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A B S T R A C T   

In recent decades the declining health of the Great Barrier Reef has led to a number of government policies being 
implemented to reduce pollutant loads from the adjacent agricultural-based catchments. There is increasing use 
of cost-effectiveness measures to help prioritise between different programs and actions to reduce pollutants, 
given limited resources and the scale of the issues. However there are a small number of primary studies 
available, and the consistency of cost-effectiveness measures and their application is limited, particularly given 
the various uncertainties that underlie the measures. Unlike Europe and the United States of America water 
policy or benefit transfer approaches, there are no procedural guidance studies that must be followed in the 
context of the Great Barrier Reef catchments. In this study we review the use of cost effectiveness estimates for 
pollutant reduction into the Great Barrier Reef in the context of a benefit transfer framework, where estimates of 
costs from a particular case study are transferred to various scenarios within different catchments. The con-
clusions suggest a framework be developed for the Great Barrier Reef, which is consistent, transparent, and 
rigorous.   

1. Introduction 

Internationally there has been substantial policy attention on 
addressing the impacts of poor water quality from agriculture on estu-
arine ecosystems, with cost-effectiveness employed to improve the 
allocation of funds, assess likelihood of adoption of particular manage-
ment practices and evaluate past investments (Fröschl et al., 2008; 
Gooday et al., 2014; Elofsson, 2010). In Australia the declining health of 
the Great Barrier Reef (GBR) has been attributed to a number of factors, 
including pollutant runoff from agricultural-based industries (Brodie 
et al., 2012; Brodie et al., 2017; Kroon et al., 2016). The pressure on the 
GBR has led to a large number of policies and investments to improve 
water quality, many of which are focused on improving agricultural 
management practices (The State of Queensland, 2017). The Reef 2050 
plan has a target of 90% of land managers operating low risk water 
quality practices (previously termed best management practices) by 
2050 (The State of Queensland, 2017). Given the variation in biophys-
ical, climate, agricultural and management factors, there has been 
increasing focus on assessing the cost effectiveness of different measures 
so as to guide the allocation of public funds and select options that 

would maximise outcomes and participation by landholders. 
The initial focus of cost-effectiveness studies in the GBR was to 

identify costs of landholders changing management practices to reduce 
pollutants leaving agricultural lands (East and Star, 2010, Van Grieken 
et al., 2010), but cost information has also become important to help 
understand adoption barriers to management change (Rolfe and Gregg, 
2015) and to help evaluate different policy mechanism designs (Rolfe 
and Windle, 2011). For these purposes, cost-effectiveness has been 
measured, which is essentially the ratio of costs involved to achieve 
pollution changes. While the initial focus was on farm level studies, in 
recent years there has also been increasing interest in predicting the 
total costs of achieving water quality targets and prioritising between 
actions for the whole GBR, which involves greater modelling and 
extrapolation of available estimates (Alluvium, 2016, 2019; Beverly 
et al., 2016; Star et al., 2018). 

Policy frameworks for the GBR do not require strict assessments of 
the benefits and costs, unlike in Europe, where the Water Framework 
directive explicitly provides guidance regarding the application of eco-
nomic principles, tools, and instruments (Balana et al., 2011; Carvalho 
et al., 2019; Hanley et al., 2006; Lam et al., 2011; Martin-Ortega, 2012), 

* Corresponding author at: Central Queensland University, Australia. 
E-mail address: megan@stareconomics.com.au (M. Star).  

Contents lists available at ScienceDirect 

Marine Pollution Bulletin 

journal homepage: www.elsevier.com/locate/marpolbul 

https://doi.org/10.1016/j.marpolbul.2021.112870 
Received 30 January 2021; Received in revised form 11 August 2021; Accepted 13 August 2021   

mailto:megan@stareconomics.com.au
www.sciencedirect.com/science/journal/0025326X
https://www.elsevier.com/locate/marpolbul
https://doi.org/10.1016/j.marpolbul.2021.112870
https://doi.org/10.1016/j.marpolbul.2021.112870
https://doi.org/10.1016/j.marpolbul.2021.112870
http://crossmark.crossref.org/dialog/?doi=10.1016/j.marpolbul.2021.112870&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Marine Pollution Bulletin 171 (2021) 112870

2

or the United States, where detailed cost-benefit assessments are 
required under the Clean Water Act (Keiser and Shapiro, 2018). 
Although there is no strict requirement for cost-effectiveness in policy 
settings for the GBR, use has been increasing for two broad reasons. On 
the supply side there is increasing availability of detailed data from 
various trials and management options about the pollutant reductions 
achieved and the costs involved that have allowed more estimates to be 
generated. On the demand side the requirements to meet ambitious 
pollutant reduction targets with set funding caps have focused greater 
attention on where activities should be prioritised. 

Information about costs helps to identify where investments are best 
made and also identifies viable options for landholders to change 
management practices. However, the assessment of costs relating to 
agricultural water management is complex. Keiser et al. (2019) iden-
tifies that estimation of primary costs is difficult, because costs are 
difficult to apportion, cost signals are distorted because of market power 
issues, and taxes and regulations distort real costs. Other problems are 
that it can be difficult to measure physical changes such as pollutant 
reductions, and agricultural systems are often stochastic because of 
climate and market variations (Star et al., 2018). These issues about the 
accuracy of a primary study are often referred to in terms of the reli-
ability of the original estimate. The small number of primary studies 
available in the GBR means that estimates of cost effectiveness are 
routinely transferred between case studies and extrapolated to different 
scales (Star et al., 2018), raising issues of whether there are issues of 
validity generated by the transfer processes. 

The transfer of cost-effectiveness estimates to various situations in 
the GBR are examples of benefit transfer, where a value estimate from a 
primary case study, typically referred to as a ‘study site’, is transferred to 
another similar situation, typically referred to as a ‘policy site’ (Loomis 
and Rosenberger, 2006; Johnston et al., 2015). Different types of 
transfers can be used, including transfers of single unit values, benefit 
functions, or a meta-analysis summarises values across a number of 
studies. It is also possible to transfer the source values as they are, or to 
adjust them to account for variations in time and differences between 
the study and policy sites (Johnston et al., 2015). Substantial effort has 
been devoted to improving the reliability and accuracy of benefit 
transfer methods to value benefits of water quality improvements 
(Bateman et al., 2011; Johnston et al., 2015). While most attention has 
been on transferring benefits, including non-market values, similar 
challenges of ensuring reliability and validity also apply to transfers of 
cost estimates. 

