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Foreword by the authors

When this investigation was conceived in 2003-2004, the Australian chicken meat industry was
undergoing changes and facing challenges including transition to sheds with tunnel ventilation; rapid
growth of the industry with the need for appropriate land parcels to develop new farms; increase in
farm size; urbanisation pressures; and the onset of an extended period of drought.

There was a shortage of appropriate odour and dust emission rate data and little understanding of the
diurnal, seasonal, batch and inter-farm variability (especially for modern shed designs and
management practices but also changes in odour analysis techniques). High quality odour and dust
emission rate data was required to improve planning for new and expanding farms by increasing the
confidence in odour modelling, improve the calculation of separation distances and respond to
community concerns. The measurement of volatile organic compounds (VOCs) was added to the
project to improve understanding of the origins of the odour; and the identification of key odorants. In
the longer term, these will be required to develop science based, targeted, odour mitigation strategies.

At the inception of the project, there was limited understanding about the many variables that
influence the emission of odour and dust from meat chicken sheds and few researchers had extensive
practical experience collecting samples from this highly complex biological/mechanical system.
Consequently, sampling and analytical methods evolved and were refined during this investigation.

Odour, dust and VOC emissions were measured at a small selection of broiler farm; each managed
slightly differently according to prevailing conditions and the preferences of the integrator and farm
owner/manager. Shed emissions varied diurnally, seasonally, throughout each batch and between
farms and much of the variability could not be readily explained by the conditions recorded on each
sampling day. The commencement of extended drought in 2003 potentially introduced another factor
into this investigation, which is the use of drought affected feed grains. Whilst impossible to quantify
the effect of drought affected grains on odour emissions, it is possible that lower and more variable
grain quality may have at times altered the composition of the bird faeces and contributed to feed
digestibility problems (and subsequent issues with litter conditions). It would be reasonable to assume
that at different farms and different points in time, specific odour emission rates may be different from
what we observed. Future measurement of emissions from broiler farms (assuming they are conducted
in an appropriate manner) should be considered on their own merits and not automatically tied to the
emission rate data included in this report.

Six years after the commencement of this project, and many hundreds of odour, dust and VOC
measurements later, the research team are proud to have contributed to advancing knowledge of meat
chicken farm emissions and the refinement of associated measurement techniques. It is believed that
the findings of this investigation will support the ongoing and sustainable development of meat
chicken farms thus ensuring the ongoing supply of quality and affordable chicken meat.



Executive summary

Odour, dust and non-methane volatile organic compound (NMVOC) emissions were measured at
tunnel ventilated broiler (meat chicken) farms over several production cycles in Queensland and
Victoria. Emission rates were found to vary between farms due to numerous management and
environmental factors. The variability in emissions prevented the development of a robust odour
emission model; however, the emissions data that has been collected will improve scientific
understanding and support improved planning of new broiler farms.

NMVOC:s are the building blocks of odour—mixtures of specific odorous NMVOCs combine to form
what people recognise as poultry odour—and influence its character and strength. NMVOC
composition of broiler odour samples was analysed to provide knowledge that will be vital for the
strategic development of odour mitigation strategies and real time monitoring.

Instrumental methods to continuously monitor odour, dust and in-shed environmental conditions were
trialled during this project. A prototype artificial olfaction system (AOS) was able to successfully
measure in-shed odour concentration and enabled continuous measurement of odour emissions when
combined with ventilation rate data. AOS technology could one day form the basis of a continuous
odour monitoring system for enhanced research of broiler shed odour emissions. Sensor networks
were used to monitor in-shed conditions such as temperature, humidity, ammonia, airspeed and
relative concentrations of dust and VOCs were found to be generally unsuitable for use in poultry
sheds and further development of sensors, sensor placement and network design will be required.

The successful completion of this project has been made possible through the collaboration of four
research teams and co-ordination by the Australian Poultry CRC.

Background

Odour and dust emitted from broiler (meat chicken) farms have the potential to impact on nearby
residences, communities and the environment. Impacts due to odour and dust have been recognised by
the poultry industries and regulatory authorities as a cause of concern. Consequently, new and
expanding farms undergo rigorous assessments to ensure that emissions will not cause unnecessary
impacts.

Impact assessments require accurate data for these emissions to enable modelling and prediction of
impacts. Most of the published odour emission data for poultry production is no longer relevant due to
recent changes in poultry production systems (new building designs, new management practices, new
breeds and new diets) and advances in emission measurement practices including new olfactometry
and dust measurement standards, improved sample collection methods and advancements in
alternative measurement technologies such as electronic sensing arrays and gas chromatography-mass
spectrometry/olfactometry (GC-MS/O).

This study has been undertaken to build a database of odour, dust and non-methane volatile organic
compound emissions for modern intensive poultry farming in Australia. This data will improve
estimation of emissions, improve prediction of impacts and enable improved planning for new poultry
farms. Increased knowledge of the chemical composition of poultry odour (through NMVOC
assessment) will be critical for identifying the origins of the odour and developing mitigation
techniques.

Objectives

The project had the following objectives:
o Development of a database of odour and dust emissions from tunnel ventilated broiler sheds.
o Development of a dust and odour emissions model for representative broiler sheds based upon
management factors.



e Examining the relationship between dust and odour emissions, in particular, the importance of
dust as a carrier of odour.

o Development and testing of cost effective instrumentation to measure dust, odour and other
production factors on commercial broiler farms.

o Application of an artificial olfaction system to continuously monitor odour emissions.

e ldentification of specific poultry shed non-methane volatile organic compounds and odorants.

e Quantification and evaluation of specific poultry shed odorants.

Methods

Eleven tunnel ventilated broiler farms were included in this project. At three of the broiler farms;
odour, dust and VOC emissions were measured at approximately weekly intervals. At the
remaining eight broiler farms, only odour was measured and only on one day when bird mass in
the shed was maximum.

In total, 434 odour samples were included in the odour emission rate database:

o 349 samples from broiler farms

o 85 additional samples from broiler farms for method development (diurnal study, dust and
odour relationship, and odour decay)

o 34 samples were discarded due to excessive olfactometry variability (6.2% of total collected)

Semi-continuous dust measurements were conducted on 50 separate days at 3 broiler farms.

The majority of odour, dust and VOC samples were collected from within a temporary flexible
duct that was attached to one of the tunnel ventilation fans at each farm.

Odour concentration was measured using dynamic olfactometry to AS/NZS 4323.3:2001. Two
laboratories were used, and comparative testing was conducted between the laboratories to ensure
comparability of odour concentration measurement.

Dust was measured using a DustTrak™ and an aerodynamic particle sizer (APS) and reported in
terms of mass concentrations (PMyo and PM,5), particle number concentrations and count median
diameters (mid-point of the number size distribution). Isokinetic sampling techniques were used.

VOCs were collected using sorption tubes for subsequent analysis with a GC-MS/O.

Ventilation rate was estimated by measuring in-shed or fan airspeeds, or by calculating the flow
rate through each active fan using manufacturer supplied fan flow rate date (and adjusting for shed
static pressure), which was selected as the preferred method.

Two instrumental approaches were used to monitor in-shed conditions and odour concentration—
wireless sensor networks and an artificial olfaction system (AQOS).

The differences in emissions between single use and partially reused litter were assessed at one
farm.

All odour samples were analysed within 8.5 hours of collection.

Results/key findings

Odour emission rates

Odour emission rates need to be individually considered along with environmental and in-shed
conditions at the time of measurement (for example ambient temperature, ventilation rate, litter
moisture content, bird age and total bird live weight). Emission rates were normalised according to
the number of birds in the shed or the total live weight to enable comparison with published
emission rate data.

Broiler odour emission rates are summarised in the following table.
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Units Full measured range Range for majority of data
ou/s 2070-135,375 5000-105,000
0u/s/1000 birds placed 68-5187 100-3000
0ou/s/1000 birds (while sampling) 86-6335 100-5000
ou/s/kg (total live weight) 0.18-5.13 0.25-2.5

Broiler farm odour emission rates were highly variable. OER varied by farm, bird age, bird
weight, season, time of day, ventilation rate, bird weight distribution and litter moisture. Not all
variability could be explained by these factors: consequently other factors were likely to be
involved.

Diurnal variation in odour emission was observed. Changes to temperature, ventilation rate and
bird activity (presumably coinciding with light programs) may have contributed to the variable
emissions.

‘Morning flush’ of odorants accumulated during the night was not observed.
OER increased with bird weight up to the day of the first pickup—commonly day 35.
OER dropped sharply following each pickup.

There was no clear relationship between OER and shed-average litter moisture content. Odour
emission rates measured in this study did not increase with increasing moisture content.

Odour emission rates were observed to vary throughout the day (20 hour continuous period);
however the majority of samples were collected between 5:30 am and 2:00 pm, consequently the
majority of the measured odour emission rates may not be representative of the daily spread of
odour emission rates (evident from the AOS results). Few, if any, olfactometry measurements
corresponded with periods of the day when odour emission rates would be minimal. These times
are also when poor odour dispersion conditions are most likely to occur.

Odour emission rates before bird placement (on fresh litter) and after litter removal were found to
be lower than when birds were present in the shed. Odour emission rates decreased once birds
were removed from the shed.

Some of the measured odour emission rates were suspected of being unrealistic due to the
ventilation rate being manually increased above ‘normal’ levels (given the ambient temperature
and batch age) by the research team while attempting to measure the full range of possible odour
emission rates. These data points have been identified in the data set and should be disregarded.

Odour emission rates tended to be higher during summer, compared to winter, presumably due to
greater ventilation requirements.

Odour emission rates were similar for broiler farms located in Queensland and Victoria; however,
this conclusion is based on a very limited number of farms that may not represent other farms in
each of the respective states.

Reusing litter in broiler sheds did not appear to increase odour emissions; however, weather, litter
moisture content and stocking density were slightly different between the single use and partially
reused batches, which confounded the analysis of the data.

Odour emission rates measured at eight broiler farms in SE Queensland were found to be slightly
different at each of the farms, even though shed design and management were similar. Weather
may have been a contributing factor, but it is likely that odour emission rates will be highly
variable between farms.

Odour emission rate measurements from three farms were used while attempting to develop an
odour emission model with stepwise regression techniques. Unfortunately, a robust model was not
able to be developed.
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¢ Relationships between odour emission and individual factors:

¢ In-shed odour concentration generally tended to decrease with increasing ventilation rate,
presumably because of dilution.

e Odour emission rate generally tended to increase with ventilation rate.
There was no clear relationship between shed-average litter moisture content and odour
emission rate. Maximum odour emission rates tended to occur when shed-average litter
moisture content was 26-40%.
There was no clear relationship between odour emission rate and live weight density.

e There were only weak relationships between odour emission rate and ambient temperature,
even though ventilation rates tended to increase with ambient temperature.

It is unlikely that any of the aforementioned factors will influence odour emission rate in isolation with
other factors. Consequently, variability in odour emission rate must be considered in conjunction with
all contributing factors.

Dust emission rates

Dust emission rates need to be individually considered along with environmental and in-shed
conditions at the time of measurement (for example ambient temperature, ventilation rate, litter
moisture content, bird age and total bird live weight). Emission rates were normalised according to
the number of birds in the shed or the total live weight to enable comparison with published
emission rate data.

o Broiler dust concentration and emission rates are summarised in the following table.

Dust fraction Units Full measured range | Range for majority
of data
mg/m?3 (concentration) 0.04-1.62 0.1-0.8
PM, mg/s (ER) 1.8-158.5 5-50
mg/s/1000 birds placed (ER) 0.04-3.90 0.1-1
mg/s/kg (total live weight) (ER) (0.08-2.05) x 107 (1-8) x 10
mg/m3 (concentration) 0.001-0.515 0.02-0.14
PM,e mg/s (ER) 0.08-50.3 1-10
: mg/s/1000 birds placed (ER) 0.003-1.24 0.025-0.25

mg/s/kg (total live weight) (ER)

(0.02-1.84) x 10"

(0.4-1.6) x 10"

Particle number

particles/m? (concentration)
particles/s (ER)
particles/s/1000 birds placed (ER)
particles/s/kg (total live weight) (ER)

(0.13-4.34) x 10’
(0.015-2.34) x 10°
(0.045-6.3) x 10’
(0.03-7.45) x 10*

(0.4-2.5) x 10’
(0.1-1.5) x 10°
(0.1-4) x 10’
(0.1-3) x 10*

Count median
diameter (CMD)

um

1.4-34

1.5-25

e The concentration of dust in the air exiting the broiler sheds was highly variable. Consequently,
dust emission rates from the sheds also varied. Dust emissions varied by ventilation rate, farm,
bird age, season, microenvironment, litter management practice and other factors.

e Dust mass concentration and emission rate tended to increase with bird age (or weight). However
this was not proven statistically.

e Seasonal differences in dust levels could be partly explained by seasonal differences in ventilation
rates; however, this relationship was inconsistent between the farms.

e Dust particle mass and number concentrations and emission rates were generally higher when
partially reused litter was employed compared to when single use litter was used. In addition, a
greater proportion of fine dust particles (< 1 um) were generated with partially reused litter.
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e When no birds were present in the shed, dust emissions were substantially lower than emissions
when birds were present.

e Diurnal variation in dust emission rates was observed.

e ‘Morning flush’ of dust accumulated during the night was not observed.

Possible effects of methodology on the measurement of odour and dust

e Manually overriding the automatic ventilation system during sample collection may have
influenced some of the measured emission rates, producing ‘unrealistic’ data. The practice of
manually controlling fan activity during sample collection was abandoned once this effect was
suspected.

o Dust particles collected into odour sampling bags were rapidly attracted to the bag material,
excluding them from analysis in the olfactometer; consequently, olfactometry was not an
appropriate instrument to assess the influence of dust on perceived odour concentration.

e When using olfactometry to analyse poultry odour, samples must be analysed with 21.5 hours of
collection. Divergence in odour concentration was evident 6 hours post sample collection, with
significantly different odour concentration measured 21.5 hours post sample collection.

Development of an odour and dust emissions model

It was originally anticipated that data collected by the sensor networks would be suitable for the
development of odour and dust emission models. Unfortunately, as the project progressed, it became
apparent that the in-shed VOC and dust concentration data collected by the sensor networks did not
correlate well with measured odour and dust emission rates and was therefore not suitable for use
during model development.

In an attempt to develop an odour emission rate model, stepwise regression methods were applied to
the odour emission measurements (olfactometry) using environmental and production factors—season,
batch age, ventilation rate, ambient temperature, live weight distribution and litter moisture—to
explain the variability in the data. Individual models were developed for the three primary broiler
farms; however, not all of the variability in the odour emission rate data could be explained. Use of
these models to predict odour emission rates at other farms is not recommended due to
significant differences between the models—especially with different interactions between the
various factors—and uncertainty over which of these models should be selected.

Relationship between dust and odour

The relationship between dust and odour emissions was examined; in particular, the importance of
dust as a carrier of odour. During a series of experiments, poultry air samples were filtered using
HEPA and glass fibre filters, and compared against unfiltered samples through olfactometry analysis.
Also, attempts were made to regenerate odour samples from dust collected on the filters. It was found
that the methods used during this project were not able to determine the effect of dust on perceived
odour concentration:

e Dust particles collected into odour sampling bags were rapidly attracted to the bag material,
excluding them from analysis in the olfactometer; consequently, olfactometry was not an
appropriate instrument to assess the influence of particulates on perceived odour concentration.

e  Odour could not be reliably regenerated using particulate matter captured on filters.

e Odour and dust measurements (especially PM;o) were found to be related; however, it could not be
determined whether the relationship was causal or coincidental.

e The influence of dust as a carrier of odour could not be established.



Non-methane volatile organic compound emissions

The gas phase emissions broiler sheds were analysed in three stages: chemical speciation; odorant
identification and prioritisation; and NMVOC quantification. The following table lists the chemicals
and odorants frequently identified in the NMVOC samples collected. The results of the NMVOC
analysis from the broiler houses revealed that there was an impact from the soiling of the litter
material within the broiler house. The chemical species that dominated the NMVOC analysis of the
broiler house samples were acetone, 2-butanone, 3-methyl-butanal, 2,3-butanedione, 3-hydroxy-2-
butanone and acetic acid. Beyond the definition of NMVOC, the presence of sulphide species should
not be disregarded. Sulphides present within the results included dimethyl sulphide, dimethyl
disulphide and dimethyl trisulphide.

Chemical compounds frequently occurring in poultry house samples

Compound Family

Compounds Identified

Odorants Identified*

Odorant Descriptor?

Aromatics

Benzene
Toluene
Xylene (0-,m-,p-)
Trimethylbenzene
Styrene
Acetophenone
Benzaladehyde
Phenol

Toluene

Solvent/Sweet

Alcohols

1-butanol
2-butanol
2-ethyl-1-hexanol

1-butanol

Sweet/Solvent

Aldehydes

Butanal
3-methyl-butanal
Hexanal
Heptanal
Octanal
Nonanal
Decanal

3-methyl-butanal

Octanal

Pungent/malt

Citrus/Green/Detergent

Ketones

2-butanone
2,3-butanedione
3-methyl-2-butanone
3-hydroxy-2-butanone

2,3-butanedione

Rancid/fatty/butter

Carboxylic Acids

Ethanoic acid
Propanoic acid
Butanoic acid

Terpines

a-pinene

B-pinene
Limonene
Camphene
Camphor

Carene
Eucalyptol

a-pinene

B-pinene
Limonene
Camphene
Camphor

Carene
Eucalyptol

Pine
Pine
Citrus/Lemon
Camphor
Camphor
Citrus
Pine/Eucalyptus

Other Hydrocarbons

Tetradecane
Hexadecane
Tetrahydrofuran

Hexadecane

Solvent/Plastic/Alkane

Nitrogen

Trimethylamine

Sulphur

Dimethyl Sulphide
Dimethyl Disulphide
Dimethyl Trisulphide

Dimethyl Sulphide
Dimethyl Disulphide
Dimethyl Trisulphide

Smokey
Pungent/metallic

The third column identifies which of the chemicals are also odorants; and

2 provides a descriptor of the odorant



The results of the quantification of selected NMVOCs revealed that an increase in bird mass will
correspond to an increase in NMVOC emissions.

From the results that were obtained from the NMVOC sampling during this project, there was no
observed correlation between season or geographical location of the poultry facilities. There was also
no observed impact upon the concentration of the NMVOCs analysed as a result of the ventilation rate
applied during the collection of samples from the poultry houses. The round robin and diurnal
sampling that was undertaken at the broiler sites revealed that the abundances of chemical species
varied significantly.

These observations led to the investigation of the composition and emissions of the litter material
alone as a primary source of emissions. The increasing accumulation of faeces in the litter material
corresponded with a change in the composition of NMVOCs and character of the odour. This suggests
that degradation of organic matter in the litter is likely to be the principal mechanism influencing the
chemical composition of the overall emission matrix.

Sensor based measurement of dust, odour and in-shed environmental conditions

Wireless sensor networks were found to be useful from an academic perspective for continuously the
in-shed environment (in a largely qualitative sense); however they suffered from poor reliability.

Investigation of the sensor data showed that:
e relationships could not be found between the sensor outputs and conventional odour and dust
measurements;
o the chosen sensors used for monitoring air quality were not stable and were a limiting factor to
the overall performance of the sensor network; and
e the sensors were unreliable and the network occasionally malfunctioned, resulting in extended
periods where no data was collected.

Due to these issues, it was not possible to develop robust odour and dust calibration models from the
data produced by the sensor networks.

Sensor networks are not ready for deployment into poultry sheds, other than for research purposes.

An artificial olfaction system (AOS) was successfully deployed into two broiler sheds and used to
monitor in-shed odour concentration on a semi-continuous basis. When combined with continuous
ventilation rate data, the AOS provided a highly detailed record of odour emission rate from the sheds.

The AOS was trained using olfactometry data collected throughout the project. Odour concentration
measurements by the AOS correlated well with olfactometry measurements and had relatively small
error ranges. The calibration formula was revised several times during the project, resulting in slightly
different formulas for different farms; however the refinements were minimal and the AOS could be
used at other broiler sheds with reasonable confidence for research purposes.

The AOS measured significant diurnal variation in odour concentration and odour emission rate,
presumably due to ventilation trends and other factors that control the production, accumulation,
release and transport of odours from the source (litter and birds) to the in-shed air and out of the shed.

Using the AOS, different relationships between odour concentration, odour emission rate and
ventilation rate were observed at two different farms. These differences would not have been identified
without the continuous monitoring capability provided by the AOS.

The AOS was used to compare the in-shed odour concentration of sequential batches using different
litter management practices—fresh litter and partially reused litter. The AOS was well suited to this
application and provided significantly more information about odour than infrequent olfactometry
odour analysis.
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AOS was combined with continuous ventilation rate and on-site weather data to produce a unique data
set including odour emission rate and atmospheric stability class—two of the factors that contribute to
odour nuisance potential.

While the AOS was used successfully in this project to monitor odour, and produced considerably
more detailed odour emission rate data than was possible with olfactometry alone, it is a research tool
that is still undergoing development and significant amounts of manual data processing are required to
convert the raw sensor responses into odour concentration values—use of AOS by consultants or
producers is not currently feasible. Prospective users of alternative instrumental odour sensing systems
to measure poultry shed odour need to ensure that the equipment has been thoroughly calibrated and
has demonstrated measurement capabilities specifically with poultry shed odour.

Implications
The effect of variability and unpredictability of odour emission rates on industry planning and expansion

Odour emission rates were found to be highly variable, and the variability on each sampling day,
throughout each batch, between batches and between farms could not always be explained by the
environmental or production conditions recorded by the research team. Additionally, the range of
odour emission rates was similar or slightly higher than values reported in literature. Consequently,
prediction of odour emission rates by consultants for dispersion modelling purposes is unlikely to
significantly change.

Volatile organic compounds in odour

The identification and quantification of non-methane volatile organic compounds (NMVOCs)
combined with the prioritisation of odorant species within these NMVOCs will support the
development of tailored odour mitigation strategies. By focussing on nuisance odorants, researchers
can develop strategies to develop odour abatement and mitigation techniques, with the aim of
improving the management of poultry shed emissions. Furthermore the identification of key odorants
will support the development of real-time monitoring systems that can be targeted at assessing these
nuisance compounds in order to estimate the overall odour emission.

Modelling of dust impacts

Further modelling work (e.g. dispersion modelling) will be required to use the database of dust
emission rates obtained in this project to determine dust concentrations downstream of tunnel-
ventilated poultry sheds as a function of distance. This information is necessary to determine dust
concentrations in the areas surrounding poultry farms.

Recommendations

Measuring odour emissions at poultry farms

e  Odour sampling programs and methodologies need to be carefully chosen to provide meaningful
and representative emission rates because broiler odour emissions are highly variable.

e At the time of sample collection, it is essential to record information including:

e Sampling conditions—time, date, and sampling position.

o Ambient conditions—ambient temperature, ambient humidity, internal shed temperature, and
internal shed humidity.

o Shed dimensions and conditions—ventilation rate, number and position of active fans, fan
details (dimension, manufacturer), mode of ventilation (tunnel or mini-vent), shed length, shed
width, wall height, roof apex height, ceiling baffle height, litter moisture content, litter depth,
litter reuse status (single use or reused litter), lighting conditions and drinker type.

e Batch information—Dbird age, bird numbers, bird live weight, total live weight, number of
birds placed at the start of the batch, bird breed.
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Daily fan activity should be understood/surveyed for that time of the batch and year. Odour
sampling should be scheduled so that samples are collected at a representative ventilation rate or at
several ventilation rates over the normal daily range. Efforts must be made to collect odour
samples during the night when odour emission rates are lowest (and is also the time when
atmospheric conditions are most stable and poor odour dispersion is likely).

Fan activity should not be manually over-ridden, and stabilisation time should be allowed, if
possible, following each change in fan activity. If fan activity changes during the collection of
samples, it is recommended to record the changes in fan activity and calculate a time-weighted-
averaged ventilation rate rather than manually lock-in the number of active fans. By locking in
fans, abnormal shed conditions may be produced—especially in terms of temperature, bird activity
and odour production/release mechanisms—that will result in the measurement of unrealistic
odour emissions.

Odour samples should be collected and analysed in duplicate to improve olfactometry confidence
and accuracy. Samples should be analysed as soon as possible following collection.

Efforts should be made not to disturb the chickens prior to, or during, sample collection as
additional activity may increase the release of odour from the litter and birds.

Measuring dust emissions at poultry farms

Dust sampling programs and methodologies need to be carefully chosen to provide meaningful
and representative emission rates because poultry dust emissions are highly variable.

Continuous, size-resolved dust measurements are necessary for studies that attempt to characterise
the mechanisms of dust generation in intensive poultry sheds.

For studies that integrate dust measurements over extended periods of time (e.g. gravimetric filter
analysis), it should be recognized that large variations in dust concentrations are likely to occur
during the sample collection period.

At the time of sample collection, it is essential to record information including:

e Sampling conditions—time, date, and sampling position.

¢ Ambient conditions—ambient temperature, ambient humidity, internal shed temperature, and
internal shed humidity.

e Shed dimensions and conditions—ventilation rate, number and position of active fans, mode
of ventilation (tunnel or mini-vent), shed length, shed width, wall height, roof apex height,
ceiling baffle height, litter moisture content, litter depth, litter reuse status (single use or
reused litter), lighting conditions, drinker type.

e Batch information—Dbird age, bird numbers, bird live weight, total live weight, number of
birds placed at the start of the batch, bird breed.

Sampling methodology

Dilution olfactometry analysis

Odour samples should only be analysed at reputable, experienced olfactometry labs that can
demonstrate compliance with AS/NZS 4323.3:2001. Olfactometry labs need to report the accuracy
and precision of their laboratory, ensuring that A <0.217 and r < 0.477.

Odour samples are unstable and must be treated carefully. Odour samples should be analysed as

soon as possible (preferably within 12 hours, maximum 24 hours) by:

e choosing an olfactometry laboratory in close proximity to the test site;

e transporting the samples to the olfactometry laboratory as soon as possible; and

e pre-arranging delivery time to ensure the samples are analysed as soon as possible after
delivery to the olfactometer.

Where more than one olfactometry laboratory is used for a single trial, it is recommended that a
test be performed to ensure similarity in results from all laboratories.
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Ventilation rate measurement

It is recommended that ventilation rate be estimated using manufacturer’s performance data (from

certified testing laboratories), number of active fans and shed static pressure. This method is

recommended assuming that the following conditions are met:

o fans are clean, well maintained and in good working order;

o fan details are recorded including fan diameter, number of blades, blade pitch, blade material,
motor manufacturer, motor power, voltage, pulley sizes, grills, shutter description, presence of
a cone. A tachometer should be used to check rotational speed;

e static pressure is recorded at the time of ventilation measurement (changes to fan activity and
fluctuating wind conditions will affect the reading);

o all active fan activity, including duty fans, is recorded,

e on-farm airspeed measurement inside the shed or across each fan face should ideally be made
as a cross reference to the manufacturer’s published fan performance data.

Estimating ventilation rate using manufacturer’s performance data is recommended because:

e ventilation rate can be consistently estimated regardless of duty and tunnel fan activity as well
as tunnel ventilation status (internal shed airspeed measurement is unsuitable when mini-vents
are open or when duty fans are active);

o manufacturer’s fan performance data is usually obtained using standardised methods and
certified laboratories (but you need to check which standard was used);

e airspeed measurements across each active fan are time consuming and prone to errors due to
fluctuating winds as well as non-uniform and turbulent air flow;

e airspeed measurements across each fan face will be affected by the presence of grills and
back-draft shutters; and

e within the poultry shed environment, it is difficult to achieve the conditions required by
AS4323.1:1995 when measuring airspeed inside the shed or across each fan face.

When airspeed measurements are to be taken inside the shed or across each fan face,
measurements must be made according to AS4323.1:1995.

External fan measurements should be undertaken with caution because of turbulent fan air flow.
External fan measurements should be avoided during gusty wind conditions.
If measuring air velocity across the fan face, measurements need to be made at each active fan.

Internal shed velocity measurements should not be undertaken while mini-vents or duty fans are
active.

Internal shed velocity measurements should be avoided during low levels of ventilation (when
airspeed is minimal).

Be aware that errors of 10-20% are likely regardless of the method used.

Measuring litter moisture content

Litter moisture content can be highly variable across the shed floor area. To adequately survey and
quantify the range and distribution profile of moisture content, numerous samples of litter need to be
collected across the entire floor area. It is recommended that the profile of litter moisture content be
reported rather than the shed-average value, as this will enable identification of wet/dry spots, which
may significantly contribute to the total odour emission.

