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Abstract. The age of whole otoliths from barramundi (Lates calcarifer) obtained from the southern Gulf of Carpentaria
were estimated using Fourier transform near-infrared (FT-NIR) spectroscopy. Otoliths from 1716 barramundi collected in
2006, 2009 and 2012–2015 were used in this study. Partial least-squares regression models (PLS-R) and multiple linear

regression models (MLR) were developed from the diffuse reflectance spectra and the age was obtained from traditional
sectioned otoliths. Calibration models were built up over consecutive years (2012–2015) by using a subset of the samples
and used to predict the age of the remaining samples and samples from the following year. Results suggest that when

seasonal (temporal) variability is incorporated into the calibrationmodel, FT-NIR has the ability to predict barramundi age
(validation R2 ranged from 0.73 to 0.78; RMSEP ranged from 6.92 to 7.64 months). The predicted age class was within
1 year of the reference age in over 96% of the samples. Thesemodels were also able to predict the age of otoliths from 2006
and 2009, which were retrieved from long-term storage (validationR2 ranged from 0.77 to 0.84; RMSEP ranged from 8.66

to 10.88 months). The results from this study have shown the potential for barramundi from the southern Gulf of
Carpentaria to be aged quickly and accurately by using FT-NIR.
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Introduction

Data such as fish length, age and gender are collected annually as
part of routine biological monitoring by many agencies. These

data are often used to develop stock-specific parameters and for
quantifying mortality and general population dynamics, which
assist with determining the stock status of individual fisheries
(Campana and Thorrold 2001; Ono et al. 2015; Streipert et al.

2019). Estimating the age structure of fish populations is an
important component of sustainable fisheries management. This
information is critical for age-structured stock assessments to

identify whether a fishery is sustainable or if it is depleting. The
most commonmethod of ageing fish is to count the opaque bands
in the ear bones, known as otoliths. The otoliths are primarily

constructed of calcium carbonate and protein, which form con-
centric layers as the fish grows (Degens et al. 1969; Campana
1999; Hale and Swearer 2008). The periodicity of these con-

centric rings may be related to daily, seasonal or annual cycles
and are thought to occur as a result of changes in many factors,
including photoperiod, temperature, seasonal feeding and

growth rates (Radtke and Shafer 1992; Secor et al. 1995;
Chang and Geffen 2013). In many species, an otolith is age
estimated by blocking it in resin, cutting a thin section (,250–

500 mm), and then the section is mounted on a microscope slide
for viewing under amicroscope (Secor et al. 1992;Winkler et al.
2019). Although this approach is currently the most accepted
method, it requires practice and experience to obtain accurate

age estimates, is labour intensive, time consuming and expen-
sive. Many otoliths are read several times, either by the same
reader or independent readers, to verify the determined age. It is

estimated that over 60 000 otoliths are collected and aged in
Australia each year (Robins et al. 2015), New Zealand ages
between 30 000–40 000 annually (Moore et al. 2019),whereas in

the federally managed waters of Alaska, over 352 000 ages were
estimated between 2009 and 2018 (Helser et al. 2019).

The traditional methods of ageing otoliths by counting the

growth rings is known to contain an element of subjectivity
(Campana 1999; Cardinale and Arrhenius 2004). By developing
a method that has increased efficiency and improved
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repeatability, large savings with respect to time, resources and
money could bemade. One possiblemethod is Fourier transform

near-infrared spectroscopy (FT-NIR). Sir William Herschel is
credited by many as discovering near-infrared (NIR) spectros-
copy in 1800 (Herschel 1800), but it was not used for quantita-

tive analyses until the 1960s (Norris and Hart 1963). In more
recent decades, FT-NIR has been used extensively in the food
processing (Ozaki et al. 2003; Walsh et al. 2020), agricultural

(Reeves et al. 1999), industrial and pharmaceutical sectors
(Morisseau and Rhodes 1995; Burns and Ciurczak 2001). NIR
spectroscopy is a non-destructive technique for determining
chemical compositions through applying NIR light to the

product which causes molecular vibrations. These vibrations
occur at certain frequencies that coincide with the molecular
grouping in the product being assessed (Murray and Williams

1987). As a secondarymethod of determination, and through the
application of chemometric techniques, these responses to NIR
light can be converted into simple calibration models relating to

the property of interest (Blanco and Villarroya 2002). The
developed calibration model can then be utilised to predict the
property of interest of new samples. NIR spectroscopy hasmany
advantages, including speed of sample throughput, a high level

of repeatability and requires little sample preparation.
Recently FT-NIR has shown promise in ageing otoliths of

saddletail snapper (Lutjanusmalabaricus;Wedding et al. 2014),

barramundi (Lates calcarifer) and snapper (Pagrus auratus;
Robins et al. 2015), eastern Bering Sea walleye pollock (Gadus
chalcogrammus; Helser et al. 2019) and red snapper (Lutjanus

campechanus; Passerotti et al. 2020a, b). FT-NIR has also been
used to successfully age the vertebrae of hammerhead (Spyrna
mokarran) and spot-tail sharks (Carcharhinus sorrah; Rigby

et al. 2016), and to age the dorsal fin spines, vertebrae and fin
clips of deepwater sharks (Squalus magalops, Squalus montal-
bani; Rigby et al. 2014). Although these studies relating NIR
spectra to the traditionally derived age estimate or increment

count of the otolith or vertebrae have shown potential, there are
limitations preventing the broad uptake of FT-NIR.