The aim of this paper is review the use of cost-effectiveness estimates 
for improving water quality in GBR catchments, particularly in reference 
to the widespread transfer and reuse of a small number of primary study 
values. The next section outlines the concepts underpinning cost- 
effectiveness, followed in Section 3 by identifying some of the impor-
tant challenges in generating estimates in GBR contexts. An overview of 
the availability and use of cost effectiveness estimates in GBR catch-
ments is provided in Section 4, and an analysis of consistency between 
estimates follows in Section 5. Discussion and conclusions follow in the 
final section. 

2. Cost-effectiveness 

Cost-effectiveness analysis is an applied economic assessment tech-
nique that compares the outputs generated by an action relative to the 
costs involved and is often used to prioritise actions in natural resource 
management (Balana et al., 2011; Duke et al., 2013; Boerema et al., 
2018). It allows different management actions and policy options to be 
evaluated relative to the outcome in terms of the costs involved, which 
are important criteria for policymakers (Balana et al., 2011). Cost- 
effectiveness analysis is simpler to apply than cost-benefit analysis, as 
it avoids the often-contentious monetary valuation of benefits involved 
in the latter approach. However a disadvantage of cost effectiveness 
analysis is that it is often difficult to compare analyses between actions 

because units may vary (Boerema et al., 2018). 
Cost-effectiveness is commonly used for evaluating options to 

improve environmental outcomes (Claassen et al., 2008; Duke et al., 
2013; Wätzold and Schwerdtner, 2005), including pollution reduction 
or improving environmental quality in water bodies (Cools et al., 2011; 
Doole, 2012; Lise and van der Veeren, 2002). In these scenarios, the 
environmental goals have already been identified, so the analyst can 
then concentrate on finding the least cost way of meeting the environ-
mental objectives. While there are some subtle differences in the way 
that cost-effectiveness analysis is conducted, each involves at least four 
key components (Boerema et al., 2018):  

1. Collecting data on the cost of the management measures;  
2. Quantifying the effect of each management measure on the different 

environmental target of interest;  
3. Calculating the average cost of each measure for environmental 

target of interest, and  
4. Selecting the most cost effective strategy. 

Drawing on Rolfe et al. (2018), the cost-effectiveness measure rele-
vant to the pollutant categories for water quality in the Great Barrier 
Reef can be defined in the following way: 

CEabc = Cmi
/

Bpin (1)  

where CE = cost-effectiveness, C = present value of project costs, B =
project benefits, subscripts a, b and c refer to farm, grower and catch-
ment respectively, subscript m refers to the management or intervention, 
i refers to the discount rate used, while subscripts P refer to the pollut-
ants being assessed. Pollutants are typically assessed either as the annual 
change in emissions or the total reductions over the time span being 
considered (n). When the stream of pollutant reductions are uneven over 
time, or differ between projects, then they should be discounted like 
costs to a present value equivalent so that different projects can be 
compared. 

Brouwer and De Blois (2008) identify the practical steps in 
completing a cost-effectiveness analysis as:  

1. Identify the environmental objective/s involved (target situation);  
2. Determine the extent to which the environmental objective/s is/are 

met;  
3. Identify sources of pollution, pressures and impacts now and in the 

future over the appropriate time horizon and geographical scale 
(baseline situation);  

4. Identify measures to bridge the gap between the reference (baseline) 
and target situation (environmental objective/s); 

5. Assess the effectiveness of these measures in reaching the environ-
mental objective/s. Assess the direct (and if relevant indirect) costs 
of these measures;  

6. Rank measures in terms of increasing unit costs; and  
7. Determine the least cost way to reach the environmental objective/s 

based on the ranking of measures. 

Important challenges are to deal with uncertainties around the 
measured costs and their effectiveness and to identify what components 
of costs should be included (Brouwer and De Blois, 2008). While some 
analyses include only direct program costs, Duke et al. (2013) recom-
mend that all costs should be monetised and included in an assessment, 
but suggest that the subset of costs falling on landholders should be 
separately identified because of the direct impacts on program 
participation. 

Other challenging aspects of conducting a cost-effectiveness analysis 
are the measures of the physical changes involved and the integration of 
ecological knowledge with economic analysis (Duke et al., 2013; 
Wätzold and Schwerdtner, 2005), and dealing with the risks and un-
certainties associated with outcomes, particularly when there are 
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variations over temporal and spatial scales (Brouwer and De Blois, 2008; 
Duke et al., 2013; Glenk et al., 2020; Jung et al., 2020). Balana et al. 
(2011) reviewed a range of approaches that can be taken to predict 
outcomes when risk and uncertainty are present, including mathemat-
ical programming, bioeconomic modelling, regression models, Bayesian 
belief networks and simulation and optimization models. 

3. The great barrier reef context 

The GBR covers two-thirds of the coast of Queensland, involving six 
major Natural Resource Management (NRM) regions (Fig. 1). Initially, 
the Great Barrier Reef Water Quality Protection Plan (Reef Plan) iden-
tified priority pollutants and industries to target based on loads entering 

the marine environment (The State of Queensland, 2013). Under Reef 
Plan 2013, a number of targets were set, which include a 20% reduction 
in Total Suspended Sediments (TSS) and a 40% reduction in pesticides 
and nutrients (specifically Dissolved Inorganic Nitrogen (DIN)), and an 
allied target of 90% of land managers to be using best management 
practices by 2018. In 2017, Reef 2050 Plan (The State of Queensland, 
2017) was developed, and a number of catchment specific targets have 
been set along with overarching targets, including a 25% reduction in 
Fine Suspended Sediments (FSS), 20% reduction in particulate nutrient 
loads, 60% reduction in Dissolved Inorganic Nitrogen (DIN), and an 
allied target of 90% of land managers to be using best management 
practices by 2025. 

Changes in the definition of best management practices have also 

Fig. 1. Natural Resource Management regions in the Great Barrier Reef.  
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changed over time; initially, management practices were classified 
relative to their impact on land condition and subsequent water quality 
outcomes ranging from D - dated, or degraded through to medium risk 
(C), low risk (B - best management) and extremely low risk (A – aspi-
rational best practice) (Government, Q, 2013). In 2017-18 these were 
then updated to a water quality risk framework, with practices classified 
as A, B, C, D from “A” very low water quality risk through to “D” high 
water quality risk, with “B” described as current best management. The 
classification of management is also separate from the grazing A, B, C, D 
land condition classification, which is the state of land classified by bare 
ground, pasture species and woody weeds (Karfs et al., 2009; Scarth 
et al., 2006). 