Using the odour emission rate data

Odour emission rates vary diurnally, seasonally, throughout the batch and will be different at
different farms depending on management and infrastructure. Calculation of daily average,
batch average or constant odour emission rate is not appropriate—unless for a specific
purpose.
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Odour emission rates should be presented in terms of total OER (ou/s), OER per 1000 birds placed
(ou/s/1000 birds placed) or OER per kg total live weight (ou/s/kg).

Using the dust emission rate data

Dust emission rates vary diurnally, seasonally, throughout the batch and will be different at
different farms depending on management and infrastructure. Selection of a daily average, batch
average or constant dust emission rate should be made with extreme care: considerable variation is
likely to occur around the chosen average.

If possible, dust emission rates should be presented in terms of total emission rate (ER) (e.g. mg or
particles/s), ER per 1000 birds placed (e.g. mg or particles/s/1000 birds placed) and ER per kg
total live weight (e.g. mg or particles/s/kg). This will enable easier comparison between different
studies.

Instrumental measurement of air quality in poultry sheds

Application of sensing stations in poultry sheds

Representative sampling locations need to be determined to enable meaningful and useful
measurement of air quality and in-shed environmental conditions. Such sampling locations need to
be applicable during both tunnel and mini-vent modes of ventilation.

The position of sensors, and required mobility, need to be determined to enable selection of power
supply (battery or mains power)—can the sensor station be built into the shed (e.g. suspended
from the ceiling) or does it need to be mobile?

Sensor measurements need to be integrated with ventilation rate (e.g. using fan activity) to enable
the estimation of emissions.

Whilst sensor based measurements could not be correlated against conventional measures of dust
and odour concentration, they did provide relative measures of dust, ammonia, VOC (surrogate for
odour) and airspeed (surrogate for ventilation rate) within the shed.

Potential users of sensing stations need to identify what really needs to be monitored in order to
reduce the number of sensors, which will improve power usage, mobility, price and size/handling.

Use of the AOS should be considered for future assessments of odour in poultry sheds because it
produces a more comprehensive record of the highly variable emissions than is possible with
olfactometry alone.

AOS must be calibrated using poultry odour samples, ideally collected from the farm/source of
interest.

Additional research should be directed toward combining AOS with weather data to improve
understanding of when odour emissions combine with poor dispersion conditions.

Sensor and network selection

Select sensors that are robust and suited to the environment within poultry sheds, especially in
terms of dust accumulation, high humidity, variable air flow and cleaning requirements.

Sensor networks should be evaluated for suitability of operation in enclosed spaces, and
intermittent interruption in operation to ensure robust transmission of data, and prompt recovery
from interruptions.

Utilise ‘off-the-shelf” sensors (in un-modified form) to simplify construction and replacement of
faulty/exhausted sensors.

The design of AOS should include sensors that target NMVOCs identified as being primary
odorants; including 2,3-butanedione and dimethyl disulphide.
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Future research

Additional studies to quantify ‘typical” odour emission rates from broiler farms measurements
need to be made at multiple farms and on multiple days (especially leading up to the first pickup
and after pickups); however, significant variability, unexpected and unexplainable odour emission
rates—as seen in this project—would be likely. Odour measurements must represent the full
spread of ‘normal’ daily odour emissions, which will require odour samples to be collected at
night.

An artificial olfaction system (AOS) should be used in future odour measuring research activities
because the degree of variability and full range of odour emission rates cannot possibly be
guantified using olfactometry alone. Research should be directed toward refining the useability,
robustness and accuracy of the AOS in detecting the chemicals determined as being the principal
nuisance odorants.

Future research should be directed at quantifying the specific biological, physical and chemical
mechanisms that regulate the formation, release and transport of odour and dust within the shed
and in the exhaust airstream.

The effect of litter moisture content on odour formation is still largely unknown—including the
delay between wetting and increased emission; changes to microbial community composition and
activity; and changes to the litter physical odour release properties due to caking. Further research
must investigate these relationships between litter moisture content and odour generation.
Techniques to accurately measure the full moisture profile of the litter and to quantify the amount
of caking will be required to achieve this.

Development of robust odour and dust emission models should still be pursued, despite the
inability to produce a robust model during this project. The model will need to incorporate the
fundamental factors influencing odour emission, and should be formulated from first principles
rather than attempting to fit modelling parameters to collected data.

Future research should be directed at quantifying the conservation/degradation of odorants
following emission from the shed (and before reaching receptors). Changes in odorant
composition beyond the farm boundary may change the perception of odour by receptors.

Investigation of the composition and NMVOC emissions from the litter material from the broiler
houses would provide useful information relating to the principal odorant emissions from the
broiler house.

Moreover, the investigation of the microbial communities within the litter material and their
corresponding NMVOC emissions would enable the elucidation of the species responsible for the
key nuisance odorant formation.
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1 Introduction

In Australia, the chicken meat industry annually produces approximately 800,000 tonnes of chicken meat
(from 500 million birds). The majority of birds are raised intensively in sheds that are either naturally
ventilated, or mechanically ventilated with an automated climate control system to provide the chickens
with an optimal growing environment. Aerial emissions from these sheds, including odour and dust, are a
normal part of production.

Odour and dust emitted from broiler (meat chicken) farms has the potential to impact on nearby
residences, communities and environment. Impacts due to odour, in particular, and dust have been
recognised by the chicken meat industry and regulatory authorities as a cause of concern. Consequently,
proposals for new and expanding farms undergo rigorous assessments to investigate the likelihood of
these emissions causing unnecessary impacts.

Impact assessments require accurate data for these emissions to enable modelling and prediction of
impacts. Much of the published odour emission data for poultry production is not relevant due to recent
changes in poultry production systems (new building designs, new management practices, new breeds and
new diets) and advances in emission measurement practices including new olfactometry and dust
measurement standards, improved sample collection methods and advancements in alternative
measurement technologies such as electronic sensing arrays and gas chromatography-mass spectrometry-
olfactometry GC-MS-O.

This study has been undertaken to build a database of odour, dust and volatile organic compound (VOC)
emissions for modern intensive broiler farming. This data will improve estimation of emissions, improve
prediction of impacts and support improved planning for new broiler farms. Increased knowledge
regarding the chemical composition of poultry odour (through measuring VOCs) is considered critical for
identifying the origins of the odour and developing mitigation techniques.

Similarly, detailed knowledge of dust emissions from modern, tunnel-ventilated broiler sheds is required
to ensure sufficient separation distances to minimise impacts. Research regarding particle concentrations
and emissions from poultry sheds has previously been conducted in the USA, Europe and Australia.
There is still a requirement for high quality data to describe the dependence of particle emission rates
from Australian tunnel-ventilated poultry sheds on a range of factors including poultry shed type, season,
bird weight, bird age and litter moisture content. The dust component of this research program will
attempt to fill this gap in knowledge.

1.1 Research objectives

The focus of this research project was quantifying and improving understanding of the emission of odour,

dust and VOCs from tunnel ventilated broiler sheds in Australia—achieved by:

o Development of a database of odour and dust emissions from tunnel ventilated broiler sheds—
evaluating the influence of geographic location, season, management and environment on emission
rates;

o Development of a dust and odour emissions model for representative broiler sheds based upon
management factors;

e Examining the relationship between dust and odour emissions, in particular, the importance of dust as
a carrier of odour;

e Development and testing of cost effective instrumentation to measure dust, odour and other
production factors on commercial poultry farms;

e Application of an artificial olfaction system (AOS) to continuously monitor odour emissions;

o Identification of specific poultry shed non-methane volatile organic compounds and odorants; and

e Quantification and evaluation of specific poultry shed odorants.

Researchers from the Department of Employment, Economic Development and Innovation; Queensland
University of Technology; Department of Primary Industries, Victoria; and University of New South
Wales collaborated to provide the skills and equipment necessary to undertake this project.
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2 Background

Measurement and research of dust and odour emissions from intensive livestock farming has been
undertaken internationally for many years. In Australia, impacts by odour emissions, in particular, have
been the major driver for emissions research. In other countries, dust and ammonia are the primary
interest for researchers due to environmental and health concerns. There is a large quantity of published
information about poultry production systems; odour and dust generation in poultry production; odour
and dust emissions from poultry; and odour and dust measurement methods. This chapter provides an
introduction to these topics.

2.1 The broiler production system

There are two main types of farm involved in meat chicken production; breeder farms, where fertile eggs
are produced; and grow-out farms, where the chickens are grown until harvested. In the grow-out phase
of production, chickens can be grown in naturally ventilated sheds, mechanically ventilated sheds or on
free range farms. In this investigation, only mechanically ventilated broiler sheds were considered, as
these represented the majority of the Australian industry.

There are several breeds of broiler chickens, each with unique characteristics and requirements. Three
breeds commonly found in Australia include Arbor Acres (www.aviagen.com), Cobb500 (www.cobb-
vantress.com) and Ross308 (www.aviagen.com). Specific and detailed management, nutrition and
performance information can be accessed via their websites.

The design and management of the production system will have a direct bearing on odour and dust
emissions. The brief descriptions provided in the following sections do not address all aspects of the
production systems, but provide general information about design and management issues relevant to the
generation and emission of odour and dust.

2.1.1 Grow-out cycle

The growing cycle for broilers typically last up to 56 days, which compared to other livestock production
systems is relatively short. Such a short production cycle is possible because broiler chickens grow
rapidly (see Figure 1 for typical growth rate). Selective breeding, provision for an ideal growing
environment and high quality feed are factors contributing to their rapid growth. On average, between
days 7 and 56, a broiler chicken will consume 1.52 kg of feed for every 1 kg of added body weight.
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Figure 1: Indicative broiler growth rate (data combined for Ross 308 and Cobb 500 breeds)
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Day old chickens are sourced from a hatchery and introduced to the broiler shed. The birds are restricted
to a portion of the shed known as the brooding section, which usually occupies up to half of the broiler
shed and is fitted with heaters. As the birds grow, from days 10-14, they are allowed to access more of
the shed until they occupy the full shed.

Around day 35, a portion of the birds will be removed for processing (known as the first thin-out or
pickup).

Between days 35 and 56, more chickens may be harvested in multiple pickups until ultimately all of the
birds have been processed.

The schedule for harvesting birds is determined by market demand for quantities and specification of
meat products.

2.1.2 Mechanically ventilated shed design

Mechanically ventilated broiler sheds are designed to provide the birds with a comfortable environment
and many design features of modern sheds also contribute to the control of odour and dust emissions.
These sheds are typically 100-150 m long and 12-20 m wide, which provides sufficient space for
20,000-50,000 chickens. There will usually be three to ten of these sheds on a typical farm.

The shed floor is usually constructed with compacted earth, road-base or concrete. The roof is usually
insulated. Walls are mostly constructed using insulated panelling or impermeable curtains. The selection
of wall material depends on the age of the shed and design preference; however, most new farms are
constructed with solid, insulated walls.

The ventilation system installed in poultry sheds is very complex and comprises a central control unit,
primary ventilation fans, duty ventilation fans, mini-vent inlets, tunnel ventilation inlets, evaporative
cooling pads and ceiling baffles (see Figure 2). Large diameter axial fans (1219-1397 mm diameter,
called primary or tunnel ventilation fans) are installed on the narrow end of the shed and provide the
majority of the ventilation. Maximum ventilation rate is approximately 8—12 ms3/h per bird. Additional
fans (referred to as minimum ventilation or duty fans) are installed along the length of the shed, on the
wall opposite the primary fans or on the roof to provide low levels of ventilation. All fans are fitted with
back-draft shutters to prevent fresh air entering the shed through inactive fans. Mini-vent inlets are
installed at equal spacing along the walls on each side of the shed. Air is drawn through these vents when
low levels of ventilation are required. Tunnel ventilation inlets are positioned on the opposite end of the
shed from the tunnel ventilation fans. Air is drawn through these large vents when the shed transitions
into tunnel ventilation mode. Evaporative cooling pads are usually installed in front of the tunnel
ventilation inlets. When the weather is hot and maximum cooling is required, water runs over these
cooling pads, creating a cooling effect as the air passes through them. Foggers— high pressure nozzles
designed to atomise water droplets and create a fine mist—may also be installed inside the shed and are
activated when additional cooling is required.

Correct ventilation is essential for bird health, efficient production and control of odour and dust
emissions.

24



Tunnel inlets

Mini-vent inlets Primary/tunnel

ventilation fans

Figure 2: Components of the broiler shed ventilation system (top — inside shed with roof removed,
bottom — outside shed)

Evaporative cooling pads

The sheds are operated under negative pressure (ranging from 0-50 Pa) which draws fresh air into the
shed through the inlets. Stale air is exhausted from the shed through the fans. There are primarily three
modes of ventilation:

1. mini-vent ventilation;
2. tunnel ventilation without evaporative cooling; and
3. tunnel ventilation with evaporative cooling.

Mini-vent ventilation

Mini-vent ventilation is used when low levels of cooling are required or when no actual cooling is
required. It allows stale, moisture laden air to be removed from the shed. Mini-vent ventilation is
designed to exchange the air in the shed without creating airspeed or drafts. This is achieved by drawing
fresh air into the shed through mini-vents. The amount of opening through the mini-vents is controlled to
maintain a slight vacuum in the shed (approximately 20 Pa depending on shed width and inlet design).
The negative pressure ensures that an even amount of fresh air is introduced along the entire length of the
shed. It also aids the incoming air to be projected along the ceiling, warming the air and increasing its
capacity to hold moisture. Fresh air is introduced into the shed in this manner to help prevent excessive
litter moisture and condensation.

At the lowest levels of mini-vent ventilation, duty fans will cycle on and off, removing stale air
(containing moisture, dust and odour) while maintaining the internal shed environment. As the level of
mini-vent ventilation increases, duty fan activity will increase and the primary fans will start to activate.
Depending on the number and size of mini-vents and fan capacity, 50-75% of the primary fans can
normally be activated before tunnel inlets need to be opened.

Tunnel ventilation with and without evaporative cooling

Tunnel ventilation is used when large amounts of cooling are required. During tunnel ventilation, mini-
vent inlets are closed and tunnel inlets are opened. This creates airspeed along the length of the shed,
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introducing a wind chill effect for the birds. Wind chill is effective for improving bird comfort during
warm weather by reducing the temperature experienced by the birds below the dry-bulb temperature of
the air in the shed. Maximum airspeed through the shed will usually be up to 3.5 m/s.

Ceiling baffles are installed in many sheds to reduce the cross-sectional area of the shed, increasing
airspeed at a given ventilation rate.

When extra cooling is required during tunnel ventilation, water runs over the cooling pads, creating an
evaporative cooling effect. Evaporative cooling is most effective when ambient relative humidity is low.

2.1.3 Optimum temperature conditions

Mechanically ventilated poultry sheds are specifically designed to allow precise temperature control for
the birds. Figure 3 displays the optimum temperatures for one breed of broiler (Cobb500™). The
temperature shown is the effective temperature experienced by the birds following adjustments for
humidity and wind-chill. Increased humidity decreases the ability of the bird to dissipate excess heat,
which makes the bird feel warmer. Increased shed airspeed creates wind-chill, which reduces the
temperature felt by the birds. Consequently, the 16 °C target temperature recommended for 56 day old
birds may be achieved with a dry bulb temperature greater than 16 °C, assuming that humidity is low and
shed airspeed is high, hence the reason for tunnel ventilation.
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Figure 3: Target temperature through the broiler growth cycle—RH 50-70%
(Cobb-Vantress Inc., 2008)

2.1.4 Feed and drink supply
Food and water is supplied to the birds through specialised feeding and drinking systems.

Feed is delivered to the farm and stored in silos. An auger system controls the flow of feed into the shed,
where it is distributed to the birds using lines of feeding pans (see Figure 4). The composition of the feed
in terms of energy, protein and nutrients is changed several times throughout the grow-out cycle to meet
the requirements of the birds. Feed is usually always available to the birds.

Water is supplied to the birds using specially designed nipple drinkers (see Figure 5). These drinkers are
specifically managed to meet the bird’s requirements as they change throughout the grow-out cycle
(drinker height and flow rate) and are maintained to prevent leakage. Old drinker designs, known as bell
or cup drinkers are rarely used anymore because they were prone to excessive water spillage, resulting in
wet litter. Wet litter is recognised as a possible cause of excessive odour generation (see section 2.1.5
below). For this reason, drinker design, management and maintenance are essential to maintain good litter
conditions and control odour.
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Figure 4:  Picture of a modern feeder pan Figure5: Picture ofa Fﬁodern nipple
drinker (fitted with
evaporation cup)

2.1.5 Bedding and litter

Manure, bedding and litter are three commonly used terms. In this report, manure refers to chicken
faeces; bedding refers to ‘clean’ material not containing any manure; and litter refers to a mixture of
bedding material and poultry manure. The floor of the broiler shed is covered with bedding. The bedding
provides absorbency and insulation. Common bedding materials include saw dust, wood shavings, rice
hulls, paper and straw. Previously used litter can be used in lieu of fresh bedding at the start of a batch.

Moisture absorbency is a critical requirement of any bedding or litter material used as a floor covering.
Controlling the moisture content of the litter is essential for controlling both odour and dust emissions
(McGahan and Tucker, 2003). Moist or wet litter can potentially contribute to increased odour generation
whereas dry litter can lead to increased dust generation. Litter can become excessively moist due to
leaking drinkers, condensation (moisture laden air inside the shed condenses as cool air enters the shed,
especially through cracks or poorly designed inlets) or poor bird health (when excessively wet faeces
make the litter wet). Wet litter may be managed by drying the litter with good ventilation practices or
replacing patches of wet litter with dry bedding.

Litter may be removed from the shed at the end of a batch (35-56 day production cycle) or retained in the
shed for use in subsequent batches. If the litter is kept in the shed, it may be piled or windrowed before
being re-spread for the following batch.

2.1.6 Summary of the broiler production system

e Shed design, husbandry practices and farm management are likely to have an influence on odour
and dust emissions.

Broiler litter is removed from the shed at the end of the 56 day production cycle. Mechanical

ventilation is used to create a comfortable environment (especially temperature) for the chickens,
and is also used to remove excessive moisture, which is a contributing factor to odour generation.

Mechanically ventilated poultry sheds use several modes of ventilation—mini-vent ventilation;
tunnel ventilation; and tunnel ventilation with evaporative cooling—which change the in-shed
aerodynamics and are therefore likely to influence odour and dust emissions and the measurement
of these emissions.
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2.2 Odour

2.2.1 Introduction

Odour is a property that gives a substance a characteristic smell. Odorous molecules are formed by
combinations of volatile organic compounds (VOCs) (O'Neill and Phillips, 1992), which are often
referred to as odorants. When these molecules are inhaled, they are received by the olfactory organ (an
area in the upper nasal passage known as the olfactory epithelium) where they react with proteins and
activate receptors that send signals to the brain. Within the olfactory region, there are millions of receptor
cells that are classed according to their sensitivity to specific odorants (Standards Australia/Standards
New Zealand, 2001). There are 100 to 300 classes of olfactory receptor, each of which is more or less
sensitive to different odorants, enabling an extremely large number of combinations of odours that can be
identified. It is believed that humans can differentiate about 10,000 different odour characters (Standards
Australia/Standards New Zealand, 2001).

Odours can be described using four dimensions: detectability (or odour threshold); intensity; quality (or
character) and hedonic tone (Standards Australia/Standards New Zealand, 2001). Detectability is the
minimum chemical concentration of an odour at which a percentage of the population can sense the
odour. Detectability is measured using a dynamic olfactometer (described in more detail in section 2.2.2)
and is used to calculate odour concentration. Intensity is the perceived strength of the odour sensation.
Intensity allows an odour to be rated as weak or strong. Intensity has a logarithmic relationship to odour
concentration (small changes in odour concentration near the detection threshold make a relatively large
difference in odour intensity, however at higher concentrations, larger concentration change is required to
make small change in odour intensity). Odour quality is a descriptive dimension allowing odours to be
described as, for example, floral, rancid, faecal, cardboard, wet socks or any combination of these and
many other descriptors. The final dimension of odour description is hedonic tone, which rates the relative
pleasantness or unpleasantness of an odour.

Odour is a mixture of many different compounds known as odorants (American Society of Agricultural
and Biological Engineers, 2007; Cai et al., 2006; Lacey et al., 2004; O'Neill and Phillips, 1992). Table 1
shows a list of some of the compounds that are produced by the microbial decomposition of manure. It is
important to understand these compounds in order to understand how odours are produced. The presence
of these compounds in odour will be dependent on the chemistry of the manure and activity of the
microbial communities.

Table1:  Compounds resulting from manure decomposition (American Society of Agricultural and
Biological Engineers, 2007)

Volatile fatty acids Mercaptans Sulphides
Acetic Methylmercaptan Hydrogen sulphide
Propionic Ethylmercaptan Dimethylsulphide
Butyric Propylmercaptan Diethylsulphide
Isobutyric Disulphides
Isovaleric Esters

Ammonia and Amines Alcohols Nitrogen Heterocyclyes
Ammonia Indole
Methylamine Phenols and Cresols Skatole
Ethylamine Phenol Aldehvd
Dimethylamine p-Ethyl-phenol enyaes
Trimethylamine p-Cresol
Diethylamine

2.2.2 Biochemical origins of odour

During periods of extended storage and/or treatment within animal housing, in anaerobic ponds, or on
feedlot pads, complex wastes are transformed through chemical and microbiological processes to simpler
molecules. Three basic steps are involved with the anaerobic digestion of waste materials:
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1. Hydrolysis
2. Fermentation (or acidogenesis) and
3. Methanogenesis.

Hydrolysis is the conversion of complex or particulate materials to soluble compounds which can then be
further degraded to simple monomeric substances suitable as substrates by bacteria. This process is
particularly relevant to undigested feed materials. Extra-cellular enzymes are primarily responsible for
this process (Hill and Cobb, 1993).

Fermentation involves degradation of sugars, amino acids and fatty acids to produce acetate, propionate,
butyrate and hydrogen and carbon dioxide. Butyrate and propionate are generally fermented further to
hydrogen, carbon dioxide and acetate.

During methanogenesis, the products of fermentation (i.e. acetate, carbon dioxide and hydrogen) are
utilised to produce methane. A range of non-methanogenic organisms (acidogens) are responsible for
hydrolysis and fermentation. These include Clostridium spp, Bifidobacterium spp, Staphylococcus and E.
coli. Many other groups are also involved in the process through production of various enzymes.

The micro-organisms responsible for the production of methane (methanogens) are strict obligate
anaerobes, many of which are similar to organisms isolated from the stomachs of ruminants or from
sediments in lakes and rivers (Tchobanoglous et al., 2003). A limited number of these organisms utilise
acetate to produce methane directly, while the majority oxidise hydrogen with carbon dioxide to produce
methane.

The methanogens and acidogens form a syntrophic relationship in which the methanogens convert
fermentation end products to methane and CO,. The ability of the methanogens to utilise the hydrogen
formed during fermentation is critical—if the hydrogen produced is not utilised sufficiently quickly,
propionate and butyrate fermentation slows and these volatile fatty acids (and other intermediate
metabolic products) accumulate, reducing pH, further slowing the fermentation process. In addition to
compromising waste treatment, accumulation of compounds such as butyrate and propionate increases
odour emissions. In extreme circumstances, anaerobic treatment fails.

The biochemical basis for microbial odorant production was comprehensively reviewed by Hobbs et al.
(2004), Mackie et al. (1998) and Spoelstra (1980). These reviews indicated:

e A close association between undigested protein and low molecular weight branched volatile fatty
acids, some reduced sulphides and indoles and phenols. Specific amino acids were identified as
precursors of key odorants (Hobbs et al., 2004; Mackie et al., 1998);

e Complex carbohydrates in particular were associated with volatile fatty acids (mainly C, to C,, with
smaller amounts of Cs to C; acids) (Zhu et al., 1999);

e Deamination of organic N-containing materials present in large amounts in excreta to form ammonia
and volatile fatty acids (Mackie et al., 1998);

e Other relationships clearly link specific precursor compounds with odorants, including tyrosine
(phenol, 4-ethylphenol), tryptophan (indole and skatole) and phenylalanine (phenyl acetate, phenyl
propionate and benzoic acid) (Mackie et al., 1998);

e Assimilatory microbial processes result in formation of cysteine and methionine, breakdown of which
releases hydrogen sulphide and mercaptans;

o For dissimilatory processes, sulphate is used as a terminal electron acceptor and is reduced to
hydrogen sulphide directly (Mackie et al., 1998);

e A range of microbes were identified which were able to produce a series of volatile amines
(Spoelstra, 1980).
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2.2.3 Key odorous chemicals

The nature of emissions described generically as odour has been extensively researched, particularly for
piggery operations. O’Neill and Phillips (1992) identified 168 separate odorous compounds in pig wastes.
More recently, Schiffman et al. (2001) identified 331 different volatile organic compounds were
responsible for odour from piggery operations. 203 of these chemicals were identified in air samples
while 167 were recovered from anaerobic pond liquor samples.

Hobbs et al. (1997) proposed that odorants could be separated into four distinct chemical classes —
reduced sulphur compounds, volatile fatty acids (VFAS), phenols and nitrogen heterocycles (indoles).
Zahn et al. (2001a; 1997; 2001b) and Bicudo et al. (2002) have extensively researched odour emissions
from piggery wastes. They were able to identify a strong correlation between odour intensity and the
concentration of 19 volatile organic compounds present in ambient air samples (Zahn et al., 2001a). They
refined these findings to show that measurement of the concentration of nine specific odorants enabled an
adequate correlation between odorant concentration and odour intensity (r? = 87.6). The odorants that
could be related to odour intensity included VFAS, phenols and indole.

Less intensive research has been undertaken on the specific identity of odorants in cattle wastes. Bicudo
et al. (2003) measured ambient concentrations of hydrogen sulphide downwind and from the surface of
manure storage basins over a 30 day period. Odour samples were collected from the surface of the
manure storage lagoon on two occasions. It was confirmed that manure storages were major sources of
odour. Emission rates varied between 7 and 10 OU/s.

Baek et al. (2003) measured ammonia and hydrogen sulphide (H.,S) fluxes from the pen surface of Texas
feedlots. They identified a weak relationship between ammonia emission rates and the pad temperature.
They were unable to identify a similar relationship for H,S following instrument failure. They were able
however to identify increases in emission rates of both chemicals following rainfall events. Diurnal
variation in emission rates of both variables were also observed, with emission rates peaking at about
13:00 for ammonia and at about 15:00 for H,S. No odour samples were collected during this study.

More recently, measurement of ambient air concentrations of ammonia, VFAs and other odorants
downwind of feedlots in Alberta, Canada were reported (McGinn et al., 2003). A positive correlation
between ambient ammonia concentrations and odour intensity was observed. It was concluded that
ammonia was an indicator or surrogate for odour and the odour plume, rather than being a major odorant.
Concentrations of VFAs measured adjacent to feedlot pens were thought to be high enough to create the
potential for nuisance odour conditions. It was also shown that the concentrations of odorants fluctuated
throughout the day. It was not clear whether these fluctuations arose from diurnal trends or were in
response to atmospheric conditions and dispersion. The authors identified that odour emissions might be
managed in part by stocking pens at appropriate rates.

In their investigations of emissions of odorants from 29 piggeries, Zahn et al. (2001b) highlighted the
metabolic processes involved in the formation of volatile sulphur-containing compounds. The formation
of complex sulphur-containing odorants (e.g. thiols and mercaptans) requires energy expenditure,
whereas sulphate reduction to hydrogen sulphide yields energy, making it energetically more favourable.
Assimilatory processes are also more sensitive to environmental factors, including piggery and waste
management systems. It should therefore be anticipated that emissions of volatile sulphur would be
dominated by hydrogen sulphide, with other compounds present in lower concentrations.

Independent investigations have confirmed that only a small fraction of the total number of volatile and
odorous compounds emitted from manure storages have ever been detected and quantified downwind of
the source:

e Zahn et al. (2001a) demonstrated that downwind concentrations of hydrogen sulphide were much
lower than the detection threshold. This finding in part explained the previously observed lack of
correlation between hydrogen sulphide concentrations and odour concentrations (Hobbs et al., 1999;
Hobbs et al., 1998);
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e Wright et al. (2005) did not detect hydrogen sulphide, dimethyl disulphide or methyl mercaptan in
samples collected downwind of a major piggery. They identified 4-methylphenol, 2'-
aminoacetophenone, iso-valeric acid and 4-ethylphenol as the most significant odorants;

e Trabue et al. (2008a) demonstrated that hydrogen sulphide was the dominant sulphur-containing
odorant at piggeries, while methanethiol was the principal sulphur-containing odorant in poultry litter
(discussed further below);

e Trabue et al. (2008b) showed that butanoic acid, 4-methylphenol, 4-ethylphenol, indole and 3-
methylindole were the dominant odorants associated with piggery buildings, while butanoic acid, 3-
methylbutanoic acid and 4-methylphenol were characteristic of poultry odour.