A possible limitation is the unknown explicit relationship

between the FT-NIR spectra and the traditionally derived age.
This relationship has been attributed to calcium carbonate
(CaCO3) and protein being deposited as the otolith is formed

(Hale and Swearer 2008). Fish otoliths are composed of typi-
cally 90–96% CaCO3, 0.01–10% organic matrix (protein
complex) and ,1% non-organic trace elements (Campana
1999). However, the overall elemental composition of the

otolith is influenced by many factors such as growth rate,
seasonal cycles, environmental stress, salinity, temperature,
food availability and reproductive stress (Radtke and Shafer

1992; Tabouret et al. 2011).
Many fish species have a complex life history, whichmay be

expected to influence the ability of NIR spectroscopy to predict

age with any precision. Barramundi are protandrous hermaph-
rodites, generally maturing as males at 2–5 years, and then
becoming female at 5–7 years (Davis 1982; Saunders et al.

2018). Spawning occurs in saltwater, however barramundi can
also survive in freshwater and estuarine habitats (Dunstan
1959), with the duration of time spent in the different aquatic
habitats varying among individuals and among years (Milton

et al. 2008; Crook et al. 2017). Freshwater flow is also known to

influence the growth rates of barramundi, most likely because
of fish exploiting improved access to temporary habitats and

increased abundance of prey species (Robins et al. 2006;
Milton et al. 2008). The irregular movement of barramundi
among habitats and resulting changes in the water salinity are

known to have an influence on the otolith microchemistry
(Crook et al. 2017).

NIR spectroscopy may not be suitable to age otoliths for all

fish species. As NIR is a secondary method of determination,
any inaccuracies associated with the traditional method of
ageing, will perpetuate through the NIR calibration model
building process. Otoliths from some species cannot be accu-

rately aged using increment counts (Beamish 1979). However,
age validation studies on barramundi by Stuart and McKillup
(2002) and Mc Dougall (2004) both suggested that sectioned

otoliths can be used to predict the age of this species.
As part of the research by Robins et al. (2015), FT-NIR was

applied to barramundi otoliths collected from the Archer River

catchment in the southernGulf of Carpentaria fishery in 2012. In
that study, calibration models to predict the age of barramundi
from otoliths were developed using samples collected in only
one fishing season (February to October). The results presented

in the present study are an extension of those from Robins et al.
(2015) through the investigation of the temporal effects on
barramundi ageing results from otoliths collected from 6 years

over a 9-year period from the southern Gulf of Carpentaria. Age
estimating calibration models were developed over four conse-
cutive years (2012–2015) and were, subsequently, used to

predict the age of 200 otoliths from the Archer River catchment
that had been in long-term storage (2006 and 2009). The effect
of predicting the age of samples for one fishing season using a

calibration model developed using samples from a different
season is discussed, along with the benefits of including tempo-
ral variability from multiple seasons. The overall advantages of
using NIR spectroscopy in the ageing process is also discussed.

Materials and methods

Sample selection

Barramundi saggital otoliths were collected from fish donated
by commercial and recreational fishers and fish processors from

the southern Gulf of Carpentaria genetic stock (Fisheries
Queensland 2020; Department of Primary Industries and Fish-
eries 2005) in 2006, 2009, 2012, 2013, 2014 and 2015. The
samples obtained in 2006, 2009 and 2012 are those used in the

study by Robins et al. (2015). Where possible, both sagittal
otoliths were collected, with one being used for traditional age
estimation and the second being used to obtain the NIR spectra.

As these fish were from wild stock and not of known age, strict
protocols and quality control measures were employed by the
laboratory to ensure a high quality of age predictions for all

samples (Fisheries Queensland 2020). Reference age estimation
was based on the traditional method of increment counts from
sectioned otoliths (350 mm) examined under a microscope, but

also taking into account the collection date, edge assessment and
nominal birth date (Fisheries Queensland 2020). This allowed
the age to be expressed in months or assigned to age class
(number of birthdays a fish is assumed to have had) or age group

(maximum age a fish would reach during a sampling season).
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Datawere collected from a total of 1716 otoliths in this study.
Sample numbers and reference ages varied among the years

(Table 1), with the median age ranging from 50 to 87 months.
The distribution of the reference ages within each year was
predominately skewed to the right, with a higher proportion of
younger fish being sampled.