The current progress towards the Reef Plan targets has been tracked 
through the Reef Plan report cards, underpinned by the Paddock to Reef 
Monitoring and Modelling (P2R) program to capture progress towards 
the targets (Carroll et al., 2012). The program monitors adoption and 
ground cover, along with river flows and water quality monitoring sites 
across the GBR catchments. These monitored parameters are collated 
into a Source Catchments model, accounting for the biophysical pa-
rameters and geographical features, which then allow the end-of- 
catchment pollutant reductions to be predicted for different farm man-
agement changes (Carroll et al., 2012). 

To achieve this level of landholder change, the Australian and 
Queensland governments have utilised different policy and program 
mechanisms, including incentives (Bainbridge et al., 2009), extension 
and education (Barbi et al., 2015), market-based instruments (Great 
Barrier Reef Water Science Taskforce, 2016; Rolfe et al., 2011; Smart 
et al., 2016), regulation (Great Barrier Reef Protection Amendment Bill 
2009 (Qld) and conservation management land purchases Fig. 1. 

The application of economic analysis to these major policy and 
funding initiatives in the GBR has been limited. Initial interest focused 
on valuing benefits generated by the GBR, including both use and non- 
use benefits, with De Valck and Rolfe et al. (2018) identifying 48 pri-
mary studies from 1983 to 2019. Multi-criteria analysis was applied to 
prioritise funding allocations to regional areas in the GBR (Cotsell et al., 
2009) and the relative impact of diffuse source pollution across river 
basins using bio-physical, ecological and socio-economic information 
(Greiner et al., 2005). There has also been application of conservation 
planning tools for zoning decisions in the GBR, but consideration of 
socio-economic impacts was very broad brush and not well documented 
(Ban and Klein, 2009). Other areas of focus have been to identify the 
farm level costs of making management changes (East and Star, 2010; 
Rolfe and Gregg, 2015; Van Grieken et al., 2010), mechanism design 
(Greiner, 2015; Rolfe et al., 2011; Rolfe and Windle, 2011; Smart et al., 
2016), adoption issues (Rolfe and Gregg, 2015; Rolfe and Harvey, 2017), 
and investment prioritisation (Alluvium, 2016; Star et al., 2019; Star 
et al., 2015; Star et al., 2018). 

The initial focus of efforts to measure both the benefits and the costs 
of water quality improvements was piecemeal and uncoordinated, 
perhaps consistent with a ‘wicked problem’ where the complexity of 
issues and the ways to evaluate and address them only become apparent 
over time (Peters, 2017). On the costs side, the earlier work was con-
ducted by agronomists and other production specialists, who considered 
what the biophysical effects of practices such as over-grazing and over- 
fertilising would be on both pollutants and farm productivity (Ash et al., 
1995; Landsberg et al., 2002; Roebeling et al., 2009; Mallawaarachchi 
et al., 2002). Over time, economists began to analyse how more risky 
practices such as overgrazing would impact profitability, helping to 
incorporate offsetting impacts of productivity changes into cost- 
effectiveness assessments of management changes (Macleod and John-
ston, 1990; MacLeod and McIvor, 2008). Productivity analysis from 
rangelands grazing systems was used to point out that grazing land in 
better condition, with lower sediment emissions, generated higher 
returns to producers (Macleod and Johnston, 1990; McIvor et al., 1995), 
while analysis in sugarcane production focused on identifying how 
excessive levels of fertiliser application and other outdated management 

practices had sub-optimal economic and ecological outcomes (e.g. 
Schroeder et al., 1998; Thorburn et al., 2005, 2010). Over time there was 
increased evidence of positive economic tradeoffs with improved man-
agement in both grazing lands (MacLeod and McIvor, 2006, 2008) and 
sugarcane production (Thorburn et al., 2003; Bell, 2014).By 2010, 
analysis began to emerge that went beyond costing farm level changes to 
showing the relationships between investment costs, pollutant re-
ductions and production tradeoffs expected from programs and subse-
quent actions designed to improve water quality from agricultural 
operations (East and Star, 2010; Star and Donaghy, 2010; Van Grieken 
et al., 2010, 2013). These estimates were slow to emerge because bio-
economic modelling was required to account for the complex interplay 
between production and environmental outputs when management or 
inputs change, partly because of stochastic impacts of factors such as 
weather and lagged relationships. It took time to develop many of the 
biophysical and agronomic relationships that underpinned those bio-
economic models. There was increased use of production models such as 
GRASP (for grazing) (Whish, 2012) and APSIM (for cropping) (McCown 
et al., 1996) as core components of bioeconomic modelling. 

4. Challenges in estimating cost-effectiveness for pollutant 
reductions in the GBR 

4.1. Elements of costs to include for primary studies 

There are a number of cost elements associated with changing 
management practices or implementing remediation changes. Measures 
of cost-effectiveness may vary because of differences in the elements of 
costs that are included, the period of analysis and the risks considered. In 
addition to the direct financial costs of proposals or management 
changes, other costs that may be considered include additional program 
costs (operation, maintenance and decommissioning costs), additional 
costs incurred by landholders (private capital costs, opportunity costs 
and transaction costs) (McCann et al., 2005), and broader organisational 
costs (program and administration costs) (Coggan et al., 2015; Duke 
et al., 2013).There are often large non-financial costs involved, and costs 
may be non-linear with increases in the quantity of desired changes. The 
primary assessment of these costs is critical to understand the financial 
impacts and the adoption implications and to be transferred for further 
catchment prioritisation. An indicative typology of the types of costs to 
consider is shown in Fig. 2. 

4.2. Consistency of measurement units 

Cost-effectiveness may also vary because of measurement units being 
different across studies. Some projects will measure cost-effectiveness by 
comparing costs to annual reductions in pollutants, whereas others will 
assess costs against total savings in pollutants. Where costs are incurred 
over time, there may be variations in the discounting process to calcu-
late present values. Balana et al. (2011) recommend that costs should be 
expressed as the equivalent annual cost that includes annualised in-
vestment, maintenance, and operational costs for implementing a pro-
posed measure or combination of measures. 

A major challenge in measuring cost effectiveness is to ensure that 
the physical units are assessed in a consistent manner. Star et al. (2018) 
note that assessing the outcomes of agricultural practice changes at a 
catchment scale is complex because it is important to consider not just 
the practice change but also:  

• The effectiveness of the practice change in reducing emissions.  
• The time lags until the change is effective.  
• The proportion of farmers who will adopt the new practice.  
• The transmission losses between the generated pollutant and the 

receiving environment.  
• Risks of variations because of weather and other factors, and  
• Varying effects on the marine environment. 
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In the GBR cost-effectiveness is typically measured as the costs of 
achieving pollutant reductions at the end-of-catchment, but it would be 
more appropriate to assess it as costs relative to changes in the marine 
environment (Star et al., 2018). 