The work of Trabue et al. (2008a) demonstrated that sulphur-containing compounds probably do
contribute to intensive livestock odour. They showed that very stringent sampling and storage techniques
were required to reduce the impact of moisture on sample composition. By passing the sample through
calcium chloride traps, thereby greatly reducing the humidity within the sample, it was possible to detect
sulphur-containing compounds within the sample container up to 48 hours after sample collection.

A key outcome of these investigations was identification of the dominant chemical classes responsible for
the characteristic livestock odour detected downwind of these operations. Many of the chemicals were
polar, water soluble compounds with relatively high boiling points and low vapour pressures.

These chemicals also have low odour detection thresholds. Zahn et al. (1997) tabled odour detection
thresholds for some of the odorants associated with livestock production, together with what they termed
“transport efficiency”. The latter term refers to the relative concentrations observed at the source of the
odour and 100 m downwind. Selected examples from Zahn et al. (1997) are summarised in Table 2.

Table 2:  Transport efficiencies and odour detection thresholds for selected odorants

Compound Transfer efficiency (%)? Odour threshold (ug/m3)®
Acetic acid 100 100
Propanoic acid 53 25
Butan-2-ol 89 908
Butanoic acid 76 2.5
Pentanoic acid 37 2.6
Decanol 198 b
Hexanoic acid 44 198
Benzyl alcohol 44 b
Phenol 12 226
4-Methylphenol 11 8.3

Notes: ®(Zahn et al., 1997); ® Odour threshold not available.
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More recently, Trabue et al. (2008a) tabulated selected chemical properties of a number of odorants.
Some of these are reproduced in Table 3.

Table 3:  Physical and organoleptic properties of selected odorants (de Vos et al., 1990; Trabue et al.,

2008a)
Odorant I_\/Iolecular Boiling point | Vapour pressure | Odour threshold
weight (g/mol)? (°C)? (kPa)* (ug/m3)?
Acetic acid 60 118 2.33 356.3
Propanoic acid 74 140 1.75° 108.3
2-methylpropanoic acid 88 155 1.68° 70.8
Butanoic acid 88 164 0.15° 14.1
3-methylbutanoic acid 102 177 0.07° 10.3
Pentanoic acid 102 186 0.04° 20.2
4-methylpentanoic acid 116 199 0.0008° 22.9
Hexanoic acid 116 205 0.006" 60.3
Heptanoic acid 130 222 0.0004° 147.4
Phenol 9 182 0.065° 424.9
4-methylphenol 108 22 0.017° 8.3
4-ethylphenol 122 218 0.029" 6.3
4-propylphenol 136 232 0.012°
Indole 117 254 0.002° 0.15
3-methylindole 130 266 0.002° 3.0
Hydrogen sulphide 34 -59.6 1840° 24.9
Carbonyl sulphide 60 -50 1010° 135.4
Carbon disulphide 76 115 53° 296.4
Methanethiol 48 6.8 205° 2.2
Dimethyl sulphide 62 38 45° 5.6
Dimethy! disulphide 94 117 3¢ 475
Dimethyl trisulphide 126 41 0.8° 8.8

Notes: *(Trabue et al., 2008a); ® determined at 27 °C; © determined at 20 °C

2.2.4 Odour measurement

Odour has traditionally been assessed using olfactometry, which determines odour detection thresholds
using a combination of gas dilution equipment and trained human assessors. In Australia, odour is
assessed according to the Australian olfactometry Standard: AS/NZS 4323.3:2001 Stationary source
emissions - Part 3: Determination of odour concentration by dynamic olfactometry (Standards
Australia/Standards New Zealand, 2001). Odour concentration and emission rates determined using other
olfactometry standards may not be comparable to values determined using the Australian olfactometry
standard (Department of Environmental Protection, 2002).

While still regarded as the only standardised method for odour measurement, olfactometry is limited
when trying to determine the origins and constitution of a particular odour or trying to measure odour in
real-time or over an extended period. To achieve these outcomes, technologies such as a non-specific
electronic sensor array (sometimes referred to as an artificial olfaction system (AOS) or electronic nose
(Sohn et al., 2007a; Sohn et al., 2008)) or gas chromatograph-mass spectrometer-olfactometer (GC-MS-
O) are required. The GC-MS-O can be used to identify the chemicals that make up an odour, primarily
VOCs, which provides opportunities to identify odour sources and develop specific mitigation techniques.
Electronic sensor arrays attempt to replicate the human olfactory response by using multiple sensors, each
sensitive to a range of different compounds. By identifying patterns in the sensor responses (magnitude of
individual responses and relative difference between sensors), and calibrating these responses against
olfactometry measurement (to AS/NZS 4323.3:2001), these sensor arrays are capable of continuously
measuring odour concentration in real time with reasonable accuracy.
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2.2.4.1 Olfactometry standards

The determination of odour is dependent on the method by which it is analysed and calculated. When
reviewing existing odour concentration and emission data, it is critical to understand the method by which
the odour samples were analysed, as quite different values will be obtained for the same odour by using
alternate methods. Current olfactometry standards also have defined accuracy and precision criteria,
which must be met in order for the olfactometry laboratory to be compliant. Similar levels of accuracy
and precision were not required by older olfactometry standards.

The Australian/New Zealand Standard AS/NZS 4323.3:2001, is the current standard for dynamic
olfactometry. Prior to the development of this standard, several standards had been used in Australia
including the Dutch method for olfactometry (NVN2820), the Victorian B2 method and a draft European
CEN method, (now EN 13725, Determination of odour concentration by dynamic olfactometry).

The Australian and European standards are very similar (with the AS/NZS 4323.3:2001 based on a draft
version of the CEN method) and consequently odours measured according to these standards will have
comparable odour concentrations and the olfactometers must meet specific accuracy and precision criteria
(van Harreveld et al., 2008). The NVN2820 standard defined the odour unit differently to the current
Australian Standard, and consequently the odour values measured according to NVN2820 are not directly
comparable to odour measurements made according to AS/NZS 4323.3:2001. According to Robertson et
al. (2002), NVN2820 odour units need to be divided by a factor of approximately two for them to be
comparable with the European (and consequently the Australian) olfactometry standards. Demetriou and
Bardsley (cited by The Department of Environmental Protection (2002)) found that NVVN2820 produced
results approximately twice as high as the Victorian B2 method. Consequently, odour measurements
made according to the Victorian B2 should be roughly comparable to AS/NZS 4323.3:2001, however
comparative testing between the two methods has shown that greater variability occurred when odours
were determined with the B2 method (Bardsley, 2002).

2.2.4.2 Odour decay in sampling bags

Odour is a mixture of volatile chemical compounds. Once collected and stored in a sampling vessel, the
volatile compounds comprising odour may change over time. To overcome this issue, the olfactometry
standard recommends that samples be collected and stored in polytetrafluoroethylene (PTFE, Teflon®),
polyvinylfluoride (PVF, Tedlar ®) or polyethylene terephthalate (PET, Nalophan®, Melinex®) bags.

Van Harreveld (2003) investigated the stability of tobacco odour in sample drums and found that odour
concentration changed considerably over a 30 hour period. Consequently, it was recommended to
undertake olfactometry analysis within 12 hours of collection. Van Harreveld also recommended the use
of PET bags over PVF bags for sample storage.

Pollock and Friebel (2002b) undertook a similar investigation as van Harreveld, but used broiler odour. In
this investigation, the authors found that odour concentration changed as sample storage time increased,
but the changes were dependent on the time of year that the samples were collected, odour laboratory and
sample bag. While no firm conclusions were drawn, it was recommended that samples be collected using
PVF bags.

Parker et al. (2003) and Koziel et al. (2004) tested a selection of sample bag materials for suitability to
store odour samples. The authors found that Tedlar bags had a background odour due to release of phenol
and acetic acid from the bag material, which was sufficient to affect the measurement of odour
concentration following 4-24 hours of sample storage. Koziel et al. (2004) reported that PET bags
(Nalophan® or Melinex®) provided the best sample recovery of a range of VOCs and semi-VOCs and had
no residual interfering compounds that would influence the measurement of odour concentration.

Agreement between the van Harreveld and Koziel et al. studies supports the use of PET bags to for the
collection of odour samples; however, lack of agreement with the Pollock and Friebel study highlights the
need for further research into the stability of odour samples in sample drums for different sources of
odour.
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2.2.5 Odour and dust relationship

The air in broiler sheds contains a mixture of odorous gases and dust particles. It has been demonstrated
that dust particles collected in animal houses carry odorant molecules (Cai et al., 2006; Das et al., 2004;
Heber et al., 1988; Lee and Zhang, 2008; Oehrl et al., 2001; Williams, 1989). It is believed that odorants
can absorb onto dust particles and produce a much stronger and longer-lasting olfactory response than an
equivalent volume of odorous air (Hammond et al., 1981). It has been suggested that odour emissions
from animal houses may be reduced by removing dust from the air (Briggs, 2004; Carey et al., 2004;
Cargill, 2001; Lacey et al., 2004; McGahan et al., 2002; Ministry of Agriculture and Food, 1999). There
is, however, some doubt that removing dust will significantly reduce the detection threshold for odour
(Williams, 1989). To date, attempts to correlate dust removal and subsequent odour reduction using
olfactometry have been unable to demonstrate any correlation between dust removal and subsequent
odour reduction (Simons, 2006; Williams, 1989).

The relationship between dust and odour is very complicated. While it has been confirmed that dust
particles carry odorant molecules—adsorbed onto the surface or absorbed into the particle—it is unclear
how much of the odour bound to the dust contributes to the total perceived odour emitted from a poultry
shed. Olfactometry is unlikely to be an appropriate instrument for resolving this question because the
olfactometer instrument almost certainly filters out dust particles—only allowing measurement of odours
in the gas phase only, not odours associated with particulates. In addition, Williams (1989) found that
dust concentration in odour sample bags quickly diminished due to static attraction of dust to the plastic
bag material. It was proposed that particles were electrostatically attracted to the plastic bag material.

A methodology is yet to be developed that will enable the contribution of odour laden dust to the total
perceived odour to be quantified.

2.2.6 Broiler farm odours

Odour generation and emission is a normal part of broiler production. Odours are produced in broiler
operations primarily from the microbial decomposition of faeces (Jiang and Sands, 2000); some odours
may also be emitted from the birds themselves (Lacey et al., 2004). Odours generated in the shed are
emitted from the shed through the ventilation fans. The generation and emission of odour is presumed to
be regulated by numerous factors relating to: litter properties; moisture content of the litter; temperature;
ventilation; dust levels; the birds (age, live weight, activity, health status, stocking density); and weather.
The diagram in Figure 6 attempts to demonstrate the complex and intertwined relationship between these
factors and odour emission rate. These factors often interact with each other, and some are dependent on
each other. These interactions and dependencies make it very difficult to identify the causes of increased
odour emission. The generation of odour is usually influenced by factors that will affect microbial
activity, while emission rates are affected by odour generation as well as the factors that influence the
capture, mixing and transport of odour from the shed.

Odours have the potential to create a nuisance for nearby neighbours. The most effective ways to prevent
odour or dust nuisance is to ensure adequate buffer distance between farms and receptors (McGahan and
Tucker, 2003) and to prevent excessive odour generation through good management practices. The
potential for odour nuisance to occur is investigated during odour impact assessments, and results in the
calculation of separation distance between farms and neighbours. Separation distances are determined
using either: approved guidelines for recommended distances (Department of Primary Industries - State
Government of Victoria, 2009); simple formulas incorporating features of the farm, landscape and
receptor (Environment Protection Authority South Australia, 2007); or estimating emission rates and
using atmospheric dispersion modelling to predict impacts.

Accurately measuring representative odour emission rates from broiler farms can be challenging.
Previous attempts to measure emission rates have demonstrated the influence of the factors shown in
Figure 6 on odour emission rates. When reviewing published odour emission rate data, these factors
require careful consideration.
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Figure 6: Diagram illustrating the interaction between farm conditions, environmental conditions and
odour emission rate

2.2.6.1 Factors influencing odour generation at broiler farms

There are several properties of broiler litter that will influence odour generation including chemical
composition, quantity, aeration, pH and moisture content. Conditions that favour microbial activity are
likely to increase odour emissions.

Chemical composition of the litter will be influenced by bird diet and stage of decomposition. Gates
(cited in McGabhan et al. (2002)) found that reducing crude protein levels in the diet reduced pH, moisture
content and ammonia in the litter, resulting in a reduction of ammonia gas production. Reduction in
ammonia may not necessarily equate to a reduction in odour emissions (Briggs, 2004); however, it
demonstrates that diet will influence microbial activity and the subsequent generation of gasses during the
litter decomposition process. Turan et al. (2007; 2009) measured VOC emissions during broiler litter
composting and found that VOC emission rates changed significantly over time, as the decomposition of
the litter progressed. Consequently, odour emission rates would be expected to change as litter is
decomposed.

A review by Cargill (2001) found that live weight density was a cause of increased odour production in
poultry houses. Jiang and Sands (2000) also reported that as bird age increased, manure accumulation also
increased leading to greater odour generation. Increased live weight density (by increasing bird numbers
or bird age) will increase manure deposition leading to increased nutrient and moisture levels and greater
physical disturbance of the litter, which combine to increase odour emissions.

Jiang and Sands (2000) reported that odour generation will take place under aerobic and anaerobic
conditions. Aerobic decomposition will occur in the presence of oxygen and anaerobic decomposition is
more likely to occur in wet, caked litter where oxygen supply is reduced. Anaerobic decomposition is
often attributed to the production of highly odorous (and unpleasant) sulphurous compounds, but odorous
compounds containing nitrogen will still be produced during aerobic biodegradation (McGahan et al.,
2002).
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Jiang and Sands (cited in McGahan et al. (2002)) reported that pH was an important factor for odour
emissions because it influenced the formation of anaerobic conditions; microbial activity; and chemistry
within the litter. Moore et al. (1995), Moore et al. (2006) and Gates (cited in McGahan et al. (2002))
reported changes in ammonia emissions with changes in litter pH.

Possible influence of litter moisture content on odour emissions

Litter moisture content is presumed to be one of the most critical factors affecting odour production in
poultry sheds (Carey et al., 2004; Clarkson and Misselbrook, 1991; Jiang and Sands, 2000; McGahan et
al., 2002; Scottish Environment Protection Agency (SEPA), 2008). Moisture content is expected to affect
odour generation because water acts as a catalyst in the processes of odour generation, transfer and
transport (Jiang and Sands, 2000); will increase microbial activity (Carey et al., 2004); and high levels of
moisture content will tend to increase anaerobic bacterial activity (McGahan et al., 2002). Excessive litter
moisture can occur for a variety of reasons including high ambient humidity; poor ventilation system
design or operation; high stocking density; flock health problems; leaking drinkers; leaking shed; seepage
of water from outside; or from poor management of evaporative coolers and fogging systems.

It is commonly believed that odour emission rate increases with litter moisture content. Data reported by
Clarkson and Misselbrook (1991) (see Figure 7) suggested that odour emission rates increase dramatically
once litter moisture content increases above 40%. This data should not be taken on face value because:

o other factors such as bird age and weight increased concurrently with litter moisture content;

¢ these measurements were taken in early 1989, which is late winter or spring in England. It could be
reasonably expected that the weather was warmer at the end of the batch and consequently ventilation
rate and emission rate would also be greater;

e the shed involved in Clarkson and Misselbrook’s study was ridge ventilated and therefore different to
current best practice shed design in Australia; and

¢ odour measurements were not conducted to a recognised, modern olfactometry standard (which was
not available in 1989) and consequently the precision and accuracy of these odour measurements
cannot be assured. The highest recorded value was based on a single measurement, and due to the
inherent variability in olfactometry, could be an outlier.
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Figure 7:  Increasing odour emission rate with litter moisture content (derived from Clarkson and
Misselbrook (1991))

In contrast to the increase in odour emission with litter moisture content seen by Clarkson and
Misselbrook, data presented by Sneath and Robertson (2000) and Simons (2006) (see Figure 8) shows no
increase in odour emission rate with increasing litter moisture content.
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Figure 8: Odour emission rate versus litter moisture content from Sneath and Robertson (2000) (left)

and Simons (2006) (right)

While the relationship between litter moisture content and odour emission rate has not been clearly
established in these three previous studies, broiler growers work on the presumption, based on their own
experience, that high litter moisture content (greater than 40% (McGahan and Tucker, 2003)) leads to
increased odour emissions. It is likely that the previous research studies did not observe this relationship
because:

The research studies measured shed-average litter moisture, not range or profile of moisture content
throughout the shed or the existence of small areas of wet litter. A small patch of wet litter may emit a
strong odour, contributing to the overall shed emission while not significantly increasing the
measured shed-average litter moisture content.

There is likely to be a time delay between wetting of the litter and the increase of odour emission.
Lunney and Lott (1995) and Watts et al. (1994) reported that feedlot odour emissions peaked
approximately one to five days following rainfall. The delay occurs because the microbial community
requires time to increase activity, and it takes time for the manure to become anaerobic. In addition,
Klieve et al. (1995) found that this microbial activity in the wet feedlot manure pad forms a polymer-
like sheet on the surface which may reduce evaporation and prolong the manure drying process—
which also prolongs the production of odours. Whilst there are differences between the feedlot and
broiler situations, odours in both cases are generated through microbial activity. It is therefore likely
that there may be a delay between the wetting of poultry litter, and an increase in odour emission.
This delay is likely to vary according to temperature, moisture content, microbial activity, litter
composition and physical litter characteristics such as litter friability.

The exchange of odorants from the litter to the air is controlled by complex mechanisms which may
be restricted when litter is wet and caked, as explained by Simons (2006). Caking and compaction of
the litter prevents the birds from disturbing the litter, which assists the transfer of odorants into the air
stream. It may be possible, therefore, that dry, friable litter will increase the transfer of odorants into
the air when compared to wet, caked and compacted litter. The understanding of the emission
processes is further complicated by the differences in diffusion mechanisms of odorants through pore
spaces in dry, porous materials as opposed to through liquids in saturated materials (Hudson et al.,
2009).

Further research is required to completely understand the relationship between litter moisture content and
odour generation in broiler farms.

Possible influence of ventilation on odour emissions

Ventilation influences odour generation, transfer and transport.

Broiler shed ventilation is primarily controlled to remove heat from the shed, maintaining a comfortable
and healthy environment for the birds. As the internal temperature of the shed increases, more fans are
activated to remove the heat and maintain the temperature.
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Effective ventilation management will contribute to maintaining good litter moisture content (between
15% and 30% wet basis (McGahan and Tucker, 2003)), reducing anaerobic microbial activity and
generation of odours (McGahan et al., 2002).

Ventilation is a critical factor influencing odour emissions from broiler sheds. Odour emission rate (OER)
is the product of odour concentration (OC) and ventilation rate. Assuming that odour concentration
remains constant, changes to ventilation rate will result in proportional changes to odour emission rate.

Ventilation will also influence the transfer or release of odorants from emitting surfaces to the air (litter,
building surfaces and the birds). These processes are controlled by physical air movement as well as the
concentration of odorants in the air. Hudson et al. (2009) and Hudson and Ayoko (2009) demonstrated
that emission of odour from area sources—such as poultry litter—are strongly related to wind speed.
Therefore, the mass transfer of odorants from the litter is very likely to be primarily controlled by
advection processes (driven by wind speed).

Jiang and Sands (2000) explained the relationship between ventilation rate and the emission of odour
from the litter using boundary layer theory (as defined by Schilichting and Gersten (2000); and Incropera
et al. (2007)). Boundary layer theory explains the mass transfer process at the solid/air and liquid/air
interface and may be used to relate the rate of evaporation of an odorant to its diffusion characteristics,
temperature, air velocity across the surface and the geometric dimensions of the source. Using this theory,
the airborne chemical concentration for each odorant is a function of the air velocity across the surface of
the litter and the birds.

The concentration of odorants in the shed may also be an important factor for regulating the transfer of
compounds from the litter surface into the gas phase, especially when in-shed airspeed is negligible.
Gholson et al. (1989) and Gholson et al. (1991) (in describing the operation of a flux chamber) reported
that as the gas phase concentration increases, the liquid/gas phase equilibrium will be affected and the
transfer of compounds from the surface to the air will be reduced. The transfer rate will be different for
every odorant compound, depending on its Henry’s Law constant. This equilibrium theory can be equally
applied to poultry sheds where variable ventilation rates will result in different gas concentration within
the shed, and presumably the emission rate of odorants from the litter and other surfaces into the air will
also vary.

The mechanisms described by Hudson et al. (2009) and Hudson and Ayoko (2009), and to a lesser extent
Jiang and Sands (2000) and Gholson et al. (1989), provide a overall description of the transfer of odorants
from emitting surfaces into the airstream, and the importance of ventilation to the odour transfer process.
In plain English, odorants produced by microbial degradation (Jiang and Sands, 2000) are adsorbed onto
litter surfaces (and moisture contained within the litter), building surfaces and the birds. When the
concentration of odorants in the shed is high and airspeed low, the transfer of these odorants into the air
will reduce until equilibrium is achieved. When the odorant concentration is reduced or airspeed
increases, presumably by introducing fresh air into the shed with increased ventilation, the transfer rate of
odorants into the airstream will increase (possibly only temporarily) until a new equilibrium is achieved.
Considering the highly variable ventilation activity in poultry houses, it would be expected that the
transfer of odorants into the air, in-shed odour concentration, and subsequent emission of odour from the
shed will be highly variable.

2.2.6.2 Previously reported broiler shed odour emission rates

Accurately measured odour emission rates are essential for providing realistic predictions of impacts
using odour dispersion modelling. Only limited odour emission rate data has been published for intensive
broiler production. Much of the previously measured odour emission rate data has unfortunately lost
relevance due to changes in olfactometry standards and recent changes to broiler farm design and
management.

Pollock and Anderson (2004) reviewed the available odour emission rate data that was available and
found that most had been collected for research projects (Jiang and Sands, 2000) or by consultants in the
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course of collecting data for odour impact assessments (Mirrabooka Consulting, 2002; Pacific Air and
Environment, 2003; Pollock and Friebel, 2002a). In this review, data was adjusted for presentation as
odour emission rate per thousand birds placed at the start of the batch (OER 100 birs), USING units

0U/S1000 pirds-

Odour emission rate data from Jiang and Sands (2000) is difficult to extract because the dataset is
incomplete (especially in terms of ventilation rate). By combining the available data and making
assumptions that the ventilation rates are matched to the odour concentration data, the odour emission rate
at three Victorian tunnel ventilated farms ranged from 40 t0733 ou/S1g00 birgs. It IS important to note that
this data was collected between days 29 and 44 of the production cycle, following the harvesting of some
birds from the shed. It is therefore likely that the measured odour emissions were lower than they would
have been at the peak of the batch, on day 35 prior to the first pickup. Also, ventilation rates reached
approximately 75-80% of the maximum available. Odour analysis was performed to the NVN standard,
which is different to the Australian Standard AS/NZS 4323.3:2001 and requires the measured emission
rates to be approximately halved to be comparable to the current Australian Standard.

Mirrabooka Consulting (2002) measured odour emissions at a broiler farm near Tamworth on a weekly
basis throughout a batch. For this sampling, the shed was fitted with cup drinkers, which are not
commonly used in modern sheds and are often reported to cause water spillage and consequently higher
litter moisture content and stronger odour. Odour samples were collected and analysed according to the
Australian Standard AS/NZS 4323.3:2001. Odour emission rates ranged from 66—742 ou/S10qo birgs (S€€
Figure 9). Mirrabooka Consulting (2002) also reported odour emission rates for a broiler shed fitted with
nipple drinkers, which ranged from 235-416 0u/S1000 birds-
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Figure 9:  Odour emission and ventilation rate at a broiler shed (data derived from Mirrabooka
Consulting (2002))

The odour emission rates reported by Mirrabooka Consulting indicated that the use of nipple drinkers
may reduce odour emission rates from broiler sheds. Unfortunately, litter conditions in the shed were not
reported, and may have been a contributing factor to the reduction in odour emission rate. Another
important consideration is that emission rates at both sheds were measured in winter (July and August),
when cool conditions dictated that minimal ventilation was required and consequently, most odour
measurements were undertaken at 12-15% of the maximum ventilation rate in the shed.
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Pollock and Anderson (2004) reported that Mirrabooka Consulting had manually overridden the
ventilation system controls (for the week 5 sampling), rather than allowing the system to respond to
temperature demands within the shed. This act may have influenced the measured odour emission rates.

Pacific Air and Environment (2003) measured odour emissions at three tunnel ventilated broiler sheds in
Queensland. It is stated that the samples were not analysed according to AS/NZS 4323.3, but the method
of analysis was broadly compatible. Measurements were made in 1999. Odour emission rates ranged from
380-2300 ou/s1g00 virgs at a variety of times throughout the batch and at different ventilation rates.

Ormerod and Holmes (2005) presented a figure comparing odour emission rate (0u/s/Kgjive weight) against
ventilation rate and used this data to rate the odour potential of a range of farms. Odour emissions ranged
from 0.2-1.1 ou/s/kg.

Robertson et al. (2002) provided a summary of odour emission rates for broilers and reported that odour
emission rates varied from 60-970 ou/Sy000 birgs (Measured to the European Standard and therefore
comparable to the Australian Standard). Samples were collected at a commercial broiler shed housing
34,000 birds, however the shed was not tunnel ventilated instead utilised roof ridge fans.

2.2.7 Summary of background information on odour

Odour in general
e Odour is extremely complex—measured in four dimensions: odour threshold, intensity, character
and hedonic tone—and is usually comprised of numerous odorous compounds (odorants).

Odour threshold is measured using olfactometry. Artificial olfaction systems (AOS) and gas
chromatography—mass spectrometry—olfactometry (GC-MS-0) are complementary instrumental
methods that can provide additional detail about odour. Odours are analysed according to the
Australian/New Zealand Standard AS/NZS 4323.3:2001.

Odour measurement standards have changed over time so prior odour measurement may not be
comparable to current values.

Odorous gas mixtures are not stable, which can change the nature of an odour and also
necessitates timely analysis of odour samples.

Relationships between odour and dust have been hypothesised, but the effect of dust on perceived
odour had not been quantified.

Broiler farm odours

e Odour is produced by the microbial degradation of organic matter (manure).
Factors influencing odour generation include: chemical composition; manure loading;
temperature; litter moisture; aerobic/anaerobic status; litter physical properties and disturbance
(influence odour release); ventilation and shed aerodynamics; and many other factors.

The effects of the above factors on odour generation and emission are extremely complex.

Continued over the page.
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Summary of background information on odour continued from previous page.

Previously published broiler odour emission rates

e It has been hypothesised that odour emission rates are influenced by many factors including
weather, litter, ventilation, birds (age, mass and number), shed design and farm management
practices. It is therefore likely that odour emission rates will vary between farms, diurnally,
throughout each batch cycle and throughout the year. The emission rate data collected to date
does not adequately demonstrate the full range and variability of odour emissions. Maximum
odour emission rate typically occurs before the first pickup—usually around day 35.

Litter moisture has been reported as a contributing factor to excessive odour generation and
further research needs to be conducted to quantify the delay between wetting of the litter and
increased formation of odour.

Previously reported broiler shed odour emission rates have not included essential supporting
data—odour emission rate data MUST be supported by information including shed dimensions,
ventilation system description (including maximum possible ventilation rate), bird age, bird
numbers, bird weights, ventilation rate, ambient temperature, odour concentration and preferably
litter conditions. This information must be recorded at the time of each odour sample and is
required to put the odour emission rates in context with weather conditions and production factors.

Published odour emission rate data for broiler farms is of limited value—

Most of the published odour emission rates have been measured using olfactometry
methods/standards that are not equivalent to the Australian Standard AS/NZS 4232.3:2001.
Consequently, data is not truly comparable. Relationships between the Australian, Dutch
NVN2820 and Victorian B2 standards have been published, and can be used to roughly equate
data to the Australian Standard; however, caution is required because accuracy and repeatability
requirements for the older standards were not as stringent as they are for the current Australian
Standard.

Odour emission rate measurements have not been reported throughout the full grow-out cycle and
for the full range of weather conditions experienced on Australian broiler farms. Limited emission
rate measurements in cooler weather; at low ventilation rates; and after birds have been removed
from the shed, cannot be equated to the emissions from a broiler shed with peak bird weight and
maximum ventilation rate.