The management of the southern Gulf of Carpentaria fishery
imposes a 120 cm maximum total length catch limit, which is
usually reached by 11 years of age. As the samples used in this

study were donated by commercial and recreational fishers and
fish processers, there were few samples for older fish. Only 2%
of otoliths across all years had a reference age greater than 120

months; therefore, the samples included in this research were
restricted to otoliths with a reference age of 120 months or less.

The animal remains used in this study and that of Robins
et al. (2015) were donated and the life and death of all animals

were not altered as a result of the subsequent scientific use of the
remains. Therefore, under Queensland Government policy, no
animal ethics committee approval was required (https://www.

business.qld.gov.au/industries/farms-fishing-forestry/agricul-
ture/livestock/animal-welfare/animals-science/activities/dead-
animals).

NIR spectra acquisition

Robins et al. (2015) found that calibration statistics for models
based on barramundi otoliths collected from the Archer River

catchment in the southern Gulf of Carpentaria stabilised after 6
months of storage. For consistency, all samples from 2012 to
2015 were scanned,12months after the otoliths were collected
and are referred to as ‘fresh’ samples. The otoliths collected in

2006 and 2009 were not scanned until 2013. These otoliths are
referred to as ‘historical’ samples, and after removal from the
fish, they were dried and then stored at 258C until the NIR

spectra was collected.
The whole dried otolith from each barramundi that was not

processed for traditional ageing, was scanned using a Bruker

Multi-Purpose Analyser (MPA), FT-NIR spectrophotometer
(Bruker Optics, Ettlingen, Germany; Bruker Optics operating
software: OPUS v.6.5), with an integrating sphere in diffuse

reflectance mode. The full wavelength range was from 12 500 to
3597 cm�1 and in obtaining each sample spectrum, 16 scans at a
resolution of 8 cm�1 were collected and averaged. For consis-
tency, all otoliths were scanned with a concave-up orientation

(Fig. 1). A typical absorbance spectrum for a barramundi otolith
from the southern Gulf of Carpentaria is shown in Fig. 2.

Data analysis

Calibration models were developed to predict the reference age
of otoliths on the basis of the FT-NIR spectra using partial least-

squares regression (PLS-R) and multiple linear regression
(MLR). The PLS-R models used several wide bands of wave-
lengths, whereas theMLRmodels were developed using a small
number of individual wavelengths. Prior to model development,

all spectra were pre-processed using a Savitzky-Golay (SG)
smooth (25-point, second-order polynomial moving average)
and a first derivative transformation (25-point SG smooth,

second-order polynomial) to enhance the spectral features.

Table 1. Summary of samples available for data analysis

s.d., standard deviation; IQR, inter-quartile range

Year Number of otoliths Age (months) Mean age (months) (s.d.) Median age (months) (IQR) Total length (mm)

2006 100 27–135 80.8 (21.8) 87 (12) 570–1070

2009 100 26–146 59.1 (24.0) 50 (24) 610–950

2012 100 28–148 63.0 (20.4) 64 (24) 610–960

2013 404 17–247 63.1 (24.1) 61 (14) 590–1210

2014 553 28–230 59.3 (25.6) 52 (27) 538–1216

2015 459 28–174 58.9 (16.5) 52 (14) 570–1182

Fig. 1. Concave-up orientation of an otolith on the integrating sphere

window of the Bruker MPA.
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Fig. 2. Typical absorbance spectra for a barramundi otolith sampled from

the southern Gulf of Carpentaria.
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For both PLS-R and MLR, calibration models were devel-
oped from fresh samples (2012–2015) and built up over conse-

cutive years. A base calibration model involving 2012 samples
was initially developed and was used to predict the age of all
fresh samples collected in 2013. Owing to the small number of

fresh samples with spectra available in 2012, all samples less
than 120 months were included in the development of the
calibration models. The calibration model was then updated

by including 100 fresh samples from2013. The samples not used
to develop the calibration model are referred to as the validation
set. The samples from 2013, which were added to the calibration
set, were selected on the basis of the total length of the fish. The

range of total lengthswas divided into classes of size 20mmand,
where possible, similar numbers of fish were selected randomly
from each size class. This approachwas adopted because (1) it is

expected that the distribution of the total lengths, and subse-
quently the fish ages, would be closer to a box-car distribution
than a non-uniform distribution and (2) in future, the age of the

samples would not be known until they are aged using tradi-
tional techniques; hence, selection would need to be based on
another attribute such as total length.

A calibration model was then developed using samples from

2012 and 2013 and this was used to predict the age of the 2013
validation set and all the 2014 fresh samples. This process was
again repeated until the calibration model included samples

from 2012 through to 2015. This combined fresh samples model
was then used to predict the age of the 2013–2015 validation set.
The combined fresh calibration model was also used to predict

the age of historical samples collected in 2006 and 2009. No
samples from these 2 years were included in the development of
the calibration models. This systematic approach was taken to

investigate the effect of predicting the age of samples for a
different fishing season (year) and to highlight the benefits of
including temporal (annual) variability.