4.3. Timing of costs and benefits 

There are often significant time lags in the GBR between an action 
and the response to that action (Bartley et al., 2020; Mcdowell and 
Laurenson, 2014; Meals et al., 2010), which impacts on the effectiveness 
benefits. In modelling for the GBR report cards and a number of bio-
economic modelling approaches (Alluvium, 2019), once an action has 
been assigned, it is modelled to achieve an immediate reduction. 
However, the more significant the time lag, the more that cost- 
effectiveness is over-estimated (i.e. reported more favourably than it is 
in reality). In contrast, Star et al. (2018) accounted for time delays to 
achieve practice change and pollutant reductions at end-of-catchment to 
differentiate between projects that had faster or slower response times. 
This is separate to the time lags in the ecological response which also 
experience time lag effects (Laukkanen and Huhtala, 2008). Discounting 
is an effective way of standardising variations in cost and benefit streams 
over time, however often only costs are discounted. 

4.4. Risk and uncertainty 

A major challenge in assessing cost-effectiveness is that changes in 
outputs can rarely be predicted with certainty (Christianson et al., 
2013). There are two broad groups of reasons for this. The first reflects 
the heterogeneity in land and water resources, production enterprises 
and management systems (Baumgart-Getz et al., 2012), while the sec-
ond reflect the stochastic impacts of weather variables and biological 
processes (Brouwer and De Blois, 2008). These factors make it difficult 
to predict costs (which is why bioeconomic models are often required) 
and may also impact landholder perceptions about the outcomes of 
management changes. While some studies have incorporated elements 
of heterogeneity (van Grieken et al., 2010) and weather variability (Star 
et al., 2015) into cost-effectiveness measures for the GBR, the treatment 
of these factors is not consistent. 

5. Identifying cost-effectiveness studies in the GBR 

To identify cost-effectiveness studies relevant to the GBR, a formal 

search of published literature was conducted. The Scopus database and 
the Queensland Government Publications database were searched in 
August 2020 along with relevant references of these articles for esti-
mates of cost-effectiveness. The criteria used in the search string con-
tained keywords and boolean operators, including: economics, 
management practice changes, water quality, Great Barrier Reef, grazing 
economics, sugarcane economics, cost-effective. 

The initial search results yielded 157 papers. Papers were evaluated 
through stages to select only those that reported estimates of cost- 
effectiveness (Fig. 3). Each article was then reviewed for relevance to 
the study, and current Reef Plan (2009-2017) policy context. 

There were 20 articles and reports remaining at the end of the se-
lection process that could be classified into three broad categories by 
purpose: costs, evaluation or prioritisation. The evaluation studies were 
largely based at the farm or project scale. One was a case study that 
focused on actual site works (Rust and Star, 2018), others reported 
bioeconomic modelling to summarise farm-level costs for specific 
catchments and industries (Star et al., 2013; Van Grieken et al., 2010), 
and some evaluated the investments and outcomes from previous in-
vestment programs (Rolfe et al., 2018). In contrast, the prioritisation 
studies were focused at larger scales. Five of the prioritisation studies 
involved water quality improvement plans for the Natural Resource 
Management groups in the major catchments, while others pooled 
available data across catchments and industries to generate cost- 
effectiveness estimates so that actions could be prioritised (Alluvium, 

Fig. 2. Example of indicative typology example for gully or streambank cost components over the life of the remediation for incentive mechanisms.  

Fig. 3. Process of selecting studies in the systematic review.  
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2016; Star et al., 2018). 
The 20 studies varied across a large number of factors (Table 1), 

including the scale of the analysis, the pollutants considered, and the 
land uses, mechanisms and management changes involved. The meth-
odology used for assessment, time frames and discount rates also varied. 

The small number of available cost-effectiveness studies explain why 
benefit transfer methods have been widely used to predict costs across 
catchments and to extrapolate up to lager scopes (e.g. Alluvium, 2016, 
2019; Star et al., 2018). There is a substantial literature around benefit 
transfer and protocols to ensure that transferred estimates meet reli-
ability and validity standards and that applications follow appropriate 
guidelines (Johnston et al., 2015, 2020). Using the framework from 
Johnston et al. (2020) the cost-effectiveness studies identified from the 
review process above are considered in the context of (i) value definition 
and valuation context, (ii) theoretical foundation, (iii) selection of study 
sites and information, (iv) data adjustments and selection of transfer 
method, (v) auxiliary data, data analysis and robustness analyses, and 
(vi) aggregation and reporting, reviewing what has been done and 
further improvements that can be made. 

5.1. Value definition and context 

Value definition and context is described by Johnston et al. (2020) as 
the delineation of relevant features such as the policy change in ques-
tion, in this case a pollutant change, the increment of change to be 
valued. Along with the geographic location of the policy site, geospatial 
features of the site, quantities/qualities of substitutes and complements, 
market conditions such as relevant prices and incomes, and the 
composition and size of the affected population. In the context of the 
GBR, the most important value definition relates to the pollutant type, 
with different cost-effectiveness estimates reported for key pollutants 
such as fine sediments, nutrients and pesticides. 

Changing requirements for cost-effectiveness estimates have resulted 
in variations in value definition and value context over time. Initially, 
the value definition was based around the private costs and benefits for 
landholders to change management actions (Star et al., 2011a; Van 
Grieken et al., 2010). This later shifted to evaluating programs from a 
public good perspective (Rolfe and Windle, 2011; Rolfe et al., 2018; 
Smart et al., 2016) and then to allocating funds towards achieving a 
pollution target (Alluvium, 2016, 2019). These different definitions and 
contexts mean that the underlying scope of cost-effectiveness measures 
has changed from private cost tradeoffs to public cost tradeoffs. 

The simplest forms of cost assessment have focused on changes to on- 
farm profits or private operating costs from management changes per-
formed through partial economic analysis. Changes in Gross Margin 
(GM), for example, can be calculated by determining the change in 
variable costs and production implications from an enterprise variation, 
holding most factors such as capital, prices and fixed costs constant (Law 
et al., 2016). These analyses employ farm production models to predict 
the changes in costs or net returns from changes in management actions, 
which can then be combined with estimates of pollutant reduction to 
estimate cost-effectiveness. A model of production on an ‘average’ farm 
in a district is typically assembled, and then changes in inputs are used to 
estimate flow-through effects to operating costs and revenues and net 
returns (Rust et al., 2017; Van Grieken et al., 2010). 

