
map grazing land condition would include more than one

predictor, and probably usemethods better suited tomultivariate
data such as machine learning approaches. More complex
models could incorporate multiple cover indices and/or other

contextual data including land type, climate (e.g. recent and
average annual rainfall), soil (e.g. soil order, depth), vegetation
(e.g. NDVI, type), spatial arrangement (e.g. spatial

autocorrelation) and landscape (e.g. position, slope) layers.
There is a wealth of public data suitable for such an exercise
(e.g. Jones et al. 2009; Grundy et al. 2015; Dhu et al. 2017) and
including a wider range of predictors in models should account

for more of the multidimensional variability in grazing land
condition. It may also be worth trialling indices based on the
separate fractions of TGC (photosynthetic and non-photo-

synthetic) rather than just TGC alone.

Conclusion

Remotely sensed TGC data are an increasingly important tool

for stakeholders in the rangelands of Australia. They are used to
engage landmanagers, assess landscape health and function, and
evaluate the impacts of management and investment decisions.

This paper provides the largest quantitative analysis so far of
their value as a tool to directly measure and monitor ABCD
grazing land condition, providing important validation for the

way ground cover products are currently being used in tools like
VegMachine.net and FORAGE. Our results indicate that
remotely sensed TGC correlates significantly with grazing land

condition in the Burdekin and Fitzroy regions of Queensland,
and more so if ground cover on the target site is benchmarked
against the cover in surrounding region and assessed over
multiple years. Ground cover indices were also used to create

simple land condition models and these suggested ground cover
indices are excellent candidate predictors for more compre-
hensive multivariate models of grazing land condition.
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