Initially, all calibration models were developed using the

same wavelength regions in the PLS-R and the same individual
wavelengths in the MLR. The combined 2012–2015 calibration
model was revised by selecting new wavelengths that reflect the

variability introduced into the calibration set.
Segmented cross-validation, which involves deleting seg-

ments (or groups) of samples, was used to assess the PLS-R

calibration models. Due to the smaller sample size for the 2012
model, full (leave-one-out) cross-validation was used. Leverage
correction was used to assess the MLR models. Model perfor-
mance was based on (1) the adjusted coefficient of determination

(R2) for the calibration and validation sets, (2) root mean-square
error of cross-validation (RMSECV), (3) root mean-square error
of prediction (RMSEP), (4) bias (average difference between

predicted and reference values), (5) standard deviation ratio
(SDR) calculated as the ratio of the standard deviation to
RMSECV or RMSEP (Walsh et al. 2004), and (6) the ratio of

performance to inter-quartile range (RPIQ) calculated as the ratio
of the inter-quartile range to RMSECV or RMSEP (Bellon-
Maurel et al. 2010). For skewed distributions, the standard

deviation is not a suitable measure to describe the spread of the
population and it is recommended to use the inter-quartile range
(Bellon-Maurel et al. 2010). As the majority of validation sets
follow a skewed distribution, the RPIQ is considered an appro-

priate measure of prediction accuracy. In general, better model

performance is indicated by larger values of R2, smaller RMSE
values, and larger SDR and RPIQ values.

For models of stock assessment and population dynamics,
the age class is the most important estimate of age. The age class
for each sample in the PLS-R and MLR validation sets was

calculated using the approach of Robins et al. (2015), by
rounding down the predicted age from decimal years to a whole
number. For example, a fishwith a reference age of 7.0 years and

predicted age of 7.9 years falls into the same age class of 7 years.
Contrary to this, a fish with a reference age of 7.0 years and
predicted as 6.9 years, will be placed in age class 6 years for the
NIR predicted age, not age class 7 years.

The relative bias was investigated and calculated as the
difference between the FT-NIR predicted age and the reference
age (predicted age – reference age). The average percentage

error (APE) between the two methods was calculated using the
R package ‘FSA’ (Ogle et al. 2020). All spectroscopic data
analysis was performed using the chemometrics software pack-

age ‘The Unscrambler’ v.10.5 (Camo, Oslo, Norway).

Results

Results for the PLS-R and MLR calibration models and subse-
quent predictions are shown in Tables 2 and 3 respectively. Two
samples were excluded from the 2012 dataset as they had a

reference age of 148 months, which was outside the pre-
determined range of the calibration model (#120 months).
The predicted ages for fresh samples in 2013 obtained from the

PLS-R and the MLR calibration models based on the 98 otoliths
in the 2012 fresh sample dataset performed extremely poorly.
This is most likely to be due to the lack of spatial and temporal

variability across the samples in the calibration model. Of the
393 samples in the corresponding validation set, the PLS-R
resulted in 275 with a deviation greater than 30 months
(2.5 years). The deviation is estimated as a function of the

overall model error, sample leverage and the sample residual
variance (DeVries and Ter Braak Cajo 1995). The predicted age
associated with a large deviation is considered unreliable and it

would be recommended that these samples be aged using tra-
ditional techniques to verify the prediction.

By adding samples from different years into the calibration

model, the biological and temporal variability was increased.
Tables 2 and 3 show that this led to an improvement in the
predictive ability of the models. The final calibration model
included approximately equal numbers of fresh samples from

2012 to 2015. Three latent variables were used in the PLS-R
model, resulting in a validation R2 of 0.76 with RMSEP of 7.29
months when predicting the 2013–2015 validation set. The

MLR model produced similar validation statistics with an R2

of 0.73 and RMSEP of 7.64 months.
The deviation associated with the 1083 predicted ages from

the 2012–2015 PLS-R model had a median of 5.4 months. Only
14 predictions had a deviation greater than 30 months, with the
traditional ages for these samples ranging from 27 to 99 months.

In comparison, the 2012 calibration model that predicted the
2013 samples resulted in 70% of the predicted ages having a
deviation greater than 30 months, suggesting unreliable age
predictions. Similarly, the MLR predictions of the 2012–2015

validation set had predicted ages with a median deviation of 7.9
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months and the same 14 samples had a deviation greater than 30
months. These samples included three from 2013, seven from

2014 and four from 2015.
The combined 2012–2015 models were also used to predict

the ages of historical samples collected in 2006 and 2009. The

PLS-R and MLR models performed similarly with RMSEP of
9.69 and 10.38 months and validation R2 of 0.79 and 0.77
respectively.