Other evaluation approaches have used data from funding programs 
to generate cost-effectiveness by comparing the costs of the investments 
(both public and private) with measured or modelled reductions in 
pollutants. While these evaluation approaches provide feedback about 
cost-effectiveness at the farm level, they are also useful in evaluating the 
policy mechanism's effectiveness (Rolfe and Windle, 2016). 

5.2. Theoretical foundation 

The differences between theoretical definitions of the value measure 
include if the purpose is to generate public benefits or producer benefits. 

For example, the producer surplus realised by a landholder changing 
management practices or the consumer surplus from the public 
achieving pollutant reductions have different theoretical foundations, 
although both can be derived from changing management practices. 
Johnston et al. (2020) note that pooling divergent welfare constructs 
within valuation meta-data may be useful for analysing a topic, but to 
transfer these estimates between each other results in inconsistent 
analysis and poor prediction of a well-defined economic value (Johnston 
et al., 2020). 

The theoretical foundations of the cost-effectiveness studies 
completed in the GBR have been in a similar context. However, a notable 
finding is that there is only limited consistency in methodology between 
studies, even within sub-groups of studies involving farm level studies 
for a particular pollutant. Table 2 summarises key factors for studies that 
assessed on-farm cost-effectiveness estimates for sediment reduction, 
identifying differences in the types of costs included, the practices 
assessed, and the treatment of discount rates and time periods. These 
methodological variations in conjunction with different theoretical 
frameworks make it difficult to compare the resulting cost-effective 
estimates. 

5.3. Selection of study sites and information 

Depending on the type of analysis to be employed, the study site 
should closely align with policy site values, and for meta-equations, the 
study sites should collectively provide data to calibrate the transfer to 
policy site conditions. Johnston et al. (2020) recommend that for a data 
selection process, four different general steps are: (i) identification of 
potentially relevant sites, (ii) evaluation and screening of studies for 
transfer suitability, (iii) identification of relevant study site data, and 
(iv) supplementation of study site data with information from external 
sources. 

Studies sites can allow for variations to be understood and calibrated. 
As there is such a variety of management actions and strategies available 
to reduce emissions into waterways in the GBR catchments, it is normal 
to report cost-effectiveness measures (cost per pollutant reduction) than 
costs per se. However, transferring these values then presents chal-
lenges. Large variations in pollutant reductions underpin major het-
erogeneity in cost-effectiveness estimates (Alluvium, 2019; Star et al., 
2016a). In the GBR catchments, these variations are caused by hetero-
geneity in geography, soils, climate and waterway transmission, 
amongst other factors, as well as varying scale, time lags in pollutant 
reductions and transmission (Bartley et al., 2020; Darr, 2017; Doriean 
et al., 2020; Packett et al., 2009; Scanlan et al., 1996; Silburn, 2011). 
This means that it is important to understand the context when trans-
ferring estimates of cost-effectiveness. 

There have also been different use of data models for pollutant run- 
offs and efficacies to estimate the pollutant changes underpinning cost- 
effectiveness estimates. Paddock Scale models such as GRASP (Whish, 
2012) and How Leaky (Ghahramani et al., 2020) were initially used to 
capture local case study site characteristics (East and Star, 2010; Star 
et al., 2011b). The Source Catchment Model has been used to assess the 
annual average change in loads over 30 years for a number of man-
agement changes at the sub-catchment level (Star et al., 2018; Alluvium, 
2016). Using an annual average load avoids spikes in loads due to wet or 
dry years, which may not match with the incidence of production and 
opportunity costs. Other important sources of variations in pollutant 
estimates are that the efficiency of practice changes in generating 
pollutant reductions are assumed constant over time, despite limited 
research to justify this (Liu et al., 2017). 

5.4. Data adjustments and selection of transfer method 

Johnston et al. (2020) highlight that the transfer method should be 
selected based on: (a) data availability, (b) steps required to harmonize 
study site estimates with policy site conditions, and (c) the intended uses 
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Table 1 
Results from review of cost-effectiveness studies and parameters.   

Scale Pollutants Landuse Mechanisms Management Data Methodology Time 
Frame 
(yrs) 

Discount 
rate 

Observations 

Costs only 
Eccels and Star 

et al. (2015) 
Paddock Scale DIN Sugarcane Incentives Makay/ 

Whitsunday 
C-B Investment Analysis 10 7 1 

Poggio and 
Page (2010) Paddock Scale DIN Sugarcane Incentives Burdekin Delta ABCD Investment Analysis 10 7 1 

Poggio and 
Page (2010) Paddock Scale DIN Sugarcane Incentives Burdekin BRIA ABCD Investment Analysis 10 7 1 

East and Star 
(2010) 

Paddock Scale DIN Sugarcane Incentives Mackay/ 
Whitsunday 

ABCD Investment Analysis 10 6 1 

Law et al. 
(2016) 

Paddock Scale DIN Sugarcane Incentives Mackay/ 
Whitsunday 

C-B Investment Analysis 10 6 1 

East and Star 
(2010) Paddock Scale TSS Grazing Incentives 

Mackay/ 
Whitsunday ABCD Investment Analysis 20 5 2 

Bass et al. 
(2013) 

Paddock Scale DIN,PS11 Sugarcane Incentives 
P2R Management 
Practices 
2014 

ABCD Index Approach 1 N/A  

Prioritisation 

Alluvium 
(2016) Catchment DIN, FSS 

Sugarcane, grazing, gully 
streambank, wetland, land use 
change,urban storm water 
management 

Incentives, Extension, 
Regulation 

P2R Management 
Practices 
2014 

Secondary -Derived 
from other studies 

Bio-economic 
modelling 10 7 94 

Alluvium 
(2019). 

Catchment DIN, FSS 
Sugarcane, grazing, streambank, 
gully, land use change, bananas 

Incentives 
P2R Management 
Practices 2018 

Secondary - Modelled 
Bio-economic 
modelling 

5, 15,30 7 98 

Star et al. 
(2016b) 

Neighbourhood 
catchment TSS Grazing, gully, streambank Incentives, Extension 

P2R Management 
Practices 2014 

Primary -past 
projects and 
Secondary-modelled 

Bioeconomic 
Modelling 5 7 192 

Star et al. 
(2013) Paddock Scale TSS Grazing 

Incentives 
Opportunity costs Land condition 

Secondary- GRASP 
Modelled 

Bioeconomic 
Modelling 20 6 360 

Beher et al. 
(2016) 

Paddock Scale TSS Sugarcane, grazing 
Incentives 
(opportunity costs not 
accounted) 

P2R Management 
Practices 2014 

Primary Bioeconomic 
modelling 

1 0 296 

Beverly et al. 
(2016) 

Paddock Scale TSS,DIN, 
PS11 

Sugarcane, grazing Incentives, Extension, P2R Management 
Practices 2014 

Secondary Bioeconomic 
modelling 

10 6  

Evaluation 
Rolfe et al. 