Previously reported broiler shed odour emission rates ranged from 40-2300 OU/S1400 pirds-

2.3 Dust

Dust emissions from broiler sheds occur due to two general processes. Firstly, animal activity or the
movement of air causes the mechanical breakdown of mineral and organic material from the litter and
birds and entrainment of this material into the air. Secondly gaseous emissions, such as nitrous oxide
(N20) and ammonia (NH3), may be converted to the particle phase under the right conditions, adding to
the total dust emissions from a poultry shed.

This section will highlight these possible health and environmental impacts and introduce some concepts
used to characterise and measure particulates.
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2.3.1 Measurement of particle concentrations—mass or number?

Particles suspended in the air can vary in size by many decades from ~10° m up to ~10® m. Particles in
different size ranges will contribute to different health and environmental impacts. For this reason dust
measurements are generally classified by particle size. Airborne particles that are less than ~100 pum in
diameter are collectively referred to as total suspended particulate matter (TSP). Particles that are less
than 10 um are defined as PMy,. The PMy, size fraction is usually grouped into two size categories:
coarse particles, with a diameter from 2.5-10 um, and fine particles, with a diameter of up to 2.5 um
(PM,5). Even smaller size fractions are becoming increasingly important and many studies now report the
concentration of particles smaller than 1 um (PM,), or even particles smaller than 0.1 pm (ultra-fine
particles). The definitions of particle size ranges can vary between countries and particle sampling
devices. For example, many European studies of dust emissions from intensive livestock production refer
to the ‘inhalable’ and ‘respirable’ particles, referring to the particles less than 30 um and 5 pm,
respectively. Although the size ranges do not match exactly, inhalable particles can be compared to TSP.

Particle or dust levels in the air are generally measured as either a mass concentration or number
concentration. Mass concentration refers to the mass of PM per unit volume of air and is commonly
expressed in units of mg/m3. Number concentration refers to the number of particles per unit volume of
air and is commonly expressed in units of particles/m?. Which concentration metric is used in a given
environment will primarily depend on the size distribution of particles in that environment. For example
if a given sample of air contains a large number of ultra-fine particles (diameter < 0.1 um) and only a
very small number of larger, coarse particles (diameter > 2.5 pm) then the total mass of the particles will
still be dominated by the small number of larger particles. To ‘see’ the ultra-fine particles it would be
more appropriate to measure their number concentration. Traditionally, allowable particle concentration
levels expressed in air quality guidelines have been expressed as mass concentrations. However with a
consensus emerging that fine and ultra-fine particles are more damaging to human health than coarse
particles, it is becoming more common to measure particle number concentrations. In many situations it is
most desirable to measure both particle mass and number concentration.

2.3.2 Potential health effects of dust

Dust particles can act as a reservoir for bacteria, other disease carrying agents and noxious gasses, such as
ammonia. Dust concentrations in intensive animal production sheds can build up to levels that are high
enough to adversely affect animal health and productivity. However, there is doubt regarding the specific
levels required to induce these adverse effects. In tunnel ventilated poultry sheds, the ventilation rate of
air through a tunnel shed is highly variable, with higher rates of ventilation in warm summer weather; and
the opportunity for high dust concentrations will also be variable depending on ventilation rate, litter
conditions and bird activity. These factors can contribute to amount of dust being emitted from the
exhausts of tunnel ventilated sheds into the ambient air.

The effects of dust on health and the environment are dependent on the size of the particles; categorised
in terms of TSP, PMy, and PM, 5. TSP is typically associated with adverse aesthetic effects rather than
human health effects because these particles tend to settle out on surfaces causing soiling and
discolouration. Larger particles (> 10 um) are usually trapped in the human nose and throat before being
swallowed. PMy particles (particles < 10 um) travel further down the human airway into the lungs and
they are associated with increases in respiratory illnesses such as asthma, bronchitis and emphysema.
Particles in the PMy, size fraction have been associated with increases in the daily prevalence of
respiratory symptoms, hospital admissions and mortality (Pope et al., 1995). The people most sensitive to
these conditions include the elderly, children and those with pre-existing heart problems or respiratory
diseases. Particulates can accumulate in the lungs after repeated, long-term exposure causing respiratory
distress and other health problems. Specific health effects of dust will depend on composition,
concentration and the presence of other pollutants.

Particles in the PM, 5 size fraction have been associated with health effects similar to those of PMy, (Pope
and Dockery, 2006). When inhaled, the weak gravitational force felt by these small particles enables them
to travel inside the lungs to be deposited in the alveoli.
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Particle composition, especially the presence of microbial organisms, can influence the health effects of
particulate matter. For example, both harmless and pathogenic bacteria are known to be emitted in the
exhaust of tunnel ventilated broiler sheds (Blackall et al., 2008). This study concluded that the pathogenic
bacteria were emitted rarely from broiler sheds and concentrations were too low to cause any significant
human health effects.

2.3.3 Dust concentrations and emissions from poultry farms

Dust emissions from poultry farms have been studied for at least three decades. However, ongoing
research is required due to recent advances in large-scale poultry production and increasing recognition of
the potential health effects of particulate matter. In addition, the mechanisms behind dust generation from
poultry sheds are not yet completely understood. These mechanisms need to be elucidated in order to
design strategies for reducing dust emissions.

Poultry dust consists of a litter materials, feathers, dander, faeces, and crystalline urine. This suggests that
dust is generated from birds, manure and litter in poultry sheds. Many interdependent factors can affect
poultry dust levels including:
e bird age;
ventilation rate;
shed design (type of litter, ventilation system, manure removal system, feeding system);
in-shed microenvironment (temperature, relative humidity, light levels);
season;
time of day;
stocking density;
cleaning practices;
bird handling;
residual dust levels;
moisture content of litter and feed; and
nearby dust sources.

Much of the research concerning dust concentrations and emissions from poultry sheds has been
conducted in the USA or Europe, although some has also been conducted in Australia. The results from
studies have been tabulated in Appendix 1; and a combined summary of the particulate concentrations
and emission rates is provided in Table 4. It should be noted that variations between dust concentrations
and emissions measured in different studies could be due to all of the factors listed above, as well as
differences in instrumentation and methodologies. As can be seen in the table, studies have been
conducted at broiler sheds with natural, mechanical and tunnel ventilation systems. In-shed TSP
concentrations range from 0.74-16 mg/m3, although one study reported concentrations as high as 81.33
mg/mé. PMy, or PMs concentrations are generally lower and vary from 0.1-9.71 mg/m3. Recently, a
number of studies have measured the concentrations of the smaller particle size fractions (PM,s and PM;)
in recognition of the greater health effects of these particles. Results from these studies are included in
Appendix 1.

Dust emission rate from a poultry shed is calculated by multiplying dust concentration by ventilation rate.
Emission rates are generally expressed in units of mass of PM emitted per unit time. Many studies also
calculate the emission rate per 500 kg live weight in order to compare rates between different sheds.
Table 4 displays emission rates per 500 kg live weight in square brackets. These normalised rates are
converted to the particle emission rate, in units of mg/s, for a hypothetical shed with 40,000 birds at an
average weight of 1.8 kg. This is done to enable easier comparison with the emission rates measured
during this study, and also to allow a more intuitive understanding of the measured rates.

Only a limited number of studies have been conducted at tunnel ventilated poultry sheds. Redwine et al.
(2002) measured PM emission rates from four commercial, tunnel ventilated broiler sheds in Texas, USA.
During the study, ventilation rates varied from 0.58 to 89 m?/s leading to TSP emission rates up to 3.5
mg/s/500 kg live weight and PMy, emission rates up to 0.21 mg/s/500 kg live weight.
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Visser et al. (2006) performed a study at a tunnel ventilated broiler farm consisting of 7 sheds (each with
26,200 birds) in the USA. Comprehensive PM, 5 concentration measurements were taken upstream of the
sheds (control); within the sheds at the exhausts; and 30 m, 91 m and 152 m downstream of the sheds.
The 24 hr time integrated PM, 5 concentration measured within the sheds averaged 0.059 pg/m?, which is
significantly greater than the average concentration measured upstream of the sheds, 0.024 pg/m?.
However, the 24 hr time integrated average concentrations measured downstream of the sheds (30 m:
0.0241 pg/m?3; 91 m: 0.0249 pg/ms; 152 m: 0.0231 pg/m?®) were not significantly different from each other
or the control. Real-time concentration measurements did hint that PM, s concentration decreased with
increasing distance downstream from the sheds. Importantly, the overall conclusion of the study was that
dust emissions from these 7 tunnel ventilated broiler sheds did not significantly affect PM, s
concentrations in the surrounding ambient air.

Bull (2008) performed a study to measure ambient PM,, concentrations near a broiler farm in the United
Kingdom that housed approximately 250,000 birds. A monitoring station was established and PMy,
concentration was measured for approximately 7 months over a 12 month period. This study found that
daily average PMy, concentrations were typically about half of the ambient objective value (50 ug, 24-
hour average) and whilst there were a few occasions when the daily average exceeded the objective,
occurrence was much less often than what was allowable. The authors concluded that ambient PMy,
concentrations around broiler farms (at typical receptor distances) are unlikely to exceed the daily mean
ambient air quality objective for PMy.

A review of the measurements of dust at Australian poultry farms has been conducted by Pollock and
Anderson (2004). The results of studies reviewed by Pollock and Anderson are included in Appendix 1
but they will not be discussed in further detail here.

Table 4: Summary of reported particulate concentrations and emission rates for broilers

Emission rate, ER (mg/s)
Concentration (mg/m?3) [ER per 500kg live weight (mg/s/500kg)]
Ventilation Respirable Respirable
type Country TSP PMlo (PMs) PMz_s PM1 TSP PMlo (PMs) PM2'5 PMl
. . 54-1230
Mechanical | Australia | 4.7-16 [1.6-6.3 [nr* —8.54] 17-139
0.024— 2.8-504 0.12-30 24.5-34.6 2.03 1.65
Mechanical | Overseas |0.7-13.2|0.1-0.7| 0.6-9.71 019 | 016 [0.02-3.5] [%(:)2%7 [0.17-0.24] | [0.014] | [0.01]
- Ly . i 85-298 10-100
& Various™ | Australia | 2.3-8.6 03-1.8 [0.6-2.1] [0.07-0.7]
o
@
Natural Overseas (1.0-14.0
" 158 3.2 20.7
Various Overseas | 7.1-9 0.8-6.5 0-5.7 [1.1] [0.2] [0.14]
e
2
g Various® | Overseas [0.02-81.3 0.01-7.73
S
z

*measurements collected from both mechanically and naturally ventilated buildings; or ventilation type not specified
*not reported
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2.3.4 Summary of background information on dust

Dust in general

e Airborne dust originates from suspension of mineral and organic materials or by the conversion of
gases.
Dust concentration is measured in terms of mass and/or number of particles.
Dust is categorised according to particle size ranges (especially TSP, PM, s and PMyy).

Dust has been linked to health and environmental effects.

Poultry farm dust
o Dust originates from the litter, feed and the birds (skin and feathers particles).
Factors influencing dust generation include: type of litter; physical litter properties; litter moisture

content; bird activity; stage of production (number and size of birds); contribution of feathers;
shed design; shed cleaning and management; ventilation; and feed properties.

Studies have shown that air surrounding broiler farms is unlikely to be significantly affected by
dust emitted from the sheds, and ambient air quality objectives for particulates are unlikely to be
exceeded.

Broiler dust emission rates

o Previously measured dust concentrations have been highly variable, and categorised according to
the various size categories. Refer to Table 4 for summary of reported values.

2.4 Non-methane volatile organic compounds

Odour has traditionally been assessed using olfactometry, which determines odour detection thresholds
using a combination of gas dilution equipment and trained human assessors. While still regarded as the
only standardised method for odour measurement, olfactometry is limited when trying to determine the
origins and constitution of a particular odour or trying to measure odour in real-time or over an extended
period. To achieve these outcomes, technologies such as a non-specific electronic sensor array and/or gas
chromatograph-mass spectrometer-olfactometer (GC-MS/Q) have more recently been applied to the
assessment of emissions from intensive livestock operations. GC-MS/O allows the chemical compounds
to be separated and identified, with simultaneous identification and characterisation of the odorants
according to their perceived intensity and character.

2.4.1 Gas chromatography analysis of odours

Emissions from different intensive livestock operations comprise different chemicals and odorants.
Wright et al. (2005), Hobbs et al. (2004) and Jacobson et al. (2006) studied the different compounds that
were identified in the emissions for different intensive livestock facilities; the comparisons drawn by
Hobbs et al. (2004) serve to highlight these differences. As different compounds have different odour
detection thresholds, some species that gave an olfactometry response did not always correspond to a
response from any other detector, conversely some compounds with large detector responses gave little or
no olfactometry response. Speculation is often made as to the identity of the compound based upon it
odour characteristic and associated compounds within the matrix.

Studies have been undertaken that focus on particular intensive livestock operations. Studies carried out
by Kai & Schéfer (2004), Blunden et al. (2005) and Bulliner et al. (2006) focussed upon the chemical
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analysis of emissions from swine facilities, while Rabaud et al. (2003) analysed the emissions from dairy
facilities. Work specifically relating to intensive broiler production has primarily focused on the general
quantification of the odour emissions and not the identification of the odorants; Hayes et al. (2006) and
Pescatore et al. (2005) reported ammonia emissions from intensive poultry facilities, whilst Williams
(1989) reported the relationship between dust and odour from broiler houses.

Table 5 lists recent publications that focussed on the investigation of odorant emissions from intensive
livestock operations.

Table5:  Chemicals reported in different intensive livestock operation emissions

Reference Chemical Observations

Zahn et al. (2001a) Reported that downwind concentrations of hydrogen sulphide
were much lower than the detection threshold.

Wright et al. (2005) Identified 4-methylphenol, 2-aminoacetophenone, iso-valeric
acid and 4-ethylphenol as major odorants in piggery
emissions.

Trabue et al. (2008a) Reported hydrogen sulphide was the dominant sulphur-

containing odorant at piggeries, while methanethiol was the
principal sulphur-containing odorant in poultry litter.

Trabue et al. (2008b) Reported butanoic acid, 4-methylphenol, 4-ethylphenol,
indole and 3-methylindole were the dominant odorants
associated with piggery buildings, while butanoic acid, 3-
methylbutanoic acid and 4-methylphenol were characteristic
of poultry odour.

2.4.2 Olfactory-GC-MS analysis of odorants

Olfactory-GC (GC/O) and GC-MS/O is a well established techniques in other science fields, such as food
aromas and taste and odours in drinking water, but has had limited application to environmental odour
analysis. In drinking water, taste and odour (or off-flavours) monitoring using GC-MS/O analysis has
been successfully applied to the characterisation of common earthy and musty off-flavours compounds
such as geosmin and MIB (2-Methylisoborneol) (Hochereau and Bruchet, 2004). These studies have
enabled the development of odour wheels for drinking water olfactory assessment (Figure 10) to relate
odour descriptors to the chemical composition of odorants (Suffet et al., 1999). Odour wheels are used by
water operators and in customer complaint evaluations to determine a cause-and-effect relationship
between the water quality and operational failures.
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Figure 10: Taste and odour wheel for off-flavours in drinking water (Suffet et al., 1999) showing the
highlighted relationship between earthy — musty odours and compounds, geosmin and M1B
(2-Methylisoborneol)

GC-MS/O applications for the assessment of odorous emissions has mainly focused on the simple
qualitative characterisation of odours from various agricultural operations such as swine finishing, dairy
processing facilities and poultry sheds (Kai and Schafer, 2004; Kleeberg et al., 2005; Parcsi and Stuetz,
2007; Wright et al., 2005). Results have shown that emissions are composed of several hundred
compounds; some species give intense olfactory responses whereas others give little or no olfactometry
response (Figure 11). Additionally, speculation is often made as to the identity of the compound based
upon its odour characteristic (Rosenfeld and Suffet, 2004). These studies have shown that GC-MS/O can
be successfully used for the analysis and identification of odorous compounds but that more attention
needs to directed toward understand the formation of key odorants and their fate in the environment.
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Figure 11: GC-MS/O analysis showing total ion chromatogram and odour chromatogram (A —
2-butanone, B — 2, 3-butanedione, C — dimethyl disulphide D — 3-hydroxy-2-butanone E —
dimethyl trisulphide and F — acetophenone) (Parcsi and Stuetz, 2007)

2.4.3 Summary of background information on Odorant Analysis

Odorants in General

e Odours are composed of a mixture of odorous and non-odorous compounds

e Odorants identified in intensive livestock operations include 2-butanone, indole, skatole and
various sulphides

Poultry house odorants

Existing work focuses on quantification of chemicals from poultry houses
Limited information is available on dominant odorants within the emissions from poultry facilities

Factors influencing NMVOC emissions include: type of litter; physical litter properties; litter
moisture content; bird activity; stage of production (number and size of birds); shed cleaning and
management; ventilation; and feed properties.

Broiler VOC emission rates

e Previously published material investigated the emissions of ammonia and hydrogen sulphide with
little focus on the chemical composition of VOCs with odorant impact.
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2.5 Sensor based monitoring of shed air quality

Sensor based air quality monitoring systems are being developed to complement or be alternatives for
costly and labour intensive techniques such as olfactometry and instrumental particulate measurement. It
is hoped that with refinement, these sensor based systems will offer affordable, reliable, repeatable and
continuous monitoring of odour and dust concentration.

Two sensor based systems were trialled in this project to monitor in-shed air quality (especially odour and
dust concentration). It was hoped that continuous monitoring would complement the discrete
measurements of odour and dust by providing additional data when sampling was not possible. The two
techniques included wireless sensor stations fitted with a range of sensors to provide relative information
about odour and dust concentration (as well as ammonia, airflow, temperature and humidity) and an
artificial olfaction system. Details of these systems are described in the following sections.

2.5.1 Wireless sensor stations for monitoring in-shed air quality

Sensor technologies can be combined with wireless networking to produce a portable environmental
monitoring system. Wireless sensor networks have not been applied within broiler sheds, but have the
potential to improve monitoring of the in-shed environment and subsequent emissions.

Poultry shed management and in-shed environment pose several challenges for the application of wireless
environmental monitoring systems, especially due to:
e dust and ammonia;
continually varying ventilation rate;
different modes of ventilation (tunnel, mini-vent and combinations of both of these);
short production cycles;
shed cleaning;
electrical interference from fans, lights, power cabling and other powered equipment; and
e building design.
These conditions:
e necessitate robust sensors and waterproof sensor housings;
contaminate and degrade sensors;
interfere with meaningful air-flow measurement;
require relocation or removal of sensing stations;
interfere with radio/network communications; and
increase the difficulty of selecting representative sampling positions.

Therefore, many technical challenges need to be overcome before the use of wireless environmental
monitoring systems in poultry sheds can be considered. Activities in this project were aimed at
overcoming these challenges and evaluating the value and performance of these systems.

Our hypothesis was that measurement of multiple parameters (odorants, dust, ammonia, temperature,
humidity and airflow) at several locations inside a shed would correspond to those made by conventional
approaches (e.g. olfactometry) when analysed and processed appropriately.

Selection of ‘representative’ monitoring locations within broiler sheds is complicated by spatial, seasonal
and temporal variability. Wireless sensor networks were utilised in this investigation because they are free
from constraints such as power, cabling and, in principle, sensors can be placed in multiple locations and
measure microenvironments within a larger system.

Sensors in a traditional wireless sensor network need to have low power consumption and their costs,
both capital and recurrent, must be commensurate with the benefits they provide.

In the current project, air flow, odour, dust, ammonia, temperature and humidity sensors were chosen for
monitoring air quality, emissions and the in-shed environment.
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Temperature and humidity

In the case of temperature sensors, the demands for low power, low cost and durability are readily met by
mass-produced microelectronic components. Similar technology is available for humidity sensors, and
single chip temperature and humidity sensors are also available at low cost.

Air flow

There are three main types of commercially available anemometers - cup, hot wire and ultrasonic.
Ultrasonic sensors are both accurate and have low power consumption, but may be prohibitively
expensive for on-farm applications. Hot wire anemometers are accurate and responsive, but their high
power consumption makes them unsuitable for continuous, battery powered applications. Cup
anemometers consume little power, are moderately accurate, but less sensitive and responsive than the
other two types; however, the anticipated flows in the central areas of the shed, particularly during tunnel
ventilation events, were expected to fall in the normal operating range of cup anemometers. For these
reasons, cup anemometers were selected to measure air flow in these studies.

Dust

Commercial and general research dust monitors use sensors in which the dust particles scatter light from
IR LED (infra-red light emitting diode) or laser illumination. The scatter of the light is proportional to the
number and size of the particles and, depending on the sophistication of the sensor, signals can be
analysed to yield detailed profiles of the dust particles in the sample. These commercial dust sensors can
cost $6000 and above, which may be prohibitively expensive for continuous monitoring in broiler sheds.
A small range of air quality sensors are available from original equipment manufacturers (OEM) that
have the basic sensing optics and electronics of the infra-red dust sensors. These sensors have a
proportional response to dust particles, although it is not characterised with respect to particle size. These
low cost devices (typically less than $200) have potential for measuring dust concentration in the range of
0.02-5.0 mg/m3. Power consumption is moderate as they require either convection heating elements or
some form of pump or fan to draw air past the sensor; however, the sensors can be left idle and
unpowered between sensing events.

Odour

Sensor based analysis of odour, particularly biological/agricultural odours is difficult. The variety of
odorants, the sensitivity of sensors to different odorants, and the relationship to human perceptions are all
highly variable. Significant progress in measuring odours by the use of ‘artificial olfaction systems’ or
‘electronic noses’ has been achieved (Rock et al., 2008; Sohn et al., 2009a; Sohn et al., 2009b), including
the potential for continuous monitoring in animal production facilities (Bell, 2004; Sohn et al., 2008).
However, most systems are based on research grade instrumentation and complex analysis, which places
these instruments beyond what might be considered commercially feasible for the foreseeable future.

Less complex sensors are available for measuring specific gasses or a range of related gasses. For
example, ammonia and hydrogen sulphide can be measured using electrochemical sensors or metal oxide
sensors (MOS). Less selective sensors, such as those for volatile organic compounds (VOCs), can
measure a range of substances, many of which are odorous. Using such sensors, the measurements can
only be indicative of odour, and where the nature of the odour changes markedly, the relationship

between sensor measurements and odour strength and intensity are weak. Where the nature of the odour is
similar or changes slowly, these simple sensors may provide a relative measure of odour.

Ammonia

Ammonia is a common odorant in poultry farms although it does not necessarily have a strong correlation
with odour. Microbial activity is primarily responsible for the production of ammonia and other odorants,
and is influenced by various environmental and biological factors (Jiang and Sands, 2000).

Electrochemical sensors for detecting ammonia are used widely, are sensitive and precise, and use very
little power. They are relatively expensive, and have a limited lifespan. MOS for ammonia are available,
and have the advantages of low cost and long life. However, they are relatively insensitive, and lack
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precision. Metal oxide VOC sensors are readily available, cheap and long-lived, and have adequate range
and precision for a monitoring device. The main disadvantage with these sensors is high power
consumption and requirement to stabilise for one to four hours prior to taking a measurement. In some
applications, this would lead to continuous operation.

2.5.2 Artificial olfaction systems for odour monitoring

Until recently, the human nose and dynamic olfactometry have been the only tools available for the

assessment of odours; however, dynamic olfactometry has limitations:

e itis a laboratory-based method requiring a trained human panel;

e it may be unsuitable for routine assessment and management of odour on site because cost and labour
requirements are prohibitive (Nimmermark, 2001);

o samples collected for olfactometry analysis are known to be unstable (AS/NZS 4323.3:2001 requires
analysis within 30 hours of collection);

o samples need to be collected at times that enable olfactometry assessment within the required period
rather than collecting samples at times when odour emissions are problematic, for example at night
and/or early in the morning when it is impractical to collect samples and assess them (Guo et al.,
2003); and

o samples are collected over a short time period, which may enable quantification of constant
emissions, but may not be representative if emission rates are variable.

Acrtificial olfaction systems (AOS) can help to overcome these issues and provide further opportunities in
odour research. Recent advances in sensor technology, signal processing and pattern recognition
algorithms have led to the development of AOS utilising one or more non-specific gas sensors. These
instruments can be tailored to detect and recognise specific gasses and gaseous mixtures, i.e. odours. They
are sometimes referred to as ‘electronic noses’ because the electronic sensors and integrated data
processing systems are designed to mimic the olfactory processes that occur in the human nose and brain.

AOS are particularly useful for continuous monitoring of odours and for discriminating between different
odours (e.g. abattoir vs piggery). Calibration using dynamic olfactometry expands the use of the AOS by
enabling quantification of odour concentration.

An AOS is an instrument consisting of a gas sampling apparatus and a number of gas sensors interfaced
to a computer or other computation device. Overall, the AOS matches the natural olfaction process (i.e.
smelling things with your nose), comprising the following stages between detecting an odour and its
recognition, namely: interaction, signal generation, processing, and identification, as outlined by the
analogy between biological and artificial noses in Figure 12 (reproduced from Hines et al. (2003)). In this
system, the pattern recognition acts as a signal processing unit like the brain in the biological olfactory
system.
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Figure 12: Basic diagram showing the analogy between biological and artificial noses (reproduced from
Hines et al. (2003))

The unique feature of the AOS is that its sensor array responds differently to various odours. An odour
may contain hundreds, even thousands, of different volatile organic compounds (VOCs). Each odour
therefore produces its own ‘odour fingerprint’. Classical analytical methods using gas chromatography—
mass spectrometry (GC-MS) identify the individual compounds in an odour. In contrast, the AOS
examines sensor array response patterns to differentiate odours.

By using computational techniques to recognise response patterns, the AOS can be taught to classify a gas
mixture that it has previously been trained to recognise. The AOS can complete tasks such as
identification of a gas or odour, classification of odour samples, or quantification of an odour sample
using odour units (ou m3), the standard unit for odour measurement.

Previous application of artificial olfaction systems for odour monitoring

Research has been undertaken to improve the capabilities and reliability of AOS and demonstrate suitable
applications for its use. In particular, previous research has shown that AOS:

is a fast, accurate, reliable tool for monitoring odours;

can reliably quantify odour concentration within the range of 1,000-30,000 ou/m3;

demonstrates good repeatability for odour measurement;

can be used for continuous odour monitoring;

can discriminate between different types of odour, enabling the source of the odour to be identified;
can assist with predicting odour impacts;

can be used to identify odour ‘events’ to assist with mitigation;

can be set up as a mobile instrument for on-site odour assessment; and

can be used at rendering, composing, wastewater treatment, biofiltration, piggery facilities and
abattoirs.

However, AOS requires training to enable discrimination and quantification of odours; specialised data
processing; calibration; and may require pre-conditioning of the sample air. (Boholt et al., 2005; Capelli
et al., 2008; Littarru, 2007; Onkal-Engin et al., 2005; Qu et al., 2001; Sironi et al., 2007; Sohn et al.,
2009a; Sohn et al., 2009b; Sohn et al., 2006; Sohn et al., 2003)
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Application of an artificial olfaction system in this research project

AOS had not been used to monitor odour in poultry houses prior to this research. Application of the AOS
in a broiler shed as a preliminary part of this project has been reported by Sohn et al. (2008) and Sohn et
al. (2007b). Important outcomes from the preliminary research have been summarised in this report and
recommendations to use the AOS in other broiler sheds during different seasons have been applied with
the outcomes from subsequent research activities detailed in this report.

2.5.3 Summary of sensor based measurement of odour and air quality
There are many sensor options for measuring a range of air quality parameters.

Wireless networking offers potential benefits over cable communication systems.
All hardware (sensors and communications) need to be suited to poultry production systems.
Odour is particularly difficult to measure using sensors and instrumental techniques.

Artificial olfaction systems have been developed to replicate human perception of smells, but need
to be trained to measure particular odours.

Continuous monitoring of odour, dust and other air quality parameters can be used to supplement
conventional, infrequent, measurement techniques—olfactometry and dust measurement—and
provide additional data for times when other measurement methods are not feasible (e.g. at night).

Continuous monitoring is especially well suited to measuring highly variable emission—such as
those from commercial poultry farming—and provide greater understanding of the variability than
can be achieved with discrete sampling methods.

2.6 Application of background information to this project

Odours and dust will need to be sampled and measured to the AS/NZS 4323 series of standards.

Regular sampling will be necessary to quantify odour and dust emission rates throughout the 56
day long production cycle. Emissions are expected to change following pickups, requiring
additional measurements.