Predictions from validation data showed considerable scatter

around the 1:1 line for both the PLS-R (Fig. 3a) and MLR
models (Fig. 3b). This level of scatter becomes less important
when the ages are expressed as age classes. Figure 4 shows

histograms of the reference ages and the predicted ages of the
validation sets for the combined 2012–2015 PLS-R and MLR
models. Predicted ages are shown for each year in the validation

set (2013, 2014, 2015), as well as the predicted ages combined.
Samples from only the validation set are included in these
figures.

The difference between the predicted age class and the
reference age class (predicted age class – reference age class)

provides a measure of the relative bias. Of the 1083 samples in
the combined 2013–2015 validation set, 691 (63.8%) were

predicted by the PLS-R model to be in the same age class as
the reference age and 366 (33.8%) were predicted to be in
the adjacent age class, either one less than or one greater than the

reference age (Fig. 5a). For the MLRmodel, 638 (58.9%) of the
samples in the validation set were predicted in the correct age
class, with a total of 1042 (96.2%) within one age class of the
reference age class. The largest bias was a single otolith in the

validation set that had a reference age of 8 years and was
predicted by the MLR model to have a reference age of 4 years.
The PLS-Rmodel also under-estimated the age of this sample by

predicting the age as 6 years. The percentage agreement for the
predicted age class was lower than that obtained by two readings
by using traditional methods of a set of quality assurance

samples. The routine biological monitoring program aged up
to 800 fish annually from the southern Gulf of Carpentaria
stock for the years included in this study. Of these, 200 otoliths

each year were reread by the same reader for bias and
precision testing of increment count and edge category

Table 2. PLS-R model statistics for models developed from a generic set of wavelength regions

Statistics include the number of latent variables (LV); number of samples (n); standard deviation (s.d.); adjusted coefficient of determination (R2); root mean-

square error of cross validation (RMSECV); root mean-square error of prediction (RMSEP); standard deviation ratio (SDR); and ratio of performance to

interquartile range (RPIQ)

Calibration data Validation data LV n s.d. R2 RMSECV RMSEP Bias SDR RPIQ

2012 3 98 16.5 0.89 5.48 –0.06 3.0 4.4

2013 3 393 15.9 0.72 8.36 2.08 1.9 1.4

2012–2013 3 198 17.9 0.89 6.02 0.01 3.0 4.0

2013 3 293 14.4 0.84 5.77 0.32 2.5 2.1

2014 3 538 17.7 0.65 10.43 –7.64 1.7 2.5

2012–2014 4 298 19.0 0.87 6.93 0.01 2.7 3.6

2013–2014 4 730A 15.5 0.80 7.05 0.26 2.2 2.8

2015 4 455 14.3 0.69 8.07 –0.37 1.8 1.7

2012–2015 3 398 18.9 0.84 7.65 –0.01 2.5 3.4

2013–2015 3 1083 14.7 0.76 7.29 0.35 2.0 1.9

2006, 2009 3 188 21.5 0.79 9.69 6.28 2.2 3.8

ATwo outliers were removed.

Table 3. MLR model statistics for models developed from a generic set of wavelength regions

Statistics include the number samples (n); standard deviation (s.d.); adjusted coefficient of determination (R2); root mean-square error of cross validation

(RMSECV); root mean-square error of prediction (RMSEP); standard deviation ratio (SDR); and ratio of performance to interquartile range (RPIQ)

Calibration data Validation data n s.d. R2 RMSECV RMSEP Bias SDR RPIQ

2012 98 16.5 0.87 5.89 –0.03 2.8 4.1

2013 393 24.1 0.00 45.41 –44.41 0.4 0.3

2012–2013 197 17.9 0.86 6.62 –0.01 2.7 3.6

2013 293 25.6 0.75 7.22 –0.06 2.0 1.7

2014 538 25.6 0.69 9.88 –3.58 1.8 2.6

2012–2014 296 18.9 0.86 6.99 –0.003 2.7 3.5

2013–2014 731 26.1 0.77 7.47 –0.42 2.1 2.7

2015 357 17.5 0.71 7.71 –2.58 2.1 1.8

2012–2015 397A 18.8 0.83 7.80 –0.01 2.4 3.3

2013–2015 1083 24.4 0.73 7.64 –0.38 1.9 1.8

2006, 2009 188 25.3 0.77 10.38 0.92 2.1 3.6

AOne outlier was removed.
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(Fisheries Queensland 2020). For the years in this study, the
percentage agreement between the age class resulting from the

first read and the re-read was more than 92% for each year.
The relative bias of the models was also investigated by

considering age expressed in months. For the combined 2012–
2015 validation set, the PLS-R and MLR models predicted 687

(63.4%) and 669 (61.8%) of the 1083 samples within�6months
of the reference age, and 987 (91.1%) and 975 (90.0%) within
�12 months respectively (Fig. 5b).