(2018) Paddock Scale 
TSS, PSII, 
DIN Sugarcane Incentive, Extension 

P2R Management 
Practices 2014 Primary Index Approach CE 1 N/A 337 

Rust and Star 
(2018) 

Paddock Scale TSS Grazing Incentives 
Specific 
Remediation 
approaches 

Primary 
Investment Analysis 
Bioeconomic 
modelling 

10 7 6 

Star and 
Donaghy 
(2010) 

Paddock Scale TSS Grazing Inventive Land Condition 
Secondary -GRASP 
Modelling 

Bioeconomic 
Modelling 20 5 960 

van Grieken 
et al. (2014) Paddock Scale DIN Sugarcane Incentives 

P2R Management 
Practices 2014 Secondary - Modelled 

Bioeconomic 
Modelling 10 6 432 

Whitten et al. 
(2015) 

Sub-Catchment 
Scale DIN Sugarcane 

Regulation 
Incentives, Extension 

P2R Management 
Practices 2014 

Secondary - 
Modelling 

Bioeconomic 
Modelling 7 6 63 

Star et al. 
(2015) 

Sub-Catchment 
Scale 

TSS Grazing Incentives, Extension Land Condition Secondary - Modelled Bioeconomic 
Modelling 

7 6 411 

Smith (2015) Paddock Scale TSS, PSII, 
DIN 

Sugarcane Incentives, extension P2R Management 
Practices 2014 

Primary Bioeconomic 
Modelling 

7 10 910  
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of the resulting information. Step (c) is, in part, why there are such 
different approaches to ranges and approaches to studies completed in 
the GBR to date. 

Johnston et al. (2020) suggest the following questions be considered 
in the transfer of values. How similar are study and policy sites across 
relevant dimensions? Is there a single study that provides information 
sufficient to transfer the study site estimate directly, perhaps with ad-
justments (e.g. income), to the policy site? Alternatively, are there 
several study sites providing values that, when averaged and perhaps 
adjusted, provide an accurate and credible estimate of the policy site 
value? Does the weight of evidence on site similarity support a value 
transfer over other transfer methods that allow for greater calibration of 
study site estimates to match policy site conditions? 

Prioritisation studies such as van Grieken et al. (2014), Whitten et al. 
(2015), Alluvium (2016, 2019) and Star et al. (2018) have generally 
calculated marginal abatement cost curves in order to summarise and 
prioritise the information from multiple transfers. However, there is a 
significant variation in the quality and treatment of the data that un-
derlies these cost summaries. Van Grieken et al. (2014) essentially 
generate all their cost-effectiveness estimates from their own studies 
through a mix of farm economic analysis and detailed farm modelling 
and then summarise these into marginal abatement cost curves. In 
contrast, Alluvium (2016) use transfer approaches to harvest values 
from other primary studies and then combine them in a modelling 
framework at a sub-catchment scale to generate predicted marginal 
abatement cost curves. 

Cost heterogeneity refers to the variation in costs that are presented 
in studies. A notable outcome of the assessment is that most studies 
report large variations in cost-effectiveness. For example, van Grieken 
et al. (2014) reported that farm enterprise models showed that DIN 
abatement costs for medium-sized cane farms in the Mackay Whit-
sunday region ranged across multiple potential management changes 
from -$7.90/kg to +$16.70/kg. Rolfe et al. (2018) analysed the cost- 
effectiveness generated by Reef Rescue grants, showing that while the 
first quartile of grants generated DIN reductions for $1.17/kg, costs were 
much higher for the second, third and fourth quartiles at $19, $55 and 
$203/kg, respectively. 

Some of the heterogeneity in estimated cost-effectiveness stem from 
underlying variation in the management actions considered and the size 
of the enterprise involved. This is demonstrated in Table 3, where factors 
underpinning the studies analysing the costs of changing from C to B 
nutrient management categories are summarised, and then cost- 
effectiveness estimates are reported in Fig. 4. There is a large varia-
tion in the cost estimates, but it is difficult to identify the extent to which 
these are driven by variations between management actions, enterprises 
or regions and where the data adjustments based on the number of study 
sites influence the range in costs. 

5.5. Auxiliary data, data analysis and robustness analyses 

Auxiliary data that is consistently available across study sites and 
that can enhance transfer accuracy should be used when available 
(Johnston et al., 2020). Auxiliary data of this type is frequently derived 
from GIS data layers on a myriad of environmental, landscape and 
population characteristics, thereby providing a source of consistently 
measured and often quality-controlled information that may be applied 
to all observations in the metadata. 

Any overall assessment of water quality improvement costs for the 
GBR relies on the transfer and reuse of cost estimates simply because of 
the small number and limited diversity of primary studies. However, 
there are likely to be significant errors involved in both the cost transfer 
and cost aggregation stages, which are currently not assessed in these 
studies. Some indication of the extent of those potential errors can be 
shown by comparing the results of Star et al. (2018), and Alluvium 
(2019) for sediment reductions across the GBR as different auxiliary 
data has been employed for risks, large effects, and marine exposure Ta

bl
e 

2 
D

iff
er

en
ce

s 
be

tw
ee

n 
co

st
-e

ffe
ct

iv
e 

st
ud

ie
s 

fo
r 

se
di

m
en

t r
ed

uc
tio

ns
.  

St
ud

y 
D

is
co

un
t r

at
e 

&
 

tim
e 

(y
rs

) 
Co

st
-e

ffe
ct

iv
en

es
s 

m
ea

su
re

 
Pr

ac
tic

e 
as

se
ss

ed
 

Co
st

s 
in

cl
ud

ed
 

Th
eo

re
tic

al
 fr

am
ew

or
k 

N
or

th
 Q

ue
en

sl
an

d 
D

ry
 

Tr
op

ic
s 

(2
01

6)
 

N
ot

 s
ta

te
d,

 2
0 

$4
.6

8/
t 

Re
m

ed
ia

l a
ct

io
ns

 fo
r g

ul
ly

 re
co

ve
ry

, m
an

ag
in

g 
ri

sk
 o

f 
er

os
io

n 
as

so
ci

at
ed

 w
ith

 li
ne

ar
 fe

at
ur

es
. 