Emission measurements will need to be repeated as ventilation requirements change throughout
the day.

Ventilation mode (i.e. tunnel or mini-vent) and rate will need to be recorded while measuring dust
and odour emissions.

Litter moisture content will need to be measured throughout the batch due to the reported effect of
this on odour and dust emissions. Moisture content in the days leading up to odour measurements
will need to be understood because of delayed effects—increased moisture leads to growth of
microbial community (2-5 days) and potentially increased odour generation.

Dust will need to be measured in terms of mass and particle number and categorised in terms of
particle size ranges (i.e. PM,s and PMy).

Continuous odour, dust and air quality monitoring should be used to supplement infrequent odour

and dust measurements in order to establish the variability in emissions, and provide assistance in
identifying ideal sampling times/conditions.
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3 Methodology

During the project there were three different sampling campaigns that focussed on measuring odour, dust
and NMVOC emissions from broiler sheds.

During the first campaign, samples were collected from broiler facilities in both Queensland and Victoria
during both summer and winter. This included an initial series of field samples that were used to verify
methods and refine field techniques. Samples were collected at various times during the broiler growth
cycle.

The second campaign was undertaken at a broiler farm that re-used a portion of the litter from one batch
of broilers to the next. In similarity to the earlier broiler work, samples were collected at various times
throughout the growth cycle.

The third and final field sampling campaign took place entirely in Queensland. Odour emissions were
measured at seven broiler farms between thirty-one and thirty-six days of age, which is when peak bird
mass and peak odour emissions were anticipated.

3.1 Farm selection

3.1.1 Farm selection criteria
Farms were selected for monitoring based on the following criteria:

Shed age 0-5 years

Shed tunnel ventilated (not a naturally ventilated shed retrofitted with tunnel ventilation fans)
Shed to use litter suitable for location (i.e. shavings, rice hulls, etc)

Drinkers to be nipple (with or without evaporation cup)

Terrain at tunnel ventilation fan end to be flat enough for attachment of sample duct
Management practices to be industry standard — no additional procedures taken place that are not
part of typical day-to-day management

e Within workable distance to the olfactometry laboratory for odour sample analysis

Farms were selected in Queensland and Victoria in an attempt to ensure that odour, dust and volatile
organic compound (VOC) emission measurements would be representative of poultry sheds in sub-
tropical and temperate regions.

3.1.2 Farm descriptions

The details of shed design, installed fans, litter management practices, and location for all farms that
participated in this study are summarised in Table 6.

54



"819YyMas|a paliodal Ing Ya4easal iyl Ul papnjoul alam Jey) surey Jake| alam 3 pue g swie 810N

3U02 YUm 3U02 YUm . . . a1
sbuineys BN OIBUIS SBOVIOUY Ty ceeer) czcpusgpony  ©  (ww ogeel) ore pueyponyy Y00C  PRPISUIRLND 9z 02l BYT e W W
sBuineys asn 9lbuls  ssoy 19¢€ :m.wmo_uoqmm,\v%ﬂ% %%mmhm,o (A gwoo HHM wert ponyy 9002 SIEM PIOS - L'c 0ST ST, m__u,mg 7 Wae
‘W 7PT6 ‘96T SINUNA S'EEET) $'TS PUBH PANTH yomsd|
dyo't dyo't i . aio
sBuineys asn albuls  ssoy z ‘ww 0sz7 ‘0swg slawny T ‘W 0,27 ‘09w siownyy 9002 SIEMPIIOS Lz 05T ST oined W
dyo't dyo't ureun) . . . . _
sBuineys asn albuls  qqod T ‘ww 0sz7 ‘oswg siawnpy T w0z ogng sy 9992 9 puos v’z 87 8ZYST ¥Z'ST A0 ™Ms3 [ wied
asnay dyso 3U0D YHM i . . aio
SDUNS eprg 990 € wwpprgenaseuny B0 uwgecel) ozs pue pany 9002 SIEMPIOS ce &1 EST gmooqey !
dugo dyo'T ‘ww 0/2T ‘0SS a1
sbuineys asn 91buis  qqod € . . 279 ZT SISUNIA ANV 3U0d UM ‘dyo'T 9002  SIBMPIOS 2 L2 €T ST . H wied
! ! . siawun 1 !
W 776 ‘9EINT SIaUNIA Wl 02T '0503 SIAIUNIA 2Imjooged
asnay dyso dyo't . . . aio
sBuineys ened 4qoo € ‘W vpTs ‘gema stawn ‘W 0J2T '0SWg siownyy 9002 SIEMPIOS T Lz 08T SST mooqeny O W
asnay . ) apelq 9 . . : aio
sBuineys ened qqoo v 9pEIq 9 ‘(WW 9'066) .65 UBL 8 ‘dyc] “(ww g1z]) gp upny, £00C PSPISUREMND - ¢'Z Lz G2l L€l gmooqen 3 W
asnay dyo'T ‘00¥TEA AOMS o . . . aio
sBuineys ened 4900 T®Z q\vdugooortaanods 7Y dyo'T ‘00¥TEA AOMS G00Z sllEmploS LT Lz 05T ST ey OUWred
ECJ_\_,NJNM__NE asn a1BuIS hwmmxw L dys 0 ‘(w 9 T2GHONI ‘] 000z SWEMPNOS  vZ  ¥Z ST6 ST .o guuey
JWwng 440D 'SS0Y 9°609) ¥C ‘95t 1 wodue] 9 'dyQ’T 412|000 UBdLIBWY : oBipusg
auo2 yum ‘(ww 3U0D YIIM . . . ai1d
sBuineys asn 9buls sy Jogly T CEEET) 677 PUBH POIIE 8  wwggeey) ozc pusg pomy T00C PEPISURUND 42 97 021 BV gppo VW
usw s s aby wbey  ybray
adAL _oBeuey N suey J9410/9pIS N suey [guun . pous  SIEMPRUS  iee em ypbuaT YpIMm
BT psaag piig WialsAS uone|usA uondiiosa@ pays (w) suoisuawiqg pays uonedn] _Mm_MM__

swJey Jo uondiioseg 9 9|qel

55



3.2 Sample collection

For each farm visit, air quality and environmental conditions were measured and details about farm
management were recorded. Information collected is shown in Table 7.

Table 7: Data collected on each farm visit

Air Quality Environmental Data Farm Management
e Odour e Ambient Temperature e Bird Age
e Dust e Relative Humidity e Average Bird Weight
e Non-methane Volatile e 10 m Weather Station Data e Number of Birds Placed
Organic Compounds (VOCs) (where installed)

e Number of Birds Present on
Sample Collection Day

¢ Internal Shed Temperature

e Internal Shed Relative
Humidity

Air samples were collected either from within a polyethylene duct; within the shed; or from a tunnel
ventilation fan. Sections 3.2.3 and 3.2.4 describe the three sample collection methods used.

Specific details for the collection of odour, dust and VOC samples; and measurement of litter moisture,
ventilation rate, weather, shed and production conditions are provided in sections 3.2.4 to 3.2.13.

3.2.1 Sampling program

At the commencement of this study, a detailed sampling program was designed so that emission rates
would be measured throughout the entire production cycle. This program included the assessment of
weather, litter and production conditions known to affect the generation and emission of odour and dust.
The sampling program was amended during the course of the project.

The initial sampling program included seven sampling days throughout the production cycle. Odours
were to be collected:

With the fresh litter in the shed, prior to bird placement

Week 3 (where week 1 started on the day when birds were placed in the shed as day old chicks)
Week 5 (or just before the first pickup)

Week 8 (or just before final pickup)

Birds out, used litter still in the shed

Litter out, before shed cleaning

Litter out, after shed cleaning but before placement of fresh litter

NookrwdE

Sampling events 1, 5, 6 and 7 were chosen because there was no available emissions data during these
stages of the production cycle. The litter clean out stage of the batch (around the times of sampling events
5 and 6) is often implicated as a time when odour impacts occur. Sampling event 1 was also chosen to
provide ‘baseline’ emission data.

This sampling program was used during the summer sampling campaigns at Farm A and Farm B.
Following preliminary analysis of the emissions measured at these farms, significant holes were identified
during particular stages of the batch, that made the emission rates measured during weeks three, five and
eight difficult to put into context. The data collected during summer at Farms A and B was not adequate
to describe the increase in emissions up to week five, nor did it describe the changes in odour emission as
birds were sequentially harvested from the shed.
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A new sampling program was conceived to address these issues and was used for the winter sampling at
Farms A and B. The new sampling program required sample collection at the following times:

Day 14 (birds placed in the shed on day 1 as day old chicks)

Day 21

Day 35 (or just before the first pickup)

The day following first pickup

Day 42

Day 49

The day when litter was being removed from the shed. Some samples were collected prior to the
litter being disturbed and some were collected while machinery was operating in the shed and
removing the litter.

Nogok~wdE

The sampling campaign at Farm C, where the re-use of litter was being assessed, was similar to the winter
sampling program used at Farm A and B, except samples were collected prior to final bird removal
(about day 55) instead of after final bird removal.

For Farms F—M (multi farm round robin), odour and VOC samples were collected on the day of the first
pickup, before birds were removed. Peak odour emissions were expected at this time.

3.2.2 Selection of ventilation rates on each sampling day

Ventilation rate is known to influence odour emission rates, so measurements were made at different
ventilation rates. The initial sampling schedule called for samples to be collected at 25%, 50%, 75% and
100% of the maximum ventilation rate (for the shed).

Collection times for odour samples are constrained by the need to transport and analyse the samples as
soon as possible following collection to ensure sample integrity. Samples needed to be delivered to the
olfactometer in the early afternoon to ensure they would be analysed on the same day as collection.
Consequently, samples needed to be collected in the morning.

Methods for the selection and control of ventilation rates during sample collection changed during the
course of this study. At Farms A and B, ventilation was manually controlled. At Farms C and F-M, the
ventilation system was left in automatic mode.

For Farms A and B, samples were collected at the pre-determined ventilation rates, manually controlled
during collection time. The lowest ventilation rate was sampled at the beginning of each sample day
because ventilation requirements were expected to increase throughout the day. If the ventilation rate was
higher than 25% when sample collection was set to commence, the higher value would be chosen. The
required level of ventilation was then locked in to prevent changes during sample collection. More fans
were sequentially turned on for sample collection at higher ventilation rates. Approximately 15 minutes
was allowed between any change in ventilation rate and the start of sample collection.

At the completion of the summer and winter sampling campaigns at Farms A and B, there were concerns
about manually controlling the ventilation rate. To address these concerns, ventilation control systems
were left in automatic mode at the remaining farms (C—M). Samples were collected at different
ventilation rates by waiting until the ventilation system automatically turned on more fans. The sampling
team usually waited for the number of fans to stabilise before collecting samples. If the number of active
fans changed during sample collection (usually only during VOC collection, because odour samples only
required 10 minutes for collection), a time weighted average ventilation rate was recorded. At very low
levels of ventilation, it was occasionally necessary to manually turn on the fan to which the sampling duct
was attached. This was to ensure that the fan did not turn off mid-sample. When this was done, care was
taken to match the required ventilation rate at the time (usually required manually turning off one of the
fans in the next stage of ventilation).
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3.2.3 Location of dust, odour and volatile organic compound sample collection

3.2.3.1 Inside the shed

Air samples for preliminary studies, including odour decay and importance of dust, were collected inside
the broiler sheds.

Odour samples were collected from inside the shed near the final ceiling baffle, or approximately 6-10 m
upwind from the tunnel ventilation fans where baffles were not installed. The final baffle is the final area
in the shed where the air is mixed before exiting the shed, and therefore expected to be representative of
the emissions exiting the shed. According to AS 4323.1 (Standards Australia, 1995a), air samples should
ideally be collected three diameters upwind from a disturbance (bend, contraction, louvers or fans) which
roughly equates to the location of the final baffle.

3.2.3.2 Polyethylene duct

Odour, volatile organic compound and dust samples for the seasonal and location variability studies;
diurnal variability study; and the comparison between single litter use and partial litter reuse study were
collected from within a polyethylene duct (Figure 13). The duct was manufactured from a transparent
polyethylene material (clear Gale Pacific Ltd. Solarweave®Q). The use of a duct enabled air samples to be
collected at a sampling plane in accordance with AS 4323.1 (Standards Australia, 1995a). It was
especially important in terms of collecting representative dust samples isokinetically.

Ducts were custom designed for each farm to ensure that minimal backpressure was applied to the fan.
For fans fitted with a cone, duct diameter was equal to the cone diameter. For fans without cones, the duct
was made the same diameter as the fan impeller. Duct length and position of sampling plane was
calculated according to AS 4323.1 (Standards Australia, 1995a). Duct length was equal to eleven duct
diameters. Samples were drawn from a hole cut in the duct at a distance of eight duct diameters from the
fan face.

The duct was suspended from the fan housing or shed wall with ten gauge wire, that was tensioned by a
winch supported by a rigid frame (see Figure 13) attached to an adjustable frame to account for minor
terrain variability. Sidewards movement of the duct was minimised with steel star pickets covered with

polypropylene pipe.

o i o s

ventilation ]‘an

I":vigh're 13: Polyethylene duct attached to tunnel

Duct design varied depending on whether the fan had a square housing or a round cone. For fans with a
square housing, a transition section was required to accommodate the circular duct. A galvanised steel
square-to-round transition was used (see Figure 14 and Figure 15). The steel transition fitted over the
existing fan housing, was secured with screws and supported with wire and star pickets. The steel
transition enabled simpler and cheaper ducts to be manufactured, however the transition was difficult to
handle and install onto the fans. An integral transition formed as part of the polyethylene duct (see Figure

58



16) was found to be a more suitable, yet more expensive option.

Figure 15: Transition with duct attached

ZETNN

iure 16: Duct with integral square-to-rod »
transition

The use of a duct for sample collection at one farm over multiple days was important for standardisation
of the sample collection process, especially for the isokinetic measurement of dust emissions. The use of
a duct for one-off collection of air/gas samples requires careful consideration (especially cost/benefit).
Successful use of a duct requires planning, appropriate siting and calm weather. Construction of the duct
must be planned weeks before the sampling event. The shed and fan must have the structural integrity to
support the weight of the duct. A relatively flat, unobstructed area is required beyond the exhaust fans to
accommodate the length of the duct. Calm winds are also required during sampling because the duct is
very sensitive to strong cross winds, which could damage the duct, sampling equipment, fan or shed.

3.2.3.3 Tunnel ventilation fan face
Collection of odour and organic compound samples from the fan face was used for the round robin study.

Odour and volatile organic compound samples were collected from the external fan face of one tunnel
ventilation fan at farms where a duct could not be attached to the shed wall, or where the farm was visited
on one occasion only and the cost and time requirements of constructing a duct were not justifiable.

When using this method, care must be taken to prevent side wind interference and dilution of the sample.
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3.2.4 Odour sample collection

Odour samples were collected according to AS/NZS 4323.3 (Standards Australia/Standards New Zealand,
2001).

Odour samples were drawn into rigid drums lined with a Melinex® bag (polyethylene terephthalate) using
a vacuum pump as shown in Figure 18. All bags were preconditioned by filling with odorous air then
emptied prior to the sample being collected. All components of the sampling train that were in contact
with the poultry odour were manufactured from stainless steel or polytetrafluoroethylene (PTFE). The
volume of sample collected in QLD was 120 L (Figure 17), and for Victoria was 15 L (Figure 19). The
difference in sample volume was due to the use of different olfactometry laboratories.

Where odour samples were collected from inside the shed, samples were drawn into the drum directly
from the fittings on the drum lid as shown in Figure 17. Where odour samples were drawn into the drum
from within the polyethylene duct, a stainless steel probe and PTFE tubing were used (Figure 18). Where
odour samples were collected from the down-wind side of one of the tunnel ventilation fans, PTFE tubing
was used to collect the samples. One end of the tubing was connected to the sampling drums and the other
end was carefully positioned within the fan housing and guard (as shown in Figure 20) to prevent
crosswind interference.

All odour samples were collected simultaneously into two separate drums, effectively producing duplicate
odour samples for individual analysis. Sampling in this manner is recommended by AS/NZS 4342.3 to
reduce variability due to olfactometry analysis and improving confidence in the measured concentration.

All drums were filled over approximately ten minutes (sampling flow rate in QLD was approximately 20
Lpm and in Victoria was approximately 3.5 Lpm). Once filled, the drums were sealed and transported to
the olfactometry laboratory for analysis. All samples were analysed within 8.5 hours of collection. Each

bag was used once and discarded after analysis.

Figure 17: Odour sample collection from Figure 18: Odour sample collection from within the
within the shed polyethylene duct in Queensland
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Figure 19: Odour sample collection from within the Figure 20: Odour sample collection from a
polyethylene duct in Victoria tunnel ventilation fan face

3.2.5 Dust sample collection

There are two general approaches to measuring dust emission rates from intensive livestock buildings:
within the shed, close to the exhaust fans; or outside the shed, in the exhaust airstream. Previous research
has shown that dust concentrations within a shed are generally higher than concentrations downstream
from a shed (Visser et al., 2006). The objective of this study was to measure representative emission
rates. Therefore, dust measurements were conducted in the exhaust airstream, as it was exhausted from
the building (within a temporary polyethylene duct designed in accordance with AS 4323.1:1995, see
section 3.2.3.2).

Dust samples were obtained by drawing air through an isokinetic sampling probe that was inserted into
the polyethylene duct (see Figure 21). The isokinetic sampling probe obtained representative dust samples
independently of the particle size distribution. The probe achieves this by ensuring that the air stream
entering the particle samplers has a velocity (speed and direction) equal to that of the air in the gas stream
just ahead of the sampling probe. This meant that all particles of all sizes entering the sampler have a
collection efficiency of unity. The isokinetic probe was designed specifically for this project in
accordance with AS 4323.2-1995 (Standards Australia, 1995b).

In this project, particle mass and number concentrations were measured to characterise poultry dust
emissions (see section 2.3.1). In addition, particle number size distributions were also measured. PMy
and PM, 5 particle mass concentrations were measured using two TSI model 8520 DustTraks
(www.tsi.com) with appropriate inlets. Particle number concentrations and size distributions were
measured with a TSI model 3320 Aerodynamic Particle Sizer (APS). The three particle sampling devices
were operated in parallel downstream from the isokinetic sampling probe (see Figure 22).
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Isokinetic sampler used for ~ Figure 22: Isokinetic sampler, APS and DustTraks
particulate measurement

iueA21:

3.2.5.1 DustTrak: TSI model 8520

The DustTraks were used for on-line, real-time continuous measurements of particle mass emitted from
the sheds. The DustTrak is a laser-scattering photometer and thus determines mass loading indirectly by
light scattering. It measures particles in the size range from 0.1-10 pm within 0.001-100 mg/m? load
range. The unit is supplied with a cyclone and an inlet kit for measuring particle sizes corresponding to
PMyo, PM, 5 or PM ¢ dust fractions.

In this study, two DustTraks sampled in parallel downstream from the isokinetic sampling probe. One
DustTrak was fitted with a PMy, inlet and the other with a PM, s inlet. This setup allowed simultaneous
measurement of PMy, and PM, 5 concentrations. Concentrations were logged every 30 seconds during
sampling.

3.2.5.2 Aerodynamic particle sizer (APS): TSI model 3320

Particle size distributions and number concentrations were measured with the APS. The APS measures
particle number size distribution continuously in real time over the size range 0.5-20 um. The maximum
concentration is 1000 particles/cm?3 with maximum coincidence error of 6% at 10 pm. The instrument
measures the time-of-flight of individual particles in an accelerating flow field. It achieves this by
accelerating particles through a nozzle before they are detected by two broadly focused laser beams. A
monotonic relationship between time-of-flight and particle aerodynamic diameter is then used to generate
a particle size distribution in real time. Integration over the size distribution also yields a measurement of
particle number concentration. In this project a particle size distribution was generated every 20 seconds.

3.2.6 Non-methane volatile organic compound sample collection

3.2.6.1 Introduction to methods—sorbent tubes

Non-methane volatile organic compounds (NMVOCs) were collected to identify and quantify the
chemical components of the air exiting the poultry sheds. These can be collected by a variety of different
methods; however, in consideration of logistical constraints and the project objectives, sorbent tubes were
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chosen because they provide robustness, sample stability, reliability, repeatability, ease of use, cost
effectiveness and the ability to quantify NMVOCs.

Sorbent tubes are small inert tubes that come in a variety of sizes (see Figure 23). Markes International
Limited (Pontyclun, UK) manufacture sorbent tubes that have been accepted across multiple disciplines
involved in volatile and semi-volatile organic compound monitoring as the standard size of 6.35mm outer
diameter and 89mm length.

Figure 23: An example of two sorbent tubes with brass caps—the upper tube is coated in an inert coating
to prevent oxidation of highly volatile species during sampling

Each tube is packed with a measured amount of sorbent that collects and traps the target VOCs as the
sample air is drawn through the tube, thus an effective sampling volume in the order of 10 litres may be
collected in a tube no larger than a pencil. The tube itself is fabricated from either stainless steel or glass.
Stainless steel tubes offered a much higher degree of robustness than glass and were chosen for use in this
project.

To ensure that each sample remained free of contamination, inert fittings and sample flow paths were
utilised—for example stainless steel sampling manifolds, polytetrafluoroethylene (PTFE) tubing and,
most importantly, each tube was sealed with 2-piece brass screw caps with PTFE ferrules prior and post
sample collection (Swagelok® caps with Teflon® ferrules: part numbers: B-400-C with T-400-SET
respectively).

Sorbent tubes can be sampled and reliably analysed many times as the sorbent bed within the tube can be
cleaned with relative ease and have consistently low carry over rates. As the analytes are captured on or
within a sorbent they are readily liberated by gentle gas flow and heat. Thermostatically and flow rate
controlled devices such as the Markes TC-20 (Markes Int’1. Ltd Pontyclun, UK) allow for sorbent tubes
of the same sorbent bed to be batch conditioned simultaneously, providing efficient and timely turn
around from analysis to re-deployment for field sampling.

Each sorbent tube is identified with a unique serial number, allowing identification of the sorbent
contained within the tube, and when correct quality assurance and quality control strategies are
implemented, the sampling, analysis and conditioning cycles that the tube has under gone can be readily
recorded. This is of significance as the sorbents within the tube have a finite life and this must be
acknowledged in order to have confidence that the results of tube analysis are reliable, precise and
provide accurate representation of the NMVOC composition of an air sample.
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3.2.7 Sorbent selection

The sorbent tubes contain a sorbent of known mass and composition, chosen specifically for the target
analytes. During this project, it was decided that the use of sorbents that have been widely documented
for other studies of livestock emissions would be ideal to capture the NMVOCs from poultry sheds.

Extensive studies of VOC emissions from bovine and porcine operations have used both carbon
molecular sieves and graphitised carbon black sorbents. Carbon molecular sieves are porous materials
that collect analytes by trapping them within the pores of the material, capturing analytes smaller than the
size of the pore in the material and allowing larger molecules to pass through the sorbent bed. Graphitised
carbon black sorbents are generally nonporous materials that collect analytes on their surface by
adsorption, thus their strength is considered to be a function of their specific surface area—the area
analytes have to bind to—thus a lower specific area corresponds to a lower strength.

Detailed methodologies from the United Kingdom Health and Safety Laboratory (UK HSL Methods for
the Determination of Hazardous Substances MDHS-72), the United States Environmental Protection
Agency (USEPA Method TO-17) and technical notes available from Markes Int’1 Ltd., led to the use of
two different sorbent tubes to ensure accurate and reliable representation of the volatile organic
compounds found in the gas phase emissions from the poultry houses.

The principal sorbent selected was Tenax TA—a widely used, inert, hydrophobic, weak sorbent, with a
specific surface area of ~35m2/g. Tenax TA targets VOCs with boiling points between 100-450 °C or
compounds n-C- to n-Cg, for example aromatics, apolar and polar compounds, poly aromatic
hydrocarbons and poly chlorinated biphenyls.

The second sorbent was Carbotrap 300, which provides an approximate analyte capture range of ethane
(C,) to n-Cy and is a mixture of three different sorbents: Carbopack C; Carbopack B; and Carbosieve SllII
(listed in increasing sorbent strength and packing order within the tube). Table 8 lists the properties of
these three sorbents.

Table 8:  Properties of the three sorbent types within the Carbotrap 300 sorbent tubes

Sorbent Specific Target Sorbent Hydrophobic /
Surface Compound Strength Hydrophilic
Area Range
Carbopack C ~12 m3/g n-Cg to N-Cy very weak hydrophobic
Carbopack B ~100 m3/g N-Css to N-Cyy medium hydrophobic
Carbosieve I11 ~800 m?/g ethane to n-Cs very strong mildly hydrophilic

With the specific targeting of the Tenax TA sorbent tubes and the Carbotrap 300 sorbent tubes, it was
anticipated that the significant majority of NMVOCs present in the gas phase emissions from the poultry
sheds could be trapped for analysis.

For added redundancy a sorbent tube that contained a mixture of Tenax and Carbograph 1TD was
occasionally used. Carbograph 1TD is a moderately weak hydrophobic sorbent with a specific surface
area of ~100 m2/g and a target analyte range of n-Csjs to n-Cy4 including alcohols, aldehydes, ketones and
apolar compounds.
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3.2.8 Sorbent tube collection methodology

There are two methods of collecting NMVOCs with sorbent tubes: active sampling using a vacuum
pump; and diffusive sampling (also refereed to as passive sampling). Throughout the project, the majority
of samples were collected using active sampling; however, diffusive sampling was also occasionally used.

Active sampling was conducted using a calibrated air sampling pump and adjustable low-flow tube
holders to draw sample air through the sorbent tube at a known flow rate and for a set duration (SKC
Universal Pump 224-PCXR8 and 224-26-01 respectively, SKC Inc., Pennsylvania, USA, see Figure 24).
This allows for the total volume of air passed through the sorbent to be recorded and the concentration of
the analytes detected during subsequent analysis to be determined.

Figure 24: Vacuum pump used to draw the air samples through the
sorbent tubes to collect the analytes

Appropriate sampling flow rate, duration and total sample volume is essential. An excessive sampling
volume may result in the sorbent becoming saturated and VOCs passing through the tube unretained. A
flow rate that is too high or too low may similarly result in the VOCs passing through the sorbent without
sorption. It is for these reasons that double tubes were collected in series during the initial proof of
concept field trials. These series tubes demonstrated that the sampling flow rates and volumes were
suitable for the NMVOCs to be retained on the first (front) sorbent tube.

Air samples were drawn through a 1.5 m long, 6.35 mm diameter stainless steel probe that was either
within the polyethylene duct as shown in Figure 25, or directly from the tunnel ventilation fan as shown
in Figure 20 of section 3.2.4. The probe fed into a stainless steel manifold shown in Figure 26, onto which
the sorbent tubes were attached with 60 mm lengths of Tygon® tubing (Saint-Gobain Performance
Plastics Corporation Tygon® R—3603 vacuum tubing).

All tubes were individually calibrated using a flow meter (TSI Incorporated Model 4143) and individual
low flow tube holders attached to Tygon® tubing. Samples were collected for 30 minutes at a maximum
rate of 100 mL per minute.
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Figure 25: VOC sampling from duct Figure 26: Filtered VOC tubes and
manifold

In comparison to the active sampling methods, diffusive samples do not require a sampling pump—the
leading end of the sorbent tube is opened to the emission source whilst the trailing end of the sorbent tube
remains capped (see Figure 27). Specifically designed diffusion caps must be placed over the open end of
the sorbent tube to fix the cross sectional area of the sampling surface, and to prevent the ingress of dust,
insects and other particulate matter to the tube.

cap in place

3.2.8.1 Filtering of pumped sorbent tubes

Throughout the initial stages of the field sampling a number of comparative samples were collected that
were either filtered or unfiltered. This filtering was performed inline by way of a 0.2 um PTFE disc filter
housed within a stainless steel holder (see Figure 28). This inline filter was placed before the sampling
manifold so each sorbent tube had one common filter.
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a N N E «
Figure 28: Sorbent tubes in place collecting
filtered samples— arrow pointing
to inline filter housing containing
a Teflon filter. Lower manifold
(obscured) for unfiltered sorbent
tubes

The intention of this filtering was to prevent particulate matter from entering and contaminating the
sorbent tube, and to provide consistency within samples by removing any error from differing levels of
inadvertently collected particulate matter. After empirical analysis of the results obtained from these
initial samples it became evident that there was significant variability within the unfiltered results and
henceforth all samples collected would be filtered.