The APE between the predicted age class and the tradition-
ally derived age class for the validation samples was 4.6% and
5.4% for the generic PLSR andMLRmodels respectively. These

values are higher than theAPE of age class for the re-reads of the
quality assurance samples for the biological monitoring pro-
gram testing, which was ,1% for each year used in this study.

The PLS-R wavelength regions and MLR individual wave-

lengths used in the calibration models in Tables 2 and 3 were
revised for the combined 2012–2015 calibration models. It
could be expected, with the addition of samples from different

years, that an adjustment to wavelengths used in the calibration
models would be required. Summary statistics for the revised

combined years calibration model and resulting validation set
predictions are shown in Table 4. A minor reduction of less than

1 month was observed in the RMSECV and RMSEP for both
the PLS-R and the MLR calibration and prediction models. The
RMSEP for the PLS-R and MLR models from predicting the
historical samples improved by more than 1 month. Although

this was only a minor improvement, it highlighted the impor-
tance of regular model maintenance.

The histogram of the overall reference ages and the valida-

tion set predicted ages from the revised combined 2012–2015
PLS-R and MLR models followed a trend similar to that of the
original generic model (Fig. 6a), as does the histogram of bias

(Fig. 6b). The 8-year-old sample that was incorrectly aged by
4 years using the generic MLR, was under-estimated by 2 years
in the revised MLR model.

Within predictions from the revised PLS-R calibration, 681

(62.9%) of the 1083 samples in the validation set were classified
as being in the same age class as the reference age class, with a
total of 1056 (97.5%)within one age class. The revisedMLRage

class predictions were similar, with 679 (62.7%) of the 1083
samples in the validation set classified in the same age class as
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Table 4. Model statistics for models developed from a revised set of wavelengths

Statistics include the number of latent variables (LV); number of samples (n); standard deviation (s.d.); adjusted coefficient of determination (R2); root mean-

square error of cross validation (RMSECV); root mean-square error of prediction (RMSEP); standard deviation ratio (SDR); and ratio of performance to

interquartile range (RPIQ)

Model Calibration data Validation data LV n s.d. R2 RMSECV RMSEP Bias SDR RPIQ

PLS-R 2012–2015 4 397A 18.9 0.86 7.11 –0.005 2.7 3.7

2013–2015 4 1083 14.7 0.78 6.97 –0.21 2.1 2.0

2006, 2009 4 188 21.5 0.84 8.66 4.57 2.5 4.3

MLR 2012–2015 7 397A 18.9 0.86 6.94 0.0003 2.7 3.7

2013–2015 7 1083 14.7 0.78 6.92 0.02 2.1 2.0

2006, 2009 7 188 21.5 0.83 8.73 3.70 3.1 4.2

AOne outlier was removed.
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the reference age class and a further 379 (35.0%) in the age class
one different from the reference age. The APE was 4.7% for the
two revised models.

Both the revised and generic MLR calibration models
included seven individual wavelengths. The seven wavelengths
selected in the revised model in Table 4 were in the region from
7255 cm�1 to 4140 cm�1, which is a region similar to those

selected for the generic models in Table 3, from 7460 cm�1 to
3930 cm�1. The main spectral regions selected in the combined
2012–2015 PLS-R calibration models were similar for the

generic and revised models (Fig. 7), although the region from
7190 to 6640 cm�1 was not in the generic PLS-R model.

Discussion

The potential use of FT-NIR to predict the age of otoliths has
been demonstrated in several recent publications (Wedding

et al. 2014; Helser et al. 2019; Passerotti et al. 2020a, 2020b),
including for barramundi (Robins et al. 2015). The results found
in the present study, using barramundi otoliths from multiple

seasons, are comparable to those of previous studies and to the
traditional method of aging barramundi through reading sec-
tioned otoliths. The generic PLS-R combined 2013–2015 cali-

brationmodel predicted 97.6%of samples in the validation set to
be within�1 year, and the genericMLRmodel predicted 96.2%
within �1 year. These results are comparable with the barra-

mundi age validation study of Mc Dougall (2004) who assigned
97% of samples to within 1 year of the known-age class and
obtained an R2 of 0.89 between the estimated age from the
sectioned otoliths and the known ages. Robins et al. (2015)

applied FT-NIR to age ‘fresh’ barramundi caught in 2012 under
120 months of age from the Gulf of Carpentaria and central
Queensland. The validation statistics for the Archer River

catchment in the southern Gulf of Carpentaria were R2 ¼ 0.88
and RMSEP ¼ 5.9 months. The FT-NIR-predicted age classes
were the same as the reference age class for 73% of samples and

within �1 year for 94% of samples. Helser et al. (2019)
who applied FT-NIRS to eastern Bering Sea walleye pollock