Ca
pi

ta
l, 

m
ai

nt
en

an
ce

, 
op

po
rt

un
ity

 
Pr

od
uc

er
 s

ur
pl

us
 

Ru
st

 a
nd

 S
ta

r 
(2

01
8)

 
7%

, 1
0 

$6
52

.4
4/

t/
ye

ar
 

Re
m

ed
ia

l a
ct

io
ns

 fo
r g

ul
ly

 r
ec

ov
er

y 
(4

0%
), 

m
an

ag
in

g 
ri

sk
 o

f e
ro

si
on

 a
ss

oc
ia

te
d 

w
ith

 li
ne

ar
 fe

at
ur

es
 (

30
%

) 
Ca

pi
ta

l, 
op

po
rt

un
ity

, 
m

ai
nt

en
an

ce
, 

M
ix

ed
- P

ro
du

ce
r 

Su
rp

lu
s 

(o
pp

or
tu

ni
ty

 c
os

t)
 a

nd
 c

on
su

m
er

 s
ur

pl
us

(g
ra

nt
 fu

nd
s)

 

A
llu

vi
um

 (
20

16
) 

7%
, 1

0 
$2

68
/t

 
Ch

an
gi

ng
 m

an
ag

em
en

t p
ra

ct
ic

e 
Ca

pi
ta

l, 
op

po
rt

un
ity

, 
pr

og
ra

m
 

M
ix

ed
- P

ro
du

ce
r 

Su
rp

lu
s 

an
d 

co
ns

um
er

 s
ur

pl
us

 (
gr

an
t f

un
ds

) 

Ro
lfe

 a
nd

 W
in

dl
e 

(2
01

6)
 

6%
–7

%
, 5

–2
0 

$2
59

/t
 

Ch
an

gi
ng

 m
an

ag
em

en
t p

ra
ct

ic
e 

Ca
pi

ta
l a

nd
 p

ro
gr

am
 

Co
ns

um
er

 S
ur

pl
us

 

St
ar

 e
t a

l. 
(2

01
3)

 
6%

, 2
0 

$4
/t

 to
 $

42
1/

t/
 

ye
ar

 
La

nd
 c

on
di

tio
n 

an
d 

st
oc

ki
ng

 r
at

e 
Ca

pi
ta

l, 
op

po
rt

un
ity

 
M

ix
ed

- P
ro

du
ce

r 
Su

rp
lu

s 

St
ar

 a
nd

 D
on

ag
hy

 
(2

01
0)

 
6%

, 2
0 

-$
83

5.
08

/t
 - 

$2
5,

59
4.

46
/t

 
La

nd
 c

on
di

tio
n 

an
d 

st
oc

ki
ng

 r
at

e 
Ca

pi
ta

l, 
op

po
rt

un
ity

, 
ex

te
ns

io
n,

 p
ro

gr
am

. 
M

ix
ed

- P
ro

du
ce

r 
Su

rp
lu

s 
an

d 
co

ns
um

er
 s

ur
pl

us
 (

gr
an

t f
un

ds
) 

St
ar

 e
t a

l. 
(2

01
8)

 
7%

, 7
 

$3
.0

9/
t-$

23
98

/t
 

Su
ga

rc
an

e 
an

d 
gr

az
in

g 
al

l s
ub

-c
at

ch
m

en
ts

 a
ll 

m
an

ag
em

en
t l

ev
el

 c
ha

ng
es

. 
Ca

pi
ta

l, 
op

po
rt

un
ity

, 
m

ai
nt

en
an

ce
, 

M
ix

ed
- P

ro
du

ce
r 

Su
rp

lu
s 

an
d 

co
ns

um
er

 s
ur

pl
us

 (
gr

an
t f

un
ds

) 

A
llu

vi
um

 (
20

19
) 

7%
, 5

 
$2

8/
t-$

49
2,

67
4/

t 
Su

ga
rc

an
e,

 b
an

an
as

, g
ra

zi
ng

 a
ll 

su
b-

ca
tc

hm
en

ts
 a

ll 
m

an
ag

em
en

t l
ev

el
 c

ha
ng

es
. 

Ca
pi

ta
l, 

op
po

rt
un

ity
, 

ex
te

ns
io

n,
 p

ro
gr

am
. 

M
ix

ed
- P

ro
du

ce
r 

Su
rp

lu
s 

an
d 

co
ns

um
er

 s
ur

pl
us

 (
gr

an
t f

un
ds

)  

M. Star et al.                                                                                                                                                                                                                                     



Marine Pollution Bulletin 171 (2021) 112870

9

(Table 4). Both studies assess the same actions and rely on cost transfer 
to source multiple primary studies, but then have different value 
adjustment processes and incorporate different auxiliary data. The 
resulting cost estimates are very different, with the results from Star 
et al. (2018) five times higher than those from Alluvium (2019). 

The incorporation with supplementary data can help explain the 
variation in costs noted on project sites in the GBR (Beher et al., 2016) 
and highlight why targets may take longer to achieve than the policy 
guidelines or why adoption levels may be lower than expected (Star 
et al., 2019). These aspects are critical for consideration in value 
transfers. 

5.6. Aggregation and reporting 

The key aspect of the reporting is the documentation of all key 
components of the transfer exercise. This should include reporting on 
the key study and policy site characteristics, data used in the transfer, 
transfer procedures, analyst assumptions and resulting value predictions 
in line with a credible scientific investigation (Johnston et al., 2020). 
This has been completed inconsistency across studies in the GBR; with 
some approaches aggregating to adoption levels, others have aggregated 
to pollutant reduction targets. This results in confusion regarding the 
value definition, the theoretical framework, the time period and per unit 
change. 

6. Discussion and conclusion 

This paper has reviewed the availability of studies assessing the costs 
of generating water quality improvements into the Great Barrier Reef. 
These are normally presented as the cost-effectiveness of pollutant re-
ductions, with some evaluation and prioritisation studies summarising a 
variety of cost-effectiveness estimates into marginal abatement cost 
curves. In many cases, the prioritisation studies do not report any pri-
mary assessments of cost-effectiveness, instead of harvesting and 
extrapolating data from other primary costing studies through benefit 
transfer processes. We reviewed the relevant literature in the context of 
benefit transfer processes to highlight an improved approach and sum-
marised several key findings as follows. 