As the project progressed, two other filter materials were used to perform this filtering; mixed
nitrocellulose fibre and resin free glass fibre. In difference to the single inline filter for all tubes as with
the PTFE filter, the mixed nitrocellulose fibre and glass fibre filters were individually housed in clear
polystyrene cassettes (SKC, AirMet Scientific, North Sydney, NSW, Australia). This allowed for
investigation of NMVOCs trapped on the particulate matter for each individual sorbent tube.

Upon further detailed analysis of the results and specifically the results of laboratory based tests it was
concluded that the use of resin free glass fibre filters provided the most reliable and consistent samples.

The analysis of collected particulate matter was performed in addition, albeit intrinsically parallel, to the
gas phase NMVOC analysis to provide greater understanding of the chemical make up of the air
exhausted from the poultry sheds and any chemical mechanisms that may be taking place during the
transportation of particles.

Furthermore it should be accepted that there is a significant amount of parasitic static cling resulting from
the movement of air over the various flow paths within the sampling setup, such as the polyethylene duct,
stainless steel sampling lines and fittings and other inline features. This will reduce the amount of air
borne particulate matter that will actually reach the filter and sorbent tube.
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3.2.8.2 Sorbent tube storage and handling considerations

Extreme care was exercised throughout all stages of sample collection, transportation, analysis,
conditioning, and re-deployment into the field to ensure that the tubes retain their integrity. Care was also
taken when handling tubes to avoid contamination from human contact—as the skin contains numerous
natural oils—by handling the tube only in the centre of the stainless steel body, well away from the tube
openings.

Once a sample had been collected in a sorbent tube, it was immediately and cautiously sealed with its
caps and wrapped in clean aluminium foil. The aluminium foil serves to identify the tube as having been
exposed, to insulate the tube from rapid changes in temperature and to also act as a secondary
contamination barrier.

Each sorbent tube was transported in a clean, translucent plastic container that held up to ten tubes. Aside
from being a convenient way to package and ship the tubes, the case gave additional handling protection
to the sorbent tubes.

The tubes were stored in refrigerators (between 1-5 °C) to conserve the integrity of the analytes captured
on the sorbent. When in the field for sample collection or during transportation from the field locations to
the laboratory for analysis, the tubes were kept in portable refrigerators or coolers with ice packs to keep
their temperature sub-ambient. Although these measures may be considered superfluous, every attempt
has been made throughout this project to guarantee the utmost integrity of the data obtained from the
analysis of the NMVOCs collected on these sorbent tubes.

3.2.9 Ventilation rate measurement

Ventilation rate was measured by three methods throughout the project: inside the shed; at the fan face
with a hot wire anemometer; or calculating ventilation rate from manufacturer’s fan performance data, fan
activity and shed static pressure.

3.2.9.1 Internal shed

Airspeed was measured inside the broiler shed at a cross section under the final baffle before the tunnel
ventilation fans. Where baffles were not in place, measurements were taken between final mini-vent and
the tunnel ventilation fans. Using AS 4323.1 (Standards Australia, 1995a), a grid pattern with 32
measurement points was formulated (Figure 29). Airspeed was measured inside the shed using a hot wire
anemometer (TSI Incorporated VelociCalc® Model 8386-M—GB). Each point was measured over ten
seconds, with the average value recorded. An average of the 32 measurement points was used to calculate
the average airspeed (m/s). Ventilation rate (Q) was calculated by multiplying the average airspeed by the
shed cross-sectional area (see Equation 1).

Q (m?/s) = average airspeed (m/s) x internal shed cross sectional area (m?) Equation 1
Shidl"éidlh Shed width + 8 Shed width + 8 Shed width + 8 Shed width + 8 Shed width + 8 Shed width + 8 Shed width + 8 Sh?lw(sidlh
+—> < > < > < > < > < > < > < > 4+———>
ot §
e §
e §
e §
sy ¥

Figure 29: Internal shed airspeed measurement grid pattern
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3.2.9.2 External fan face

Airspeed measurements were taken in two perpendicular transects across the external face of each fan
using a hot wire anemometer (TSI Incorporated VelociCalc® Model 8386-M—GB) as shown in Figure 30.
Each transect consisted of 12 points, which were each measured over 2 s. The spread of measurement
points over the fan face was calculated using AS 4323.1 (Standards Australia, 1995a). A 2 m length of
small diameter PVC (polyvinyl chloride) pipe was marked with measurement points and attached to the
fan housing with either clamps or metal hooks during airspeed measurement (see Figure 30). An average
of all measurements from all active fans was used to calculate the shed ventilation rate. VVentilation rate
(Q) was calculated by multiplying the average airspeed (m/s) by the fan cross-sectional area by the
number of active fans (see Equation 2).

Q (m?/s) = Average airspeed (m/s) x fan cross—sectional area (m?2) x no. active fans Equation 2

Figure 30: Measurement of airspeed at fan face Figure 31: Measurement of airspeed at fan face
(External) (Internal)

Where fan shutters were on the outside of the fan, measurements were taken from the internal fan face
(Figure 31).

3.2.9.3 Fan activity, static pressure and manufacturer’s performance information

Shed ventilation rate can be estimated using fan performance data (Dunlop and Duperouzel, 2008;
Wilhelm et al., 2001). Flow rate for each active fan was estimated using performance data provided by
the fan manufacturer or from an independent testing laboratory (for example the BESS Laboratory at the
University of Illinois http://www.bess.uiuc.edu/). Ventilation rate was calculated by multiplying the
number of active fans by the estimated flow rate through each fan.

Calculating ventilation rate with this method assumes that the fan performance data is accurate and that
the fans are clean and in good condition. It is essential that the fan performance data exactly matches the
fans installed at the farm. It is therefore necessary to record details including; fan manufacturer; model
number; number of blades; blade pitch (if adjustable); motor size and manufacturer; and pulley sizes. It is
also advisable to supplement the estimation of flow rate through each fan with physical measurement of
the velocity profile using techniques described above in Section 3.2.9.2.

Fan performance data was sourced from fan manufacturers or suppliers. Figure 32 displays the fan
performance data for the fans installed on farms involved in this study. It can be seen that flow rate
reduces as the magnitude of the static pressure increases (inside the shed is lower pressure than outside).
The fan performance curve equations (see Table 9) were calculated using Microsoft® Excel 2003 by
fitting a polynomial trend line to the flow rate data at different static pressure values.

For this method to be successful, it is essential to measure the shed static pressure at the time of
ventilation measurement. Temperature and barometric pressure should also be recorded to enable the air
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flow to be adjusted to match the conditions under which the fans were evaluated and then, for the

purposes of calculating emission rates, adjusted to match standard temperature and pressure conditions
(see section 3.2.9.4).

Fan Performance Curves
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Figure 32: Fan performance curves as supplied by manufacturer
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Table 9:  Fan performance equations

Fan

Fan Performance Equation*

Hired Hand 52.5” (1333.5 mm) with cone
(Hired Hand, 2004)

Q = 0.00023969p® - 1.2363p2 + 155.37p + 48062

Titan 48 (1219.2 mm) 1.5hp, 6 blade
(Titan Fan Products Australia Pty Ltd,
2006)

For pressure between 0 and (equal to) -20Pa:

Q =-0.295p2 + 15.65p + 46231

For pressure between -20 and (equal to) -40 Pa:
Q=0.1018p3 + 7.535p2 + 226.97p + 48410
For pressure less than -40Pa:

Q =-11.45p? - 885.5p + 27250

Titan 39” (990.6 mm) 6 blade
(Titan Fan Products Australia Pty Ltd,
2006)

Q = -0.0005p? - 0.4229p2 + 35.287p + 40928

Multifan 50 (1270 mm)
(Vostermans Ventilation B.V., 2004)

Q = 0.023p® + 1.1965p2 + 228p + 45000

Munters EM36 (914.4 mm) 0.5hp
(Munters Europe AB, 2005)

Q = 0.0412p? + 2.25p2 + 175.45p + 18561

Munters EM50 (1270 mm) 1.0hp
(University of Illinois Department of
Agricultural Engineering BESS Lab,
2002b)

Q = 0.0234p3 + 0.173p2 + 201.77p + 35937

SKOV DB 1100 (1092.2 mm) 0.5hp
(Farmmark Pty Ltd, 2008)

Q = -0.0617p® - 4.5p + 32.167p + 16900

SKOV DB 1400 (1371.6 mm) 1.0hp
(Farmmark Pty Ltd, 2008)

Q = -0.5036p2 + 164.61p + 35173

Munters EC50 (1270 mm) 1.0hp
(University of lllinois Department of
Agricultural Engineering BESS Lab,
2002a)

Q =-1.3679p? + 223.65p + 40418

Coolair 52” (1320.8 mm) 1.0hp, 6 blade,
MNCFES52L (University of Illinois
Department of Agricultural Engineering
BESS Lab, 1999)

Q = 0.00005p° + 0.0053p" + 0.2387p3 + 3.0252p2 +
227.78p + 38227

Fancom 1456 24” (609.6 mm) 0.75hp
(Patarker Pty Ltd, 2008)"

Q = -0.0444p2 + 32.618p + 12004

##  This was a variable speed fan. The corresponding equation was for the maximum flow rate. In the absence of

measured ventilation rate for this fan, the maximum value was assumed.

*  Where:

Q = ventilation rate, in m3/hour, and

p = internal shed differential pressure, in Pascals (Pa).
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3.2.9.4 Adjustment of ventilation rate for standard conditions

According to AS/NZS 4323.3 (Standards Australia/Standards New Zealand, 2001), the ventilation rate
used to calculate an emission rate is to be standardised to standard temperature and pressure conditions (0
°C, 101.3 kPa). Each fan manufacturer was contacted, and details were recorded as to the temperature and
pressure conditions under which the fans were tested. As a result, the flow rate of the fans was altered
according to Equation 3 (sourced from Appendix G of AS/NZS 4323.3).

Vi, =V, x (273+0) X K Equation 3
‘ 273+t 101.3
Where Vzo = volume flow at standard conditions
Ps = absolute pressure during fan performance testing, in kPa
Vs = measured flow rate
t = temperature during fan performance testing, in °C

3.2.9.5 Continuous monitoring of fan activity

At two of the farms included in this study (winter batch at Farm A and the partially reused litter batch at
Farm C), ventilation rate was continuously monitored using fan activity sensors. The method used to
monitor fan activity was similar to that used by Dunlop and Duperouzel (2008). The following section
summarises the important components of the ventilation monitoring system.

Fan activity

Fan activity data, combined with fan performance data and other data such as shed static pressure and
inlet vent positions, was used to continually estimate actual ventilation rate.

Mercury tilt switches were attached to the fan back-draft shutters to monitor fan activity, similar to the
approach used by Wilhelm et al. (2001). The use of tilt switches was selected over other techniques due
to low cost (sensors cost approximately $3.00 per fan), availability of components, expected reliability
(when compared to more complex systems) and unobtrusiveness. The potential problems foreseen with
the use of tilt switches included the possibility for false positive readings if the shutters did not close
when the fan turned off. Additionally, if a wire broke during cleaning operations or through fatigue
caused by repeated opening and closing of the shutter, a false positive reading would also be returned.

Mercury tilt switches were fitted onto an angled aluminium plate, which was then riveted onto the fan
back draft shutters of every fan on the shed (see Figure 33 and Figure 34). The purpose of the angled plate
was to avoid hysteresis issues associated with the switch only just (or just not) reaching a true horizontal
position when the fan turned on and the shutter opened. The angle ensured the tilt switch passed beyond
the horizontal position, whenever the louvers opened, so the switch would always activate.

iy
.‘ (rﬂlﬁ“:x ey

Figure 33: Mercury tilt switch with fan turned  Figure 34: Mercury tilt switch with fan turned
off (shutters closed, switch closed) on (shutters open, switch open)
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Inlet vent opening

Inlet vents are an integral part of the ventilation system in a tunnel ventilated poultry shed. The mode of
ventilation (tunnel or mini-vent), was determined by monitoring the position of the mini-vents and the fan
activity.

To detect when mini-vents were open or closed, a Hall-effect sensor was used. A Hall-effect sensor is a
digital semiconductor switch which responds to the presence of a magnetic field. To create a magnetic
field, a magnet was fastened to the mini-vent shutter (see Figure 35). The voltage output of the Hall-effect
sensor changed as the strength of the magnet moved away from the sensor and was recorded by the data
logger. An assumption was made that if the mini-vents were open, the shed was operating in mini-vent
mode. On the other hand, if the mini-vents were closed and a reasonable percentage of the fans were
active, it was assumed that the shed was operating in tunnel ventilation mode.
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Figure 35: Mini-vent openig sensor (mini-vent in open position)

Shed static pressure

The differential pressure between the inside and outside of the chicken shed affects the performance of
the ventilation fans. Chicken sheds will normally have a differential pressure in the range of 0 Pa to -40
Pa relative to the outside. This differential pressure is often referred to as static pressure. The static
pressure will vary due to the number of active fans, inlet vent position and by external forces such as
wind. Consequently, the static pressure will fluctuate constantly. The ventilation controller monitors the
static pressure and adjusts the inlet vents to maintain a suitable pressure. Because static pressure affects
fan performance, it was essential to monitor the static pressure to allow calculation of ventilation rate with
reasonable accuracy.

A differential pressure sensor (Setra brand model 264, +63 Pa range, see Figure 36) was used to measure
the pressure difference between the ambient environment and the internal shed environment. The
reference pressure for the pressure sensor was the pressure measured inside a weatherproof box (which
was vented, but protected the sensor from strong wind pressures) or from within the control room of the
poultry shed.

Figure 36: Setra ultra low differential pressure
transducer used to measure the shed
static pressure
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Measurement frequency of each sensor

A data logger (dataTaker® DT500, dataTaker® Pty Ltd) was programmed to monitor and record the output
of each sensor at specified intervals. Table 10 lists the monitoring and recording frequency for each of the

Sensors.
Table 10: Frequency of monitoring and recording for each sensor

Sensor Monitoring Frequency Recording Frequency
Fan activity (mercury tilt Six second 6 minute average; on change
switches) in fan activity
Mini-vent switches (Hall Six second 6 minute average, on change
effect sensors) in fan activity
_ Shed-static pressure Six second 6 minute average, on change
(differential pressure sensor) in fan activity

3.2.10 Litter collection

Litter moisture content was monitored by collecting litter samples on each day that air samples were
collected. In each shed, a grid system was developed so that litter samples would be collected at equal
intervals across the entire floor area. For sheds approximately 100 m in length, six transects were used;
and for sheds approximately 150 m in length, nine transects were used. For each transect, five samples
were collected across the width of the shed at:

o Sample A — between drinker line and wall

o Sample B — between first feeder line and second drinker line
e Sample C —shed centre

e Sample D — between fourth drinker line and fourth feeder line
e Sample E — between fifth drinker line and wall

Figure 37 depicts the location of litter collection points.
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Length + Length +
No. Sample  Shed Length + No. Shed Length + No. Shed Length + No. Shed Length + No. Shed Length + No.  No. Sample
Rows) + 2 Sample Rows Sample Rows Sample Rows Sample Rows Sample Rows Rows) + 2
— > — < > < > < > < > «—>
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Figure 37: Litter sample collection grid pattern
Note: Double line represents a drinker line and dotted line represents a feeder line.

Samples were collected to full depth using a steel scoop or shovel, and stored in individually marked
Nasco WhirlPak® bags (710 mL, 0.076 mm thickness), as shown in Figure 38. Samples were stored in the
laboratory and analysed within 7 days in accordance with AS 4454-2003 (Standards Australia, 2003).
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Figure 38: Filling sample bag with litter (at sample point A)

3.2.11 Measurement of weather conditions

Weather conditions were monitored at Queensland sites (Farms A and C) with a 10 m portable automatic
weather station (AWS) (See Figure 39).

s

Figure 39: Weather station used for this project

Weather information collected during the trials is displayed in Table 11. All data (except rainfall) was
collected every second then averaged and reported every six minutes. Hourly and daily averages (and
totals) were calculated during post processing. Specific information for the weather station sensors is

displayed in Table 12.
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Table 11: Weather information collected during the trials

Parameters measured by the AWS

2 m wind speed 10 m wind speed standard deviation

2 m wind direction 2 m temperature (2 sensors)
10 m wind speed 2 m relative humidity
10 m wind direction 10 m temperature
2 m wind direction standard deviation Total radiation

10 m wind direction standard deviation Barometric pressure

2 m wind speed standard deviation Rainfall
Table 12: Weather station sensor information
Sensor/Parameter  Brand Model Number Sensitivity Range
. . 0.11% for Voltage  0-2500 mV

Data Collection DataTaker DT500 (version7) 0.21% for Current  0.25-25 mA
Temperature (2 m)  Vaisala 50Y Humitter +0.6°C at 20 °C -10 to +60 °C
Temperature o
(2m&10m) PT100 -50 to +250 °C
Relative Humidity /51 50Y Humitter £3%at90% RH  10to 90%
(RH) (2 m)

. Gill 1405-PK-040 0
Wind Speed Windsonic Option 3 +4% at 20 m/s 0 to 60 m/s

. o Gill 1405-PK-040 o o
Wind Direction Windsonic Option 3 +3°at 20 m/s 0to 359
Total Radiation Li-Cor L1200Sz 0.2 kKW/mmV
Barometric . +0.5 hPa at 20 °C
Pressure Vaisala PTB101B +2 hPa at 0-40 °C 600 to 1060 hPa
Rainfall Hydr_ologlcal TB3 one tip/0.2 mmrain 0 to 700 mm/hr

Services

The AWS was located and managed by DEEDI according to AS 2923-1987 (Standards Australia, 1987)
wherever possible. It was not always possible to locate the weather station in strict accordance with the
standard at some of the sites due to vegetation or geographical landforms. In these cases, the weather
station was positioned as close as possible to the trial site, which occasionally meant small compromises
in relation to these obstacles.

Data from the AWS was able to be used to calculate atmospheric stability class, described using Pasquill-
Gifford stability categories. Stability class was calculated using the o, method (wind turbulence based
method using wind direction standard deviation) as described in USEPA (2000).

3.2.12 Measurement of ambient and shed temperature and humidity

Ambient and in-shed temperature and relative humidity were measured with three instruments. During in-
shed ventilation rate measurement, the hot wire anemometer (TSI Incorporated VelociCalc® Model 8386—
M-GB) was used to measure temperature and relative humidity.

Ambient temperature and relative humidity were monitored with a Kestrel® Pocket Weather Tracker
(Nielsen—Kellerman model 4500, see Figure 40). The Kestrel was suspended from DEEDI’s sample
collection trailer out of direct sunlight and influence from air exiting the shed. Readings were recorded
every minute.
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Temperature of the air exiting the shed was monitored from within the polyethylene duct using a Cox
Tracer® (Cox Technologies, Inc., see Figure 41). The logger contains two temperature sensors, one inside
the green body, and the other external sensor in the steel probe. The probe was suspended inside the duct
for the duration of the sample days. Readings were recorded every minute.

s
SRR L R

Figure 40: Kestrel® Pocket Weather Tracker Figure 41: Cox Tracer® Temperature Recorder

For measurement of ambient temperature and relative humidity, as mentioned in section 3.2.11, a 10 m
weather station was used. It is possible to measure ambient conditions using portable instruments such as
the Kestrel® and Cox Tracer®. However, it is important that the measurement point is located away from
any interference from the air exiting the poultry shed. Figure 42 shows how ambient temperature
measured with a Kestrel or Cox Tracer compared to ambient temperature measured at 2 m from DEEDI’s
weather station. Sixty-five percent of the portable instrument readings were within one degree Celsius and
34% of the readings were between 1.5 and 4 degrees Celsius above that measured by the weather station.
The use of portable temperature instruments is good for measuring internal shed temperature, but care
must be taken when measuring ambient temperature near the tunnel ventilation fans. The use of a weather
station will reduce the possibility of these errors.
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Figure 42: Comparison between weather station (2m) and Kestrel/Cox Tracer temperature
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3.2.13 Production parameters

Production information was provided by the farm manager and integrator. Number of birds placed,
number of birds present on each sample collection day, and average daily live weight were supplied, and
average live weight density was calculated accordingly. These parameters were assessed for their ability
to influence air quality.

3.2.13.1 Bird weight

Details of bird weight were supplied by the producers using the weekly average weight and the integrator
at collection for slaughter.

3.2.13.2 Bird numbers

The number of birds placed and number of birds removed at each pickup were supplied by the integrator.
All other data regarding the number of birds present was provided by the producer. The number of birds
present on each day of the batch was estimated using the number of birds placed; number of birds
collected at each pickup; and estimated or measured mortality rate.

3.2.13.3 Live weight density
Live weight density (LWD) was calculated by using Equation 4:

LWD (kg/m?) = No. birds in shed x av. bird live weight (kg) + shed floor area (m?) Equation 4

3.3 Analysis techniques
3.3.1 Olfactometry — odour concentration analysis

3.3.1.1 Department of Employment, Economic Development and Innovation
(DEEDI) Olfactometer

Odour concentration from all Queensland farms was determined using the eight panellist, triangular,
forced choice dynamic olfactometer developed by the Department of Employment, Economic
Development and Innovation (DEEDI), which has been described previously (Nicholas et al., 1999;
Zeller et al., 2002). This olfactometer was constructed and operated to comply with the Australian/New
Zealand Standard for Dynamic Olfactometry AS/NZS 4323.3:2001 (Standards Australia/Standards New
Zealand, 2001).

During a typical odour sample assessment routine, each panellist was first screened with the reference gas
(n-butanol) to ensure that his or her detection threshold was within the required concentration range of
20-80 ppb (v/v). Thereafter, the odorous sample was diluted and presented to the panellists in one of
three ports, while the other two ports emitted clean, odour-free air. The panellists were required to sniff
from the ports and determine whether they could detect a difference between the three ports. Each
panellist was allowed a maximum of 15 seconds for this assessment. The panellists indicated via a keypad
whether they were certain, uncertain or guessing that one of the ports was odorous, as well as from which
port the odour (if detectable) was emitted.

This process was repeated, doubling the concentration of odorous air of the previous presentation each
time, until each panellist had entered a “certain and correct” response for two consecutive presentations.
Each panellist’s individual threshold estimate ( Z 11e ) Was then determined by calculating the geometric

mean of the dilution at which the panellist did not respond with certainty and correctly and the first of the
two dilutions where the panellist did respond with certainty and correctly. A complete dilution series is
defined as a round. Three rounds were completed for each sample provided sufficient sample was
available.
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At the end of the three rounds, the results of the first round were discarded in accordance with AS/NZS
4323.3. The results from rounds two and three were then geometrically averaged (Z e )- The ratio

between Z,. and Z .. is defined as AZ . The calculation of AZ is presented in the following equations:

if Ze >Z,then AZ = Z_ﬂ Equation 5
Lire

- —_— Z_I-rE -

if Zz £Z,z,then AZ =% Equation 6
L

If AZ is greater than + 5 then all Z, . values of the panel member with the largest AZ were excluded

from the data set. The screening procedure was then repeated, after re-calculation of Z .. for that

measurement. If a panel member again did not comply, the results for this panel member (with the largest
AZ ) were omitted. This was repeated until all panel members in the dataset had an acceptable AZ value.

The last value of Z,,. was then defined as the odour concentration and expressed as odour units per cubic
metre (ou m3).

3.3.1.2 Emission Testing Consultants (ETC) Olfactometer

The ETC olfactometer was designed and built to comply with the performance and design criterion of the
Standard.

Six odour panellists were used to assess odour samples. Each odour panellist had two ports (left and right)
in which odour samples were presented. One port always contained odour free air (reference air) and the
other diluted sample air. The olfactometer was designed so that the reference air and the diluted sample
air could be swapped randomly from one port to the other.

All odour panellists were screened to ensure their sensitivity to a reference odorant (n-butanol) was
between 20 and 80 ppb. Odour panellists were assessed on a continuous basis to ensure they complied
with the criterion for sensitivity and consistency stipulated in the Standard.

The olfactometer was calibrated on an annual basis using a NATA certified tracer gas (carbon monoxide)
and assessed against the performance criterion of the Standard.

3.3.1.3 Compliance of olfactometers with accuracy and repeatability criteria

To be compliant with AS/NZS 4323.3:2001 (Standards Australia/Standards New Zealand, 2001),
olfactometers must meet or exceed assessment criteria for accuracy and repeatability. Accuracy is a
measure of how closely the olfactometer can measure the true value of a reference gas (40 ppb Butanol)
and is defined by accuracy test variable A,y Olfactometer must achieve A,y < 0.217 for compliance. For
olfactometer precision (measured in terms of repeatability), olfactometers must achieve a value of r <
0.477 (resulting in 10" < 3). In plain English, this value implies that the difference between two single
measurements, performed on the same material, in one laboratory, will not be greater than a factor of 3 in
95% of cases. An assumption is then made that this repeatability is transferable to unknown samples
(Standards Australia/Standards New Zealand, 2001; van Harreveld et al., 1999).

During this study, two olfactometry laboratories were used: DEEDI laboratory in Queensland and ETC in
Victoria. DEEDI olfactometer accuracy ranged from 0.052 < A,y < 0.121 with an average value of Ay =
0.082. Repeatability ranged from 0.259 < r < 0.318 (1.46 < 10" < 2.08). ETC olfactometer accuracy
ranged from 0.098 < A,y < 0.216. Repeatability ranged 0.251 < r < 0.465 (1.78 < 10" < 2.92).
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3.3.1.4 Round robin testing of olfactometry laboratories

All odour samples could not be analysed by the same olfactometry laboratory. As farms in Queensland
and Victoria were included in the study, it was not logistically possible to analyse the Victorian samples
in Queensland within the required time frame. Hence an olfactometry laboratory was used to analyse the
Victorian odour samples. To ensure comparability between laboratories, all participating olfactometry
laboratories took part in an international round robin test in 2005.

An independent laboratory (OLFAtec GmbH, Honigsee, Germany) distributed gaseous samples to all
participating laboratories. The samples were analysed on one day within a specified week determined by
OLFAtec. Each laboratory calculated their odour concentration results and forwarded the results to
OLFAtec, where odour threshold results were calculated. The results were then analysed by OLFAtec to
determine the accuracy of each olfactometry laboratory.

The odour concentration and odour threshold results are shown in Table 13. The terms ‘pass’ and ‘fail’
indicate whether the concentration calculated by the laboratory fell within the set limits of accuracy.

Table 13: Olfatec 2005 round robin test results for DEEDI and ETC

Test No Odour concentration (ou/m?3) Odour threshold (pg/m?)
_ DEEDI ETC DEEDI ETC
1 1-Butanol 378 340 95.24 105.88
' (pass) (pass) (pass) (pass)
2. 1—Butanol 1166 900 101.3 130.89
(pass) (pass) (pass (pass)
; 3158 3800 2.37 1.97
3. Tetrahydrothiopen (pass) (pass) (pass) (pass)
4. SFREE - ethylacrylate, 2061 8100 014 012
methylacrylate and
2—ethyl 3-methylpyrazine (pass) (pass) (pass) (pass)

The odour concentration and odour threshold results for the DEEDI and ETC olfactometers are shown in
Figure 43 and Figure 44 respectively.

Odour Concentration Results Olfatec 2005

9000

8000

7000

6000

5000

4000

3000

Odour Concentration (ou/m3)

2000

1000
0 | ‘ - ‘
1 2 3 4
Test Number
Figure 43: Odour concentration results for Olfatec Test 2005
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Odour Threshold Results Olfatec 2005
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Figure 44: Odour threshold results for Olfatec Test 2005

Summary of round robin testing

The two olfactometry laboratories used during this project—ETC and DEEDI—were assessed using an
international round robin compliance test conducted by OLFAtec and both laboratories passed each of the
four assessment included with the test. Similar results by both olfactometry laboratories in this
independent testing event demonstrated that odour measurements by both labs were comparable—when
using standard gas mixtures. Consequently, assessment of poultry odour samples by either ETC or
DEEDI olfactometers would also be expected to be comparable.

It is recommended that where more than one olfactometry laboratory is used for a single trial, that:

o atest be performed to ensure similarity in results from all laboratories; and
o all laboratories conform to AS/NZS 4323.3:2001 (Standards Australia/Standards New Zealand,
2001).

3.3.2 Dust analysis

Particle mass concentration (for PM,, PM, 5 fractions) and particle number concentration were measured
in the exhaust stream from broiler sheds. These variables had units of mg/m3 and particles/m3
respectively. The data analysis procedure was identical for both concentration measurements.
Concentrations were first corrected for dilution during the sampling process. Dilution with particle-free
air during sampling was necessary to maintain isokinetic conditions. Particle number or mass emission
rates were then obtained by multiplying average corrected concentrations by average ventilation rate,
which was expressed in units of m3/s, producing emission rates in units of mg/s or particles/s. These rates
represent the number or mass of dust particles emitted per second from the broiler sheds. For comparison
between different broiler sheds, emission rates were normalised to emission rate per kg of live bird
weight, and emission rate per 1000 birds placed, using the appropriate production parameters.