(Gadus chalcogrammus) reported amodel combiningmore than
1500 samples from 2 years having R2 ¼ 0.89, with RMSEP ¼
0.96 years. Helser et al. (2019) also reported that 75% of the
FT-NIR-predicted ages were the same as the results from tra-
ditional ageing techniques, with this increasing to 94% for ages

within�1 year. Similar results were obtained byWedding et al.
(2014) who developed models for predicting increment counts
of saddletail snapper (Lutjanus malabaricus) collected over a

post-wet and post-dry seasons. They achieved validation sta-
tistics of R2 ¼ 0.94 with RMSEP ¼ 1.54 increments. The per-
centage agreement for age class in the study of red snapper
(Lutjanus campechanus) by Passerotti et al. (2020a) was,45%

for the combined region models, increasing to nearly 90% of
samples within �1 year of the reference age.

As the fish used in this study were not of known age, the

predictive ability of the calibration models can be only as good
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as the accuracy of the ages derived from the traditional methods.
An age validation study by Stuart and McKillup (2002) on

barramundi with known ages from 1 to 5 years found that
estimated age from sectioned otoliths produced an APE of
5.8%. Mc Dougall (2004) obtained an APE of 3.2% for barra-

mundi with known ages up to 8.6 years. The ageing laboratory
used in the present study, had a between read APE of,1%with
percentage agreement of .92% of age class for a set of quality

assurance samples within each year. In the present study, the
APE between the FT-NIR-predicted age class and the tradition-
ally derived age class was 4.6% and 5.4% for the generic PLSR
and MLR validation sets respectively, and 4.7% for the valida-

tion sets in the two revised models. An APE below 5% is
considered acceptable in reading accuracy and obtainable by
experienced readers (Robertson andMorison 1999). The accept-

ability of the observed difference between the FT-NIR-
predicted age and the traditionally derived age will depend on
the purpose for which the age is required.

Some differences in the predicted age and the reference age
may be attributed to the method of converting the predicted age
in months to an age class. In this study, the predicted age in
decimal years was truncated (rounded down) such that the

integer of the predicted age corresponded with the age class.
Alternative options are possible, such as conventional rounding,
as used by Passerotti et al. (2020a), or taking into account the

capture and spawning dates (birth date). This is an area that
requires further research and may lead to improved FT-NIR age
class predictions.

Studies by Wedding et al. (2014), Robins et al. (2015),
Helser et al. (2019) and Passerotti et al. (2020a) all showed
indications that, for some fish species, the predicted age of older

otoliths was under-estimated. In all of these studies, the sample
size for older fish was limited. Wedding et al. (2014) found that
saddletail snappers with more than 18 increment counts were
under-estimated, and models developed by Helser et al. (2019)

showed a positive bias for eastern Bering Sea walleye pollocks
that were greater than 10 years of age. Similarly, models
developed by Passerotti et al. (2020a) under-estimated the ages

of the oldest red snapper otoliths by as much as 22%. There was
also a general tendency for the older barramundi otoliths to be
under-estimated by Robins et al. (2015); however, in the same

study, this positive bias was not observed for Gulf of St Vincent
snapper. The under-estimation of older barramundi was also
observed in the present study. From amodelling perspective this
may suggest that separate models are required for young and old

fish. The biological process that may be contributing to the
under-estimation of older-age fish by FT-NIR is unknown. The
deposition of chemical elements in the otolith is influenced by

both intrinsic and extrinsic factors (Chang and Geffen 2013).
Passerotti et al. (2020a) suggested that light penetration may be
a factor in the under-estimation of the older samples. Further

research is required to understand the changes in otolith micro-
chemistry that occur as the fish ages and how this may interact
with NIR spectra.

Given the complex life history of many species, such as
barramundi, and the effect of the environmental conditions on
the otolith composition, it is not unexpected that many of the
previous studies using NIR to age otoliths have shown the

presence of spatial and temporal variability (Wedding et al.

2014; Robins et al. 2015; Helser et al. 2019; Passerotti et al.
2020a). The presence of spatial and temporal variability leads to

the need for ongoing model maintenance. Periodic model
maintenance is an important component in the use of NIR
models because they are not perpetual models (Mercader and

Puigdoménech 2014). The process of model maintenance
should not be viewed as a disadvantage of the method. Model
maintenance is a form of continually improving knowledge on

the factors influencing spectral variability and optimising the
modelling process. The spectral and reference data used to
develop the NIR calibration models may vary over time due to
temporal effects, genetic changes, sample preparation changes,

refinements in the reference method and spectrometer effects
such as instrument drift and changes in the signal to noise ratio.
These changes can have an impact on the validity of the

calibration models to predict samples from different seasons
or locations.