First, the number of primary studies is limited. While some studies 
report a large number of cost estimates across different factors such as 
management changes, farm sizes and catchments, there are also a 
number of scenarios where no cost estimates are available. This limits 
the understanding of both landholder costs and public costs and there-
fore the ability to analyse either the private or public trade-offs is 
missing. This limited number of primary studies results in challenges to 
transfer cost values for prioritisation across catchments. Poor evaluation 
also hinders an improved understanding of maintenance costs time 
frames, effectiveness, lag-effects and risks and uncertainties impacting 
the cost-effectiveness and limiting future prioritisation and program 
design. 

These risks and uncertainty are often not reported in studies. Eval-
uation of past projects and programs would allow an understanding of 
their role on both the costs and effectiveness, providing an improved 
understanding of scale impacts and allowing a more diverse collection of 
primary studies to provide insights in the range of costs and outcomes of 
different treatments based on different biophysical and management 
approaches. This would also provide more context regarding the value 
definitions and adjustments required to transfer values for prioritisation. 

Second, there is limited consistency in the way that different esti-
mates of cost-effectiveness are constructed. There are many variations in 
the type of costs included if it is based on consumer or producer surplus, 
the calculation of pollutant reductions, and the adjustments made to 
account for factors such as project efficiency, time lags and delivery 
rates. The interactions between these variables are critical for further 
program design and project evaluation. These issues mean that care 
needs to be taken in comparing cost estimates between studies. Better 

Table 3 
Studies assessing the private (landholder) costs and benefits of shifting from 
medium risk (C) management to low risk (B) nutrient management.  

Catchment Primary source Capital equipment 
assessed for changing 
management 

Farm size (ha) 

Wet 
Tropics 

Whitten et al. 
(2015) 

Most farmers would 
already have suitable 
equipment although 
there would be a capital 
cost of approximately 
$10,000 for those who 
did not, along with some 
reduction in fertiliser 
application 

Small (<100 ha), 
medium (100 ha-200 
ha) and large (>200 
ha) 

Wet 
Tropics Terrain (2015) 

Stool splitter fertiliser 
box * costing based on  
van Grieken et al., 2014 

Small (<100 ha), 
medium (100-250 
ha); and large(250 
ha) 

Wet 
Tropics 

Rolfe and 
Windle (2016) 

Modification of variable 
rate stool splitting sub- 
surface fertiliser 
applicator 

Small (150 ha), 
medium (250 ha), 
large (930 ha) 

Wet 
Tropics 

Catalyst 
Growers 
Forum (2015) 

Modify stool split 
fertiliser box 

A 120 ha grower 

Wet 
Tropics 

Van Grieken 
et al. (2014)* 
capital items 
costed 2012 

Stool splitter fertiliser 
box, harvester 
modifications 

Small (<100 ha), 
medium (100 ha-200 
ha) and large (>200 
ha) 

Burdekin Smith (2015) 

Zonal ripper/rotary hoe; 
wavy discs; double-disc 
open planter (stool 
splitter fertiliser box); 
GPS, flow rate monitor, 
harvester modifications 

BRIA maximum up to 
3500 ha, average 
140 ha and median 
94 ha and the delta is 
max 2000 ha, 
average 98 ha, and 
median 83 ha 

Burdekin 
Rolfe and 
Windle (2016) 

Wavy disc cultuers, GPS, 
bed former, variable rate 
fertiliser box 

Small 30 ha, medium 
297 ha, large 1059 
ha 

Burdekin Whitten et al. 
(2015) 

We understand that most 
farmers would already 
have suitable equipment 
although there would be 
a capital cost of 
approximately $10,000 
for those who did not, 
along with some 
reduction in fertiliser 
application 

Small (<100 ha), 
medium (100 ha-200 
ha) and large (>200 
ha) 

Burdekin 
Poggio and 
Page (2010) 

Stool splitter fertiliser 
box 

Farm size 120 ha 

Burdekin 
Poggio and 
Page (2010) 
BRIA 

Stool splitter fertiliser 
box bed renovator Farm size 240 ha 

Burdekin 
Van Grieken 
et al. (2014) 

Stool splitter fertiliser 
box, harvester 
modifications 

Not actually 
specified assumed 
small (<100 ha), 
medium (100 ha-200 
ha) and large (>200 
ha) 

Burnett 
Mary 

van Grieken 
et al. (2014) 

Change fertiliser box and 
tillage equipment, zonal 
till implements 

75 ha, 125 ha, 250 ha 

Mackay Rolfe and 
Windle (2016) 

Nutrient management 
plans, variable rate 
controller 

42 ha, 226 ha, 490 ha 

Mackay 
East et al. 
(2012) 

Bed renovator, GPS, 
modification to double 
disc planter. 

240 ha 

Mackay 
East et al. 
(2011) Variable rate controller 

50 ha,150 ha and 
300 ha 

Mackay 
Law et al. 
(2016) 

GPS, bed renovator and 
ripper, rate controller, 
SMS software, widen 
existing equipment 

150 ha  
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protocols about calculation of cost-effectiveness would limit this vari-
ability and provide a framework for further program assessments and 
design. 

Third, the processes used to reuse and extrapolate primary studies to 
fill data gaps in policy sites are very poorly documented. There are likely 
to be significant errors involved in transferring and extrapolating cost 
estimates from primary and paddock scale studies to regional or whole 
GBR levels, and over different time periods to achieve different objec-
tives, but currently, these are not recognised or understood. The com-
parison of values across multiple studies confirms that there are 
considerable variations in the actions to improve water quality. An 
important driver of this cost heterogeneity, apart from differences in 
projects and biophysical processes, are highly varied impacts on farm 
productivity and opportunity costs. Therefore, a better understanding of 
cost-effectiveness is important to improving prioritisation processes and 
program efficiency and increasing the interest of farmers and adoption 
rates for improved management practices. 

In conclusion, this review has provided clear consideration for future 
studies in capturing the cost elements that are required for the different 
uses at a primary study level. Capturing these and transparently 
reporting them in primary studies allows for cost transfers to be applied 
more accurately by the analyst and to understand the value definition, 
capacity to make data adjustments, use of auxiliary data and approach to 
aggregate and report the analysis. Further work is required to develop a 
framework for cost-effectiveness in across the GBR catchments, this 
application would be required to be developed in conjunction with 
policymakers, which is robust, transparent and rigorous. The framework 
would also have to consider the different benefits and further time lags 
for reef health as opposed to only water quality outcomes these are 
required to be identified and considered in future studies, and how dual 
pollution sources would be dealt with in the framework (Balana et al., 
2011). 
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