During the sample collection periods, continuous dust concentrations were recorded at the majority of
farms. Therefore a choice had to be made regarding the time period over which concentrations were
averaged. Two approaches were taken. Firstly, to directly compare dust and odour emission rates, particle
mass and number concentrations were averaged over the times that odour samples were collected.
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Secondly, to investigate the relationship between dust emission rate and ventilation rate, concentration
measurements were averaged over the times when ventilation rate was relatively constant (i.e. when the
number of active fans was constant).

Particle size distributions were also measured throughout this project. A very large number of size
distributions were recorded at each farm so to easily represent this information a single parameter, Count
Median Diameter, (CMD), was calculated for each distribution. The CMD represents the mid-point
diameter of a particle number size distribution.

3.3.3 Non-methane volatile organic compound and odorant analysis

The laboratory analysis of the sorbent tubes for non-methane volatile organic compounds (NMVOCs) and
odorants was performed in three unique and sequential stages:

1. Using a thermal desorber (TD) to liberate the analytes from the sorbent tube, focus and inject the
NMVOCs;

2. Using a gas chromatograph (GC) to separate the NMVOCs on a chromatographic column; and

3. Using a mass selective detector (MSD)—alternatively known as a mass spectrometer (MS)—and
olfactometry detection port (ODP) to detect, identify and quantify the NMVOCs and odorants.

The instrument series is frequently referred to as TD-GC-MS/O—the MS/O segment indicating that these
two stages happen simultaneously. Figure 45 show the TD-GC-MS/O instrument setup as used in this
investigation.

Figure 45: The instrument setup for the analysis of the theral desorption tubes. From left to right:
Markes UltrA Autosampler, Markes Unity Thermal Desorber, Agilent 5973N Mass Selective
Detector, Agilent 6890N Gas Chromatograph and Gerstel ODP2 Olfactory detection port

The gas chromatograph-mass spectrometer (GC—MS) combination is one of the most powerful analytical
tools available to most modern analytical chemists. The selectivity, flexibility, and sensitivity of GC-MS

82



lend itself to the analysis of environmental samples, owing to the wide variety of analytes that are found
within a particular matrix.

The chemical characterisation of the NMVOCs within the poultry shed emissions was performed using an
Agilent 6890N gas chromatograph coupled to an Agilent 5973N mass selective detector (Agilent
Technologies, Nth Ryde, Sydney, Australia).Varying different operating parameters during the course of
the research enabled an optimum method to be established for the efficient speciation of the analytes
captured on the sorbent tubes.

The separation of the chemical species allows for their identification, numerous detectors are
commercially available for integration into a chromatographic system; however, the mass selective
detector has the benefit of providing rapid and flexible chemical speciation. For the purpose of
characterising the odorants within the NMVOCs, an additional olfactory detection port is necessary. It is
the combination of the mass spectrometer and the odour detection port that provide the unique data set for
the characterisation of the NMVOCs and the odorants present within the gas phase poultry shed
emissions.

The methods for each piece of analysis equipment are explained in the following sections. A summary of
the NMVOC laboratory analysis equipment and operating parameters used throughout the project is
provided in Appendix 2. The term volatile organic compound (VOC) refers to any organic compound that
under normal conditions will be of sufficient volatility to enter the atmosphere; where normal conditions
are typical atmospheric pressure (101.325 kPa) and temperature (~300 K). Correspondingly, NMVOC are
all volatile organic compounds with the specific exclusion of methane (CHy,). For the purpose of this
document the terms NMVOC and VOC have been used interchangeably; however, it should be expressly
noted that where VOC is written, it is implied that it is the non-methane volatile organic compounds
(NMVOC).

3.3.3.1 Thermal desorption—operation and control parameters

The initial stage of the laboratory analysis procedure, that of the thermal desorption, was performed with
a Markes Unity Thermal Desorber (Markes Int’l. Ltd Pontyclun, UK). This instrument performs a series
of sample preparation steps, focuses the volatile organic compounds and then injects them as an analyte
slug into the GC. Clean, rapid injection of the analyte slug must be executed to enable the VOCs to be
separated effectively by the chromatographic column. This is achieved using cryogenic trapping (also
known as cryogenic focussing), which precipitates the volatiles into a liquid that can be injected onto the
chromatographic column. In fundamental difference to the use of cryogenic fluids (LN;) the Unity
Thermal Desorber contains a narrow sorbent trap, known as the cold trap, which employs a Peltier device
to maintain a desired temperature to focus the analytes from the sorbent tube. This cold trap is held at
either ambient (25~30 °C) or sub-ambient (-10 °C) temperature whilst the analytes are thermally liberated
from the sorbent tube. The use of a temperature controlled sorbent trap negates the use of cryogenic
temperatures and the corresponding cryogenic fluids.

The operation of the TD is governed by numerous parameters controlled either by software or manual
adjustment. There is a number of different modes of operation under which the TD can function—for the
analysis of NMVOCs from sorbent tubes, the Standard 2(3) stage desorption is selected. Figure 46
illustrates the graphical user interface of the Markes Unity software that is used to control the different
temperatures and times of the TD. The gas flow rates are controlled by needle valves on the instrument
and verified by the flow rates reported on the GC.
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Figure 46: Markes Int'l. Unity software screen capture. The left portion is the controlling method and the
right portion illustrates the current flow path and instrument status (tube loaded, waiting to desorb)

The Unity thermal desorber has three stages of operation:
1. tube purge;
2. tube desorb; and
3. trap desorb (including a default trap purge).

Tube purge

The tube purge is a critical component of the sample preparation, as it removes undesirable contaminants
such as oxygen and water from the sorbent. This is vitally important when sampling from humid
environments such as poultry sheds—if any moisture is passed to the cold trap and injected into the GC it
can result in damage to the column and the detector as well as interfering with the signal from the
detector. The presence of oxygen in the sorbent tube will result in oxidation of the volatiles within the
sorbent tube upon heating.

The presence of both oxygen and water vapour in the sorbent tubes is unavoidable as they are collected
from the atmosphere, thus careful sample preparation must be employed to minimise their harmful effects
on the analysis. It should be recognised that thermally labile compounds may degrade during the heating
stages of the thermal desorption; however, the use of gentle temperature ramps and effective pre-purging
should minimise the risk.

During the tube purge, the tube is held at ambient temperature, the cold trap is kept at the trapping
temperature (trap low) and the carrier gas is passed though the sorbent tube at a flow rate equal to that
during the tube desorb stage, which is set by the needle valves. The time that the tube is purged for is set
by the prepurge time and can optionally be captured inline (trap in line) by the cold trap and/or have
some of the flow diverted into the recapture tube (split on). If the prepurge is not trapped in line it is
passed through to the solvent vent of the gas chromatograph.

Tube desorb

Upon conclusion of the prepurge the tube desorb stage commences, with an electric heater (the oven)
heating the sorbent tube to a preselected temperature (Temp 1) and maintaining this temperature for the
preset time (Time 1). During this stage the carrier gas continues to flow through the sorbent tube and
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through to the cold trap where the analytes are captured and focussed. This stage thermally liberates the
analytes from the sorbent tube and collects them on the cold trap. The flow from the sorbent tube can
either have all the sample passed onto the cold trap or split a certain ratio to the recapture tube for
additional analysis with the split on function selected.

There can either be one or two temperatures to which the oven is heated, depending upon the
characteristics of the NMVOCs that have been collected. The cold trap is maintained at its Trap Low
temperature during the tube desorption stage in order to effectively capture all the NMVOCs from the
flow.

Trap desorb—including trap purge

The conclusion of the tube desorb stage commences the trap purge, which is in essence identical to the
tube purge and further ensures that there is minimal unwanted moisture or oxygen contamination within
the analytes that have been captured on the cold trap before the heating of the trap is instigated. The cold
trap is a narrow sorbent tube that acts as a cryogenic trap; the sorbent is contained in a quartz tube that
can rapidly be heated by the Peltier device.

The sorbent contained within the cold trap should be selected based on the analytes that are to be
focussed. The trap low temperature is the temperature at which the cold trap is maintained during
standby, tube purge, tube desorb and trap purge. As indicated in the preceding text, this temperature is
either ambient (25~30 °C) or sub-ambient (-10 °C) depending on the characteristics of the sample. The
cold trap is designed to provide a focussed analyte slug that can quickly and cleanly be injected into the
GC and this is achieved through rapid (ballistic) heating. The cold trap is heated from the trap low
temperature to the trap high temperature in a matter of seconds—this heating rate can be customised to
preserve sample integrity. As with the other two stages the complete sample can be injected into the gas
chromatogram or a portion can be split into the recapture tube for additional analysis.

Miscellaneous parameters

The split ratio is controlled by the needle valves on the TD; however, the software contains a dialogue
box pertaining to this ratio setting. The user must enter the flows as indicated by either the gas
chromatogram or as measured with an accurate flow meter. In this way the amount of sample that is
passed to the gas chromatogram or to the recapture tube can be calculated.

The sample flow path through which that the NMVOCs flow, most significantly along the transfer line, is
also controlled from the TD software. The flow path temp is selected based upon the volatility of the
compounds—a temperature that is too low may cause some of the analytes to condense along the flow
path before reaching the GC, conversely a temperature too high may result in thermal degradation of the
sample.

During automated operation (i.e. when the UltrA Autosampler is attached) the cycle time must be set
according to the total run time of the GC and the time required for the oven to return to the initial
temperature.

As mentioned in the preceding text, the cold trap of the TD is similar to a sorbent tube, although of a
much narrower bore to allow the analytes to be rapidly released upon the ballistic heating. In similarity to
the selection of sorbents for the sorbent tubes, the properties of the sorbent contained within the cold trap
can be selected to best suit the analytes being assessed. During this project, a general purpose graphitised
carbon sorbent was selected—suitable for the NMVOCs that were repeatedly detected in the tubes. In a
similar method to the conditioning of the sorbent tubes, a cold trap can be conditioned if it becomes
apparent that there is an undesirable level of carry over contamination between samples; however, this is
not frequent as the higher trap desorb temperature than the tube desorb temperature ensures that all
analytes released from the sorbent tube will be released from the cold trap upon heating.
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Thermal Desorption Methods

During the initial sampling and method development stages of the project, the thermal desorption
methods underwent minor revisions to accommodate the two different sorbent tubes that had been
selected for the field sampling. The moderate hydrophilic Carbotrap 300 sorbent captured far more
moisture during sampling then the Tenax TA tubes and this had a marked impact on the experimental
results. Two different methods were used to thermally desorb the analytes from the sorbent tubes, as seen
in Table 14.

Table 14: Instrument controlling parameters for the thermal desorption of the Tenax TA and Carbotrap
300 sorbent tubes

Parameter Tenax TA Carbotrap 300
Purge (min.) 1.0 5.0
Tube Desorb Time (min.) 5.0 5.0
Temp. (°C) 250 250
Trap low (°C) -10 +30
Trap High (°C) 290 300
Trap Hold (min.) 5.0 5.0
Trap Heating Rate (°C/s) MAX MAX
Flow Path Temp (°C) 150 150
Splits (Purge/Tube/Trap) YIN/Y YIN/Y

As the project developed and the sampling techniques were refined, the thermal desorption parameters
were refined until one method was developed that was appropriate for both the Tenax TA and Carbotrap
300 sorbent tubes. As can be seen in Figure 47, it has been influenced strongly by the initial Tenax TA
method; however, has been optimised for efficient analysis of Tenax TA, Carbotrap 300 and dual sorbent
Tenax TA and Carbograph 1TD sorbent tubes.
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Figure 47: Screen capture of the TD software illustrating the final thermal desorption parameters
that were used for all sorbent tube samples

3.3.3.2 Gas chromatograph operation and parameters

The unknown facets of the speciation lead to the use of very general GC operating parameters for the
initial sample analysis; however, once the quantity and variety of compounds was understood, this
method was refined to an optimal level to reduce total sample analysis time and increase peak separation.

Carrier Gas

The GC was supplied with ultra high purity helium carrier gas (He - 220G, BOC Gases, Sydney, NSW
Australia). The electronic pneumatic control module of the GC controlled the gas pressure though the TD
and through the GC. Helium has been extensively used in gas chromatography due to its very low
molecular (cf. atomic) mass, inertness and non-polar properties.

Column type

The use of fused silica capillary columns in gas chromatography has resulted in increased accuracy and
lower detection limits for trace level analysis. These columns are available in different polarities—the
analyte mixture that is being separated will determine whether a polar, non-polar or an intermediate
polarity column will be selected. The interactions of the analytes within the sample are responsible for the
retention time of the particular molecule, and these interactions are physical more so than chemical—with
adsorption/desorption (or simply sorption) and porous layer open tubular (PLOT) columns, the affinity
for the chemical species is governed by the size, surface charge and van der Waals forces. Combining
these factors determines the retention time and therefore elution order of the chemical species.

For the initial sampling, a general purpose (5%-Phenyl)-methylpolysiloxane (HP-5ms, Agilent
Technologies, North Ryde, NSW Australia) column was used. This non-polar column is suitable for semi-
volatiles, alkaloids, drugs, fatty acid methyl esters (FAMES), halogenated compounds, pesticides and
herbicides. It allowed for the initial identification of the varieties of species within the samples; however,
as the results of the initial sampling became clear, and the characteristics of the species being detected
were established, a column with a significantly higher polarity was installed.
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The polar column that was subsequently chosen was a polyethylene glycol column (HP-INNOWax,
Agilent Technologies, North Ryde, NSW Australia)—suitable for alcohols, aromatics, essential oils and
solvents. This column was far more suitable to the low molecular mass mildly polar species that were
consistently being detected in the samples and allowed for separation of the co-eluting peaks—Ileading to
increased reliability and improved identification of odorants when used concurrently with the olfactory
detection port.

During different sampling campaigns, replicate samples were collected in order to analyse them on
different columns to ensure that polar column in use was most suitable. These duplicates were analysed
on moderately polar columns (DB-VRX, J&W Scientific, and HP-624, Agilent Technologies) with
essentially identical stationary phases.

The vast majority of the samples were analysed on the polar (HP-INNOWax) due to the late acquisition

of the considerably more suitable DB-VRX column. Time restrictions did not permit repeat sampling or

guantification of the DB-VRX data sets; however, it is strongly recommended that all future work would
be carried out on this column.

Injection Method

One advantage of fused silica capillary columns over traditional packed columns is the small injection
volumes that can be directly injected onto the column. This ensures that all the analytes within the sample
matrix will pass to the detector ensuring the accurate representation of the emission source. With the use
of the thermal desorber, a split-less injection was performed to ensure that all the analytes within the
sample were injected onto the column to maximise the number of compounds identified within the
samples.

Flow rate

The retention time and elution order of analytes within a given sample result from the interaction of the
analytes and the stationary phase of the column. The flow rate of the carrier gas can influence the elution
time but not the order of elution—considerations must be given to the operation of the detector that is
being used. This is of significance to the use of a MSD, which is under high vacuum—if the carrier gas
flow rate is too high, the pumps of the MSD will not be able to create and maintain the level of vacuum
required for proper operation.

Whilst the initial sample analysis only employed the MSD, the later sampling employed a second
detector—the olfactory detection port (ODP) (Gerstel ODP2, Gerstel GmbH & Co., Germany) which
consequently required the effluent from the GC column to be split between the two detectors. This
dictated that the carrier gas flow provided sufficient pressure at the end of the column in order to maintain
positive flow to the ODP, whilst preserving the vacuum of the mass selective detector. If this balance is
not correctly maintained, the MSD could be effectively open to the atmosphere, creating an air leak and
potentially damaging the instrument.

Oven Temperature Program

As mentioned in the introduction the GC section, the initial sample analysis employed a very general
method—the oven temperature profile was initially a single temperature ramp from 50 °C to 250 °C, with
a total run time of 44 minutes. Initial temperature (50 °C) was held for 2 minutes before the temperature
was increased at 5 °C/min to the final temperature of 250°C which was held for 2 minutes. This
programme appeared to be suitable for the elution of the compounds; however, there was a significant
amount of free space (dead time) during which no compounds were eluting. Consequently the
temperature programme was modified, to include two temperature ramps, and a lower final temperature.
The initial temperature was kept at 50 °C and the first temperature ramp 5 °C/min to 125 °C, then a
second temperature ramp of 10 °C/min to 200 °C, which was held for 2 minutes. The first allowed for the
elution of the closely related n-C, compounds with adequate separation, and also gave enough time for
the elution of the higher polarity (cf. higher boiling point) species to elute.

88



3.3.3.3 Mass selective detector (mass spectrometer) operation and parameters

The mass selective detector (MSD) provides chemical speciation as well as quantification; it is a flexible
detector capable of characterising complex samples efficiently for a wide range of chemical compounds.
The operating parameters are controlled by the ChemStation Software, and there are two modes of
operation in which the MSD can operate; scan and selected ion monitoring (SIM). Scan operates the
MSD as a continuous scan from a preset range, whilst in SIM mode, the MSD is programmed to target
specific m/z ions during specific time windows. The SIM mode is best when the composition of the
samples that are being analysed is vaguely understood. This was not the case with the majority of the
poultry samples; consequently the use of the scan mode was engaged for all the samples.

Manually controlled operating parameters

The scan parameters were initially set to 50-550 m/z, which was a basis for the initial results; however,
upon the further interrogation of the preliminary results, it was determined that the scan range should be
increased to detect the lower m/z fragments of many of the compounds. To avoid influence from any
traces of air and moisture that may be present during the elution of the compounds, a lower m/z of 35 was
chosen. This would allow for many of the n-C, fragments in the 40-50 m/z range to be detected and thus
increase the reliability of the matches to the mass spectral databases.

Automatically configured operating parameters

The operating parameters pertaining to the stable function of the MSD were controlled automatically by
the ChemStation (Agilent Technologies, North Ryde Sydney Australia) software, tuning the instrument
allowed for the correct voltages to be configured to ensure the system functioned properly.

Databases, spectral matching and compound identification

Two databases were used for the identification of the compounds eluting from the samples: NIST02
database and Wiley275 database. The former is issued by the National Institute of Standards and
Technologies and the other is produces by the science publishing house Wiley InterScience. Once a
reliable spread of compounds had been positively identified, several neat standards were purchased to
provide retention time matches and also to perform the quantification of the method.

3.3.3.4 The olfactory detection port operation and parameters

The olfactory detection port (ODP) (see Figure 48) was operated in tandem to the MSD and allowed for
the simultaneous identification of the odorants that were present among the suite of NMVOCs.
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Figure 48: Gerstel olfactory detection port connected to the Agilent 6890N
GC. Seen in the lower frame is the Odour Input Device (OID)
consisting of the control pad and headset microphone

The function of the ODP, as implied by its name, is to detect compounds that promote an olfactometric
response from an operator. This detection can occur as a presence/absence result or a relative quantity of
odour—the quantity of which is described by five discrete levels: absence (0), barely detectable (1), easily
discernable (2), significantly odorous (3) and highly odorous (4). The results are recorded using the
Gerstel ODP Recorder which integrates with the Agilent ChemStation to provide chromatographic
spectra for both the total ion chromatogram and the odorant profile chromatogram.

An additional function of the ODP is the ability to record an odorant descriptor to qualitatively
characterise the odour, in similarity to recording a hedonic tone. This descriptor can be used to identify
closely eluting peaks or empirically to global impact on the whole odour. Descriptors are used either to
classify or specifically identify the odorant, the operator records a comment for later playback that
describes the characteristic of the odour. As both the strength of the odour is recorded and the
characteristic of the odorant, this is an empirical method to establish which of the compounds within the
overall matrix may have the most impact on a receptor.

During the analysis of the samples, a small capillary splitter (Figure 49) diverted a calculated amount of
the sample to the ODP, whilst the remainder of the flow continued to the MSD. This split ratio was
calculated at the initial temperature of the oven. As the temperature of the oven increased, the volumetric
flow rate was kept constant by the electronic pneumatic control module of the GC. This allowed for the
flow rate of each of the effluent flow paths to be maintained at the desired ratio.
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Figure 49: Capilary splitter; low volume cross piece

Although there is a calculated delay between the arrival of the compound at the MSD and the ODP, their
respective detection times will differ. The calculated delay is substantiated by the flow of fluids through
different capillaries, which are known, to the respective detectors; however, there is a secondary influence
on the detection time of a given odorant at the ODP and that is the operators’ response. This operator
delay results from a combination of physiological factors including respiration rate, neural response times
and reflex speeds.

The operator records their response to the odour using the odour input device (see Figure 48). Whilst
recording their response, the operator can also record a descriptor of the odorant. This can be used to
identify the compound from neighbouring non-odorous peaks in the total ion chromatogram, and it can
also determine whether the compound is likely to contribute to the overall characteristic of the odour.

3.3.3.5 Quality assurance and quality control—blank samples

Consistent documentation of all samples collected, coupled with instrumentation logs, allowed for the
scrutiny of the results. Of particular significance was the use of blank tubes to ensure the samples
analysed were free from or contained minimal uncertain contamination. Each sorbent tube that was
sampled in the field or the laboratory was thermally conditioned to the manufacturer’s specifications and
then analysed to confirm all traces of analyte had been removed before the sorbent tube was sampled.
Additionally, field blanks, ambient samples and laboratory blanks were also collected. Field blanks being
tubes that were transported with the actual samples but remained sealed during the return trip from the
laboratory to the field. Ambient samples were pumped sorbent tubes collected from the ambient air
stream immediately upwind of the poultry shed ventilation inlet. Laboratory blanks were sorbent tubes
that remained sealed in the laboratory whilst the balance of the tubes were in the field. All of these blank
tubes were analysed under identical conditions when the field samples were analysed. The importance of
the collection of field blanks was the ability to determine what compounds were present in the ambient air
entering the shed; to enable discrimination of compounds produced in the shed.
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3.3.4 Litter moisture analysis

Litter moisture content was determined using Australian Standard 44542003 (Standards Australia,
2003).

A proportion of each sample (approximately 50 g) was placed in an individually identifiable 100 mL
ceramic evaporating dish. Each dish was dried at 105 °C and weighed before the addition of litter. The
litter was immediately weighed to ascertain a wet sample weight. All samples were dried in an oven at
105 °C overnight. After cooling in a desiccator cabinet, the dry litter samples were weighed. To calculate
wet basis moisture content, Equation 7 was used.

%Moisture content = 25 1009 Equation 7
m, —m

Where m; = mass of the dish (g)
m, = combined mass of the dish and litter (g)
m; = combined mass of the dried dish and litter (g)

All samples collected were analysed individually in order to assess intra-shed variability of moisture
content.

Contour plots were drawn using Surfer® version 7 (Golden Software Inc. Colorado USA) to visually
assess moisture content differences.

3.4 Data processing
3.4.1 Olfactometry data processing

3.4.1.1 Averaging of duplicates

Odour samples were collected into two drums (duplicate odour samples) and each drum was analysed
independently by the olfactometer. The odour concentrations values for these duplicate samples were
averaged using their geometric mean, producing a single odour concentration value for each sampling
time.

Collection and analysis of duplicate samples is recommended by the AS/NZS 4323.4:2001 because it
reduces variability in the measured odour concentration and improves confidence in the olfactometry
result. Analysis of duplicate samples also provides one way to identify the amount of variability in
olfactometry results. If the detection threshold for duplicate samples is measured to be exactly the same, it
is reasonably likely that the olfactometer has measured the true result of the sample. However, if the
detection threshold for duplicate (and assumed to be identical) samples is found to be quite different,
confidence in the results may be reduced.

3.4.1.2 Removal of duplicates with excess variability

AS/NZS 4323.3:2001 (clause 8.3.2) requires calculation of repeatability and accuracy for an individual
olfactometer. The olfactometer needs to comply with these requirements, which are measured using a
reference testing material (40 ppb n-butanol gas). The assumption is then made that these repeatability
and accuracy measurements are transferrable to the measurement of unknown samples. Accuracy defines
the ability of the olfactometer to determine the ‘true’ result of an odour sample. Repeatability defines the
ability of the olfactometer to measure the same sample multiple times and obtain the same result.

Exclusion of data from olfactometry analysis due to excessive variability is not covered in the Standard.
However, if the ratio between duplicate odour samples was greater than the repeatability ratio of the
olfactometer (given r = 0.318 and 10" = 2.08 for the DEEDI olfactometer) then we believe that the
detection threshold for the duplicate samples was questionable, and it would be reasonable to exclude
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both duplicate results on the basis that they do not fit the 95% confidence band. Consequently, we applied
this filtering rule to the olfactometry data analysed by the DEEDI olfactometer and 6.2% of the total
number of duplicate samples analysed during the project were excluded from further analysis. The
duplicates discarded are shown in Appendix 3.

For the ETC olfactometry, variability between duplicates was within the repeatability value for the
olfactometer, and within the Australian Standard requirements, and consequently no results were
discarded.

3.5 Sensor based monitoring of shed air quality

Wireless air quality monitoring stations were installed at Farms A, B and C during batches corresponding
with dust and olfactometry odour measurement. The purpose of the stations was to monitor air flow,
temperature, humidity, ammonia, dust and VOCs within the shed on a continuous basis over the entire
batch. Sensor data was compared with the conventional odour and dust measurements to evaluate whether
or not the continuous data could be used to supplement conventional, infrequent odour and dust
measurements.

In-shed monitoring stations carried the full range of sensors, mounted on a cross arm 1.6-1.9 m above the
ground and supported by a custom-built tripod stand (see Figure 50). The external station included only
temperature and humidity sensors, which were mounted on a commercially available weather station
stand (Davis 7716, Kilsyth, Australia) (see Figure 51).

Ademometer

i,/

PPV Dust

Temp/Humidity

Figure 50: Indoor sensortti delo Wit ) Figure 51: Outdoor sensor station (note: station
sensors attached was not installed in this location—for
photographic purposes only)

Indoor sensor stations were placed as close as possible to the centreline of the long axis of the shed, at
approximately 25%, 50% and 75% of the length of the shed. The station at the cooling pad end of the
shed was denoted the ‘Door node’, the centre of the shed denoted the ‘Mid-shed node’ and the node
nearest the tunnel ventilation fans the ‘Fan node’. During the second phase of the litter reuse study at
Farm C, a floor to ceiling curtain (brooding curtain) was located about halfway along the shed for the first
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two weeks with the birds brooded in the end nearest the fans. The mid shed node was placed on the fan
(and brooder) side of the partition.

Monitoring commenced just before birds were placed in the shed and generally continued until pickup
events. Depending on the site, pickups usually required the nodes to be temporarily turned off and
removed to prevent them becoming obstacles for the catchers. Monitoring resumed as soon as practicable
after each pickup.

3.5.1 Wireless system network

A schematic of the typical deployment is shown in Figure 52. The sensing stations transmitted sensor data
wirelessly to a ‘base node” where it was recorded at 15 minute intervals on a laptop computer. The laptop
was connected to a GSM modem, allowing it to be accessed remotely for data downloading and system
checking.

»

.“' |

s 1|
Door End Node |

I
@ [P Y $ A — > 1|
p | e I
Mid-shed Node Fan End Node 1
o4 s II‘
—*0 1l
o © Base Node 'I'

A
GSM Modem

-
Local PC Ttr=i

Modem

Lab. PC
Figure 52: Schematic of typical WSN deployment in broiler shed

3.5.2Sensors

Details of the sensors used to monitor air flow, temperature, humidity, ammonia, dust and VOCs are
provided in Table 15. Most of these sensors could be considered as ‘base level components’ and require
signal conditioning electronics and customised mounting hardware. Because most of these sensors are not
‘ready to use’, the manufacturers do not provide detailed recommendations on the best way to mount and
use the sensor; instead, users must work these details out for themselves based on their own experience.
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Table 15:  Air quality monitoring station sensor information
Sensor/ Model
Parameter Brand Number Sensitivity Range
Yellow Springs o ) o
Temperature (OH, USA) YSI144201 +0.2°C 80-100 °C
Humidity Honeywell (Freeport, IL, USA) HIH 3610  +2% (<90%RH) 0-100%
. +0.9 m/s
Airspeed ('Il')e;i?:sE_lre)c(tr&rgf) TV-4 (starting threshold 0-45 m/s
o 0.6 m/s)
S Unspecified, qualitative response
Dust S(Eggsl Jiagr?)a PPD20V in the range of
»~ap 0-30,000 particles/L
City Technology (Portsmouth, ZNH
Ammonia UK), mounted on a body by CiTicel +1 PPM 0-200 PPM
Monitor Sensors (Brendale, Qld)
VOC Synkera Technologies VOC-707 qualitative response to a range of

(Longmont, CO, USA)

VOCs (1-100 PPM)

Of these sensors, the dust and VOC sensors were known not to not provide quantitative sensor responses
using recognised units and therefore warranted further investigation to understand how they might
respond in the broiler shed environment.