Two forms of model maintenance were performed in this

study. First, the calibration dataset was updated by adding 100
new samples from the subsequent season, across the range of total
lengths. This is a simple approach that ensures that the samples
being added to the calibration set have a uniform distribution

(Fearn 1992), and does not require expertise with sophisticated
mathematical techniques. Research has been conducted regard-
ing alternate methods to select new samples to add to the

calibration model, such as applying a weighting scheme to the
samples (Stork and Kowalski 1999; Capron et al. 2005),
Kennard-Stone algorithms (Kennard and Stone 1969), ridge

regression (Kalivas et al. 2009; Zhang et al. 2019) and Mahala-
nobis distance (Shenk et al. 2001). These methods can play an
influential role in the predictive ability of the calibration model

when only a few new samples are available (Stork and Kowalski
1999). This may be the situation when samples are expensive to
obtain or from a limited resource. In this study, the traditional
ages of several hundreds of fish were available. The addition of

100 new samples each year did not negatively affect the predic-
tive ability of the model, nor substantially increase the number of
latent variables, suggesting that an adequate number of samples

was included in the model maintenance process. Further inves-
tigations using alternative sample selection methods may deter-
mine that fewer samples are required, or that by including more

samples in the model maintenance process, the predictive ability
improves. For some species, model maintenance may not be
required on an annual basis, but at a different frequency.

The second form of model maintenance undertaken was to

revise the wavelength selection used in the generic models. The
generic and revised combined 2012–2015 PLS-R calibration
models had similar wavelength regions, although the region

from 7190 to 6640 cm�1 was an additional region in the revised
model. Helser et al. (2019) identified wavelengths in the 6821–
5269 and 5022–4171 cm�1 region to be most informative for

ageing eastern Bering Sea walleye pollock otoliths. These
spectral regions correspond to –CH, –OH and –NH functional
groups (Helser et al. 2019). The regions selected in the generic

PLS-R calibration models, as shown in Fig. 7, fall within these
wider spectral regions.

Amajor benefit of NIR spectroscopy is the speed of through-
put. Using traditional ageing techniques, a sample of 500

barramundi otoliths takes experienced fishery monitoring
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technicians from the laboratory used in the present study,40 h
to read. This includes the technician training and testing against

a reference collection so as to qualify to read and re-read the
quality assurance samples. Robins et al. (2015) reported that
more than 80 otoliths can be scanned per hour using a Bruker

Multi-PurposeAnalyserwith an integrating sphere and up to 180
samples per hour using a 30-sample carousel. In 6 h of actively
reading ages, Helser et al. (2019) suggested that 360 walleye

pollock otoliths could be assessed by FT-NIR, compared with
just 35 by using traditional techniques. Similarly, Passerotti
et al. (2020a) reported that a few hundred red snapper otoliths
could be assessed using the traditional sectioning method per

week, but the 1357 otoliths used in the study could be aged by
FT-NIR in 34 h.

Further benefits are that little preparation of the otolith is

required before obtaining the spectra. The traditional method is
time-consuming, with considerable preparation of the otolith
required before being assessed by a trained reader, and in many

situations, readmore than once or bymultiple readers. To obtain
spectra from the whole otolith, it needs only to be cleaned and
dried, thus saving time and resources. The otolith also remains
whole, allowing it to be used for other research purposes.

It is not intended to promote NIR spectroscopy as a complete
replacement method for ageing otoliths. It is recommended that
the traditional ageing of samples continues to ensure that the

NIR calibration model remains robust when additional temporal
and spatial spectral variability is identified. However, a major
benefit of using NIR spectroscopy to age otoliths is that only a

subset of the otoliths collected each year needs to be aged using
traditional methods. The remaining samples can be aged quickly
using the calibration model and, for many agencies, this could

result in a large saving in resources, time and money.
The results obtained in this study have shown the use of

FT-NIR to age barramundi from the southern Gulf of Carpentaria
genetic stock. Barramundi have a complex life history, which

may have been expected to negatively influence the ability of
FT-NIR to predict age on the basis of otolithmicro-chemistry. By
incorporating temporal variability into the calibrationmodels, the

influence of these external factors can be reduced. This is very
important as it is known that the prediction accuracy becomes less
sensitive to changes when more variability, biological and

temporal, is built into the model (Bobelyn et al. 2010).
The results from this study have shown that barramundi from

the southern Gulf of Carpentaria could be assigned an age class
towithin�1 year of the reference age classmore than 96%of the

time. This suggests that FT-NIR spectroscopy, used in collabo-
ration with traditional ageing methods, may be a suitable
method to predict the age of barramundi with vastly reduced

resources. However, further research is required to improve the
overall precision and understand why there is a tendency in
multiple species for the otoliths from older fish to be under-

estimated. A study using known-age barramundi has the poten-
tial to improve the calibrations and would be beneficial to
uncovering the true accuracy of FT-NIR spectroscopy for

ageing otoliths.
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