The dust sensor was compared with a DustTrak™ 8520 (TSI Incorporated) under laboratory conditions.
While the dust sensor did not provide quantitative measurements of dust concentration, it did respond in a
similar way to the DustTrak™ when dust concentration changed. For this reason, it was considered
suitable for trial use in broiler sheds to provide general feedback on in-shed dust concentrations.

The VOC sensor responds to a range of organic compounds with minimum sensitivities in the 1-100 ppm
range (see Figure 53 for known responses to a selection of VOCs). Consequently, the strength of the
signal response from the VOC is related to exposure to a mixture of VOCs (which may or may not be
odorous) and therefore it was considered likely that the VOC sensor response might loosely reflect odour
concentration in the shed.
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Figure 53: Typical sensor response to 100 ppm of a range of VOC (data supplied by manufacturer)
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The VOC and ammonia sensors were mounted in a customised housing designed to prevent the sensors
being covered by dust but still enabling the sensors to be exposed to the in-shed air (see Figure 54). While
providing some protection form large dust particles, the housing did not provide complete dust protection
and the addition of the fan increased power requirements for the sensor stations.

i
|
i
|
|

Figure 54: Ammonia and VOC sensor
housing

The stations were originally intended to run on battery power but unfortunately the combined power
requirements of the node electronics, sensors and fan was approximately 3.3 W. This necessitated
connection to a mains power source to provide reliable power for the duration of the batch.

3.5.3 Sensor station data analysis

At the end of each study, data was exported from the Sensicast database into Excel spreadsheets and all
sampling times were adjusted to the same 15 min time datum. Data was assessed manually for quality and
obvious outliers or sensor failures were removed from the dataset. Completeness of the data record was
determined based on the total amount of sample intervals possible over the period while birds were in the
shed, and the number of valid readings left after removal of outliers and failures.

Each of the seasonal/site experiments was analysed for correlation between sensor response and
conventional odour measurements. These analyses were conducted for the individual seasonal and reuse
studies, as well as the complete data set. These measurements were analysed by correlation and regression
methods, and partial least squares analysis. The full dataset was also used to develop a model relating
sensor measurement to conventional odour measurements using artificial neural network techniques.

3.6 Measuring odour emissions using an artificial olfaction system

An artificial olfaction system (AOS), developed by DEEDI, was used to measure poultry shed odours.
The AOS co-analysed odorous air from within the sample drums collected for olfactometry analysis
(Queensland only), and was installed at two broiler farms to semi-continuously measure odour
concentration using air drawn directly from the shed. The primary purpose of co-analysing the
olfactometry samples was to ‘train’ the AOS for recognition and quantification of poultry odour. Semi-
continuously monitoring poultry shed odour emissions with the AOS on a one minute sampling interval
provided a more thorough record of poultry emissions than was possible with infrequent olfactometry.
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The AOS operates by the process outlined in Figure 55. A sample of poultry shed air is introduced to a
sensor array, which produces a series of electrical responses that are recorded using a data logger. The
data is then processed using calculations that have been developed during the training of the AQS, after
which an odour concentration is reported.

Poultry Shed Air Sensor Array Data Processing Odour Concentration

Figure 55: Process diagram of odour concentration measurement using the AOS

3.6.1Training of the artificial olfaction system using olfactometry

The AOS needed to be trained to allow the electrical responses from the sensor array to be converted into
an odour concentration. This is achieved by exposing the sensor array to numerous odour samples of
known odour concentration, as determined using dynamic olfactometry, and recording the pattern of
electrical responses from each sensor within the array (see Figure 56). The odour samples need to be from
the same source (or similar source such as other broiler farms) because changes to the composition of the
odour will produce a different response from the sensor array, even though the odour concentration may
be the same. This is why the AOS is calibrated by co-analysing odour samples; because there are no
‘standard’ calibration gases for broiler odour.
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Figure 56: Example of the ‘pattern’ or ‘fingerprint’ of electrical responses from the sensor array

The odour samples collected from similar sources are used to establish a data-set for further data analysis
(i.e. odour classification based on the sensor array pattern or odour quantification). An example of odour
classification using the AQOS is presented in Figure 57. A data-set was established using odour samples
collected form the different emissions sources including a poultry shed (A), a biofilter in a piggery (B)
and a piggery effluent pond (C). The sensor response to clean instrument grade air from a cylinder is
included as the control (D). Data points that plot close together on the map indicate a similar odour
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pattern and can, therefore, be classified as a similar odour type. As shown in Figure 57, the entire dataset
can be classified into four distinctive odour groups. This result demonstrates that the AOS is able to
discriminate between samples collected from different sources.
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Figure 57: Example of odour classification using AOS. Two-dimensional odour mapping using principal
component analysis from odour samples collected at various agricultural odour emission sources
including poultry shed (A), biofilter (B), piggery effluent pond (C), and clean air (D)

During this research project, odour samples from Farm A were presented to the AOS directly from the
odour sample drums that were collected for olfactometry analysis; while at Farm C, the AOS was
installed and operated at the farm which allowed odour samples to be drawn directly from the shed
concurrent with collection of the samples for olfactometry. A total of 174 samples were analysed from
Farm A and 76 samples from Farm C during the calibration process.

The calibration formulas developed for Farms A were fine tuned for the odour concentration
measurement at Farm C by using the corresponding olfactometry results.

The pattern and magnitude of sensor response is what enables the AOS to measure odour concentration,
but additional data processing is required. The sensor outputs of the AOS were pre—processed using
principal component analysis for the purpose of dimensionality reduction and outlier handling. Sohn et al.
(2007Db) provides greater detail of how PCA was used to simplify the data from Farm A.

Once the response from the sensor array had been pre-processed using PCA, partial least squares (PLS)
regression in chemometrics was used to develop a calibration formula enabling it to report odour
concentration. Matlab™ statistical packages and the Partial Least Squares (PLS) Toolbox 3.5™ for
Matlab™ were used for pre-processing and development of the calibration formula.

The performance of the calibration formula was validated using two statistical measures: the root-mean-
square error of calibration (RMSEC) and the root-mean-square error of cross-validation (RMSECV). The
RMSEC is a measure of how well the model fits the calibration data. In contrast, the RMSECV is a
measure of a model’s ability to predict new samples.
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The AQS, using the developed calibration formulas, was used to continuously monitor odour
concentration within broiler sheds at Farm A and Farm C over an entire production cycle.

3.6.2 Continuous odour measurement at Farm A and Farm C

Odour concentrations during three batches of broilers (a batch directly after the winter batch at Farm A,
and two consecutive batches at Farm C), were monitored using the AOS.

The AOS was housed in an insulated 20-foot shipping container at Farm A and a control room attached to
the shed at Farm C. Each was air conditioned to maintain a clean, temperature-controlled environment
(see Figure 58).

A system to draw odorous air from within the broiler shed and deliver it to the AOS sampling port was
built using 110 mm diameter polyvinyl chloride (PVC) stormwater pipe. A sub sample of the air in the
delivery pipe was then drawn into the AOS using a customised sampling port. The length of the air
delivery pipe was approximately 30 m from the pipe inlet to the AOS at Farm A and 25 m at Farm C. At
both Farms, the air collection point was located half way across the shed, 10 m upwind from the tunnel
ventilation fans and 1 m above the litter (see Figure 59). Sample air was drawn through the PVC pipe at a
velocity of 6.25 m/s using an axial fan (Fantech® TD-500/150 mixvent series axial fan).

Figure 58: Mobile laboratory interior at Farm A Figure 59: Point of sample collection, shed interior

The AOS consisted of 24 different metal oxide sensors (MOS). Signals from all sensors were collected at
a sample rate of 60 Hz using a DT800™ data logger (dataTaker®, www.datataker.com). The temperature,
relative humidity and sensor responses were monitored and stored using a real-time data logging program
developed using Labview 7.1™ (National Instruments, Austin, Texas, USA).Odorous air samples were
presented to the AOS at a flow rate of 500 mL/min.

3.6.3 Combining artificial olfaction system data with ventilation rate and
weather data

Odour concentration data continuously recorded by the AOS was combined with ventilation rate and
weather data (see sections 3.2.9.5 and 3.2.11 respectively). The combination of these data sets enabled
calculation of odour emission rate throughout the batch and also allowed odour emission rates to be
correlated with weather conditions and atmospheric stability conditions, which is likely to have a
substantial influence on the emissions and the potential for odour nuisance. While assessing the potential
for odour impacts was beyond the scope of this research project, the opportunity to present the combined
data was useful for demonstrating a potential use for AOS.

Continuous odour emission rate records are presented in Chapter 11.

99


http://www.datataker.com/

3.7 Summary of methodologies

Eleven tunnel ventilated broiler farms were included in this project. At three of the broiler farms;
odour, dust and VOC emissions were measured at approximately weekly intervals. At the
remaining eight broiler farms, only odour was measured and only on one day when bird mass in
the shed was maximum.

The majority of odour, dust and VOC samples were collected from within a temporary flexible
duct that was attached to one of the tunnel ventilation fans at each farm.

Odour concentration was measured using dynamic olfactometry to AS/NZS 4323.3:2001. Two
laboratories were used, and comparative testing was conducted between the laboratories to ensure
comparability of odour concentration measurement.

Dust was measured using a DustTrak™ and an aerodynamic particle sizer (APS). Isokinetic
sampling techniques were used.

NMVOCs were collected using sorption tubes for subsequent analysis with a TD-GC-MS/O.
Sampling and analysis techniques, including the selection of sorbents, were refined during the
project, resulting in the development of an improved method for measuring NMVOC emissions
from poultry sheds.

Ventilation rate was estimated by measuring in-shed or fan airspeeds, or by calculating the flow
rate through each active fan using manufacturer supplied fan flow rate date (and adjusting for shed
static pressure), which was selected as the preferred method.

Two instrumental approaches were used to monitor in-shed air quality, micro-climate and odour
concentration—wireless sensor networks and an artificial olfaction system (AOS).
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4 Odour emissions

From November 2005 to May 2008, 349 odour measurements were made at eleven broiler farms, located
in Queensland and Victoria, during different times of the year and at different stages of the production
cycle. Data for each of these measurements is provided in Appendix 5 to Appendix 11, and is summarised
below in Figure 60 to Figure 61. Each of these figures displays the data using different units of emission
rate, which are useful for different purposes. These figures show a wide spread of ventilation rates. This
spread is due to samples being collected at different farms during different ventilation, weather and
production conditions. While some trends in the data may be visible, each emission rate measurement
must be considered on its own, and in conjunction will all of the supporting information provided in the
appendices.

Some of the emission rates presented in these figures require further consideration because the specific
methodology used on particular days may have influenced the result. These points are for Farm A
(especially days 18 and 27 and 31) and Farm B (especially days 13 and 32). Further analysis of these data
points is provided in Section 4.4.

(Note: Farms D & E were layer farms and their emissions have been reported separately.)

4.1 Emission rate data for all broiler farms

Figure 60 displays the emission rate data using units of odour units per second (ou/s), which is the total
emission rate from the shed. Emission rates varied from 2070-135,000 ou/s. There is an obvious increase
in odour emission rate for each farm to approximately day 35, which for most farms was just prior to the
first pickup. After this time, emission rates appeared to decline as more birds were harvested from each
shed. The relationship between odour emission rate and bird weight is explained further in Section
4.8.2.3.
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Figure 60: Odour emission rate for broiler farms

Figure 61 displays the emission rate data using units of odour units per second per 1000 birds in the shed
at the time of sample collection (ou/s/1000 birds). Emission rates varied from 866334 ou/s/1000 birds,
with the majority of data between 100-5000 ou/s/1000 birds. Emissions up to the first pickup will be very
similar to the odour emission per 1000 birds placed (only a small adjustment for mortalities). However,
the emission rates per 1000 bird increase rapidly following each pickup, due to dividing the emission rate
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by a much smaller number of birds. It is very difficult to compare different farms using this measure of
emission rate, because knowledge of bird numbers and pickup times are essential for interpreting the data.

7000

]
6000
[u]
— |
12}
B I
5 5000
o
S o
E 4 4 A A
4 [ ]
3 4000 A
e u] o '
] L] A A
& A
c A oa
S 3000 o - 5,
2 Om 0O,
£ 7] A
w A A
5 noat Ag e A
> 2000 &
S o oX % n
° ﬁ [ ] A ! A o
o § 2 AT X o o
1000 LEu] Aa o o g
o %o x R - |
o A o g E g X o
A 1 A O o x
0 T T T T T T T T
0 7 14 21 28 35 42 49 56 63

Bird Age (days)

‘D Farm A mFarm B AFarm C X Farms F-M ‘

Figure 61: Odour emission rate per 1000 birds for broiler farms

Figure 62 displays the emission rate data using units of odour units per second per 1000 birds placed at
the start of the batch (ou/s/1000 birds placed). These units for emission rate are very useful for comparing
emission rates from different sized sheds. Emission rates varied from 68-5186 ou/s per 1000 birds placed,
with the majority of data between 100-3000 ou/s per 1000 birds placed.
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Figure 62: Odour emission rate per 1000 birds placed for broiler farms
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Figure 63 re-presents this data (odour emission rate per 1000 birds placed at the start of the batch) using a
box and whisker plot to more clearly demonstrate variability throughout each sampling day (primarily
due to changes in ventilation rate), between sampling days and between farms. In box and whisker plots,
the extent of the whiskers represent the maximum and minimum values, the upper and lower values of the
box show the 25" and 75" quartile values and the line inside the box represents the median value. The
labels on the x-axis describe the farm, season/batch and the bird age on that particular sampling day.

Note that the data corresponding to Farm A-summer-day 27 should be viewed with caution as the odour
emission rate is likely to have been influenced by the research team manually over-riding the automatic
ventilation control system (described further in section 4.4).
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Figure 63: Box and whisker plot of odour emission rate per 1000 birds placed for broiler farms clearly
highlights the variability of emissions on each day and between farms
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Figure 64 displays emission rates in terms of odour emissions per kilogram of birds present in the shed at
the time of sampling (units ou/s/kg). Apart from some spikes in the data set (requiring further explanation
given in Section 4.4), adjusting the emission data for live weight appears to have a levelling effect. The
majority of the emission rates were within the range of 0.25-2.5 ou/s/kg.
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Figure 64: Odour emission rate per kilogram for broiler farms

Regardless of the units used to display odour emission rates, there is an obvious spread of data on each
day at each farm. This observation supports the conclusions from the diurnal study (section 4.2) that
emission rates vary throughout each day. One consequence of this observation is that in order to
accurately describe emissions on a particular day of the batch, it is essential to measure emissions more
than just once.

4.2 Diurnal variation of broiler shed emissions

Diurnal variability of emissions from broiler sheds was measured at Farm A in June 2007. Emissions
were assessed over a 20 hour time frame during the winter batch of broilers, commencing in the afternoon
and finishing at midday the following day. Odour concentration, volatile organic compound, particulate
size and concentration and ventilation rate were measured at four predefined steps in the ventilation
program. Using the fan monitoring equipment, daily trends with ventilation activity were examined and
recurrent periods with different levels of ventilation were identified. Data recorded by the AOS was also
used to examine changes in odour concentration over time. A decision was made to collect samples at the
following times:

e afternoon (1600) o
e early morning (0600) o

evening (1830) e night (2330)
mid morning (0900) e midday (1230)

The olfactometry odour emission data is shown in Figure 65. In terms of odour concentration,
measurements during the night were less than those measured during the day. An increase was observed
at the early morning measurement time, but the odour concentration did not exceed those measured
during the evening. A purge of the night’s build-up of odour was not clearly observed. The decrease in
odour concentration at mid morning may have resulted from dilution as the ventilation rate ramped up for
the day.
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As for odour emission rate, the values measured during overnight, early and mid morning were relatively
stable and lower than those measured in the afternoon and evening.

Odour concentration and emission rate values measured using the AOS are also shown in Figure 65
alongside the olfactometry measurements. Both data sets showed similar trends throughout the sample
collection period. After nightfall, the AOS odour concentration and odour emission rate values remained
relatively stable. The increase in concentration shown at midnight may have been caused by bird activity
due to the use of lighting during sample collection. After sunrise, the odour concentration and emission
rate began to increase from the values measured during the night. As with the olfactometry data, there
was no apparent emission purge in the early morning.
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Figure 65: Diurnal olfactometry and AOS concentration and emission rate data

4.2.1 Summary of diurnal odour emissions

Poultry odour concentration appeared to vary over a 20 hour time frame. During the evening and night,
when ventilation rates were lowest, the in-shed concentration was lower relative to the afternoon values.

Continuous monitoring of ventilation rate over the 20 hour collection period was useful for providing
insight into the relationship between concentration and emission rates. Because emission rate is the
product of concentration and ventilation rate, it was not surprising that night time and morning emission
rates were lower than in the afternoon. This was due in part to the reduction in concentration values
(possibly because of lower temperature and bird activity) but the large reduction in emission rate
appeared to be influenced primarily by ventilation rate.

The 208 sets of duplicate odour samples analysed for this project were collected between 05:28 and
14:05, with a mean collection time of 09:57. By collecting all of the samples in the morning, it was not
possible to measure the full range of odour emission rates throughout each day of the batch. Care
must be exercised when examining the data because the average value of the samples collected on
each day will NOT be equal to the daily average emission rate. For accurate prediction of emissions
for planning purposes, diurnal influences must be accounted for.

The results indicate that where repeated measurements are to be taken over one or multiple batches of
chickens, samples should collected at approximately the same time of the day and when ventilation
requirements are similar. By varying sample collection time, variation in results will almost certainly
occur due to diurnal variability.
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4.3 Odour emission rates —with and without birds

At Farm A and B, odour emissions were measured before placement of the birds and after removal of the
birds. This was primarily an academic exercise to collect odour emission rate data under these conditions
because from a practical point of view, ventilation is typically minimal when birds are absent (or naturally
driven in the case of curtain sided sheds). Odour emission from the shed were measured (explained in
Section 3.2.1):

after fresh bedding was placed in the shed;

the day after the birds were removed (used litter);
during removal of the litter;

after the litter was removed; and

after the shed had been washed down and fumigated.

While birds are absent from the shed, it is not normal practice to operate the ventilation fans; however, to
enable measurement of emission rates at these times, ventilation fans were manually operated. Odour
measurements were taken across the full range of ventilation rate (25%, 50%, 75% and 100%; except on
the occasion when odour emissions were measured during litter disturbance and removal when half of the
fans were turned on). Consequently, these odour measurements may not be representative of the real
situation and caution should be exercised if using this data.

Figure 66 displays the odour emissions at these stages of the batch compared to odour emissions while
birds were present. Odour emissions measured before placement and after removal of the flock were
generally much lower than while the birds were present. Low odour emission rates, especially on the day
following bird removal, highlight the contribution of the flock to the mechanisms controlling odour emissions.
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4.4 ldentifying unrealistic data

At the beginning of this study, the sampling schedule was prepared so that emission rates would be
measured at 25%, 50%, 75% and 100% of the maximum ventilation rate on each sampling day. To
achieve this, the automatic shed ventilation system was manually over-ridden, with a specified number of
fans locked in for each sampling period (of approximately 30—60 minutes to allow VOC samples to be
collected). Approximately 15 minutes was allowed between locking fans in and the start of sample
collection.

Setting the ventilation rate at the pre-arranged values was not possible on every day depending on
weather conditions and the age of the birds. In general, ventilation rate was never lower than that
determined by the ventilation control system (which may have caused the birds to overheat); however, the
ventilation rate was occasionally increased above the automatic level when the farm manager determined
that it would pose no risk to the birds.

The practice of manually overriding the ventilation system was applied at Farm A (summer and winter)
and Farm B (summer). This practice was discontinued at the remaining farms because of the
potential for adversely affecting the emission rate measurements, and because the specified
ventilation rates (25%, 50%, 75% and 100%o) do not actually occur on each day of a batch.
Consequently, some of the emission rates that were measured are unlikely to ever occur.

When samples were collected at Farm B (winter), Farm C and Farms F—M, the ventilation system
remained on its automatic setting. Occasionally, the number of fans was locked in, but usually the
ventilation system was operated in automatic mode. If the ventilation rate changed during the collection
of an odour sample, the number of active fans was recorded and a time-weighted averaged ventilation rate
was calculated for the sample collection period.

Figure 67 shows the ventilation rates during each sample collection in units of ventilation rate per 1000
birds placed; ventilation rate per 1000 kg live weight; and the percentage of maximum fan activity.
Examination and cross-referencing between these charts highlighted several data points, especially
toward the start of the batch, that were relatively and unusually high and occurred only because the
research team manually overrode the automatic ventilation system. These correspond to Farm A
(summer) days 18 and 27 and Farm B (summer) day 13.
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Figure 67: Summary of ventilation activity at all broiler farms — blue circles indicate

ventilation rates that appear unusually high, and occurred due to the
sampling methodology of overriding the automatic fan controller
Top — ventilation rate per 1000 birds placed
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Bottom — % of maximum fan activity
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Examination of the data in Figure 67 was useful for determining unusually high ventilation rates during
summer; however, relatively high ventilation rates from winter batches were not so obvious even when
the ventilation control system was manually over-ridden and higher than normal fan activity was selected.
By making an adjustment for temperature, some of the winter ventilation rates appeared to be relatively
higher (see Figure 68). These data points occurred at Farm A (winter) on day 15 and Farm B (winter) on
days 14 and 22.
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Figure 68: Summary of ventilation activity at all broiler farms — blue circles indicate ventilation rates
that appear unusually high, and occurred due to the sampling methodology of overriding the
automatic fan controller — ventilation rate per 1000 kilograms per °C

Ventilation rates were continuously monitored at Farm A (June to July 2006) and at Farm C (April to
June 2007). Daily minimum, maximum and average ventilation rates were determined for each day.
Figure 69 displays the ventilation rates for Farm A. The dots correspond to the ventilation rate during
sampling. The lines indicating ventilation rates were from the continuous monitoring system (with data
from manually over-riding the control system omitted). Presentation of the data in this manner
demonstrates that on days 15 and 21, the manually selected ventilation rate exceeded the normal value
determined by the ventilation controller. Consequently, the odour emissions measured on these days
should be viewed with caution.
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In contrast with Farm A, Figure 70 displays the ventilation rates for Farm C (partially reused litter batch).
This figure shows that the ventilation rates during sample collection were within the normal daily range.
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Figure 70: Ventilation activity measured at Farm C (10 April to 4 June 2007)

The data identified in Figure 67 to Figure 70 as being abnormally high should be considered
unrepresentative of normal conditions. Consequently, the odour emission rates corresponding to
these ventilation rates should also be treated with caution, and potentially ignored, because the
sampling methodology created abnormal conditions. In addition to these specific data points, odour
measurements performed at Farm A and Farm B (summer) were undertaken while manually controlling
ventilation. While most of the odour measurements were undertaken at ventilation rates that were likely
to be within the normal range of ventilation rates for that day of the batch, the ventilation rate was often
increased above the normal level for that time of day, potentially affecting the results. Despite this data
being identified as potentially unrepresentative, it was not omitted from the data analysis because the
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actual influence of changing ventilation rates on measured odour emissions is unknown and the effects
have not been thoroughly investigated or published.

4.5 Broiler single litter use seasonal and location variability

Seasonal variability of emissions was assessed at two broiler farms, one located in southern Queensland
(Farm A), the other located in central Victoria (Farm B). One batch of chickens was monitored in summer
(November—January in QLD and February—April in Victoria) and winter (June—July in QLD and August—
September in Victoria). A review of the summer emission rate data from Farm A revealed that the
regularity of data collection was not sufficient to identify trends in emission rates, and the data collected
would not allow an assessment of bird removals on emission rates. In addition, several odour
measurements from this batch were discarded due to excessive olfactometry variability (see Section
3.4.1.2 for further description); and unscheduled removal of birds prevented measurements on day 35 of
the batch and day 47, prior to final bird removal. To address these issues, odour measurements from Farm
C were included to supplement the emission rates representing ‘Queensland summer’. Monitoring at this
farm occurred from January—March 2007.

Each shed was assessed for odour; volatile organic compounds (VOC); particulate concentration and
number; and litter moisture content. A maximum of 4 replicates were conducted on each sample day, with
each replicate coinciding with a change in ventilation rate. Ventilation rate was subsequently measured at
each change.

Frequency of emission measurement throughout the batch was described previously in section 3.2.1.

451 Odour emissions from individual summer batches

Odour emission rates measured at Farm A, B and C during summer are displayed in Figure 71, Figure 72
and Figure 73 respectively. Litter moisture content has also been included in these charts, as this factor is
implicated in the generation of odour. The ventilation rate at the time of each measurement is essential for
interpreting the odour emission data, and is provided in Appendix 5, Appendix 7 and Appendix 9 for
Farms A, B and C respectively.

Figure 71 shows odour emissions for only two days during the batch at Farm A. Measurements scheduled
for later in the batch were not undertaken due to unscheduled removal of the birds (with insufficient
warning for the project team to re-schedule sampling times). The average shed litter moisture content
ranged between 20-30% on sampling days. The emission rates measured on days 18 and 27 would be
considered high when compared to other reported emission rates; however, these emission rates may not
be representative of normal production for the reasons described in Section 4.4 (manual control of
ventilation during sampling and unrealistic ventilation rates). Insufficient measurements were undertaken
to enable the complete range of odour emission rates to be described throughout the batch. The wide
spread of emission rates on each day is due to measuring at different ventilation rates and different times
of the day; but clearly demonstrates that odour emission rates are not constant throughout the day.
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Figure 71: Odour emission rate, shed-average litter moisture content and total live weight for Farm A
(summer)

Figure 72 shows the odour emission rates on three days at Farm B. There is clearly an increase in odour
emission rate between days 13 and 32 with increased live weight, age and shed-average litter moisture
content. Following the first pickup, shortly after day 32, the odour emission rate appeared to decrease and
is lower on day 46. Odour emission rate on each day varied considerably between the minimum and
maximum values. As with Farm A, this demonstrates that odour emission rates vary considerably
throughout each day coinciding with changes in ventilation rate. The ventilation rates measured on day 13
may not be considered normal; because the ventilation system was manually controlled and higher than
normal ventilation rates were chosen (see section 4.4). Emissions on this day were relatively low
regardless of the ventilation rate. The highest emissions measured on day 32 may not be truly
representative because ventilation was manually increased at a faster rate than the normal daily increase
in ventilation rate, and may have influenced the measured odour emission rate.
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Figure 73 displays the odour emissions measured at Farm C (late January to late March). Odour emission
rates peaked on days 35 and 37. Emission rates varied on each day because samples were collected at
different times, and at different ventilation rates. The shed-average litter moisture content reached a
maximum around day 35 and then decreased until the end of the batch. Reductions in shed live weight
occurred due to pickups on day 36 and shortly after day 42. Despite live weight reaching a maximum on
day 57, odour emission rates on this day were lower than on day 35, although maximum ventilation rate
was also lower on this day. Peak odour emissions reached a maximum on day 42.
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Figure 73: Odour emission rate, shed-average litter moisture content and total live weight for Farm C
(summer)

4.5.2 Odour emissions from individual winter batches

Odour emission rates for Farms A and B during winter are shown in Figure 74 and Figure 75 respectively.
Corresponding data for winter can be viewed in Appendix 6 and Appendix 8.

Figure 74 shows the odour emission rate peaking with maximum live weight around day 31. Litter
moisture was relatively high at the start of the batch, but following day 21, began to drop and remained
just over 30% for the remainder of the batch. As in summer, changes in ventilation on each sampling day
resulted in a range of odour emission rates occurring on each day. Ventilation rate never exceeded 50% of
the maximum ventilation rate during the sample collection times, yet peak odour emission rates were
comparable with summer levels. The practice of manually controlling fans during sampling periods may
have influenced the measurement of emission rates (as explained in section 4.4), so the peak emission
rates in particular should be viewed with caution.
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Figure 74: Odour emission rate, shed-average litter moisture content and total live weight for Farm A
(winter)

Figure 75 shows the odour emission rates at Farm B. Odour emission rates tended to follow the live
weight in the shed. Litter moisture content also peaked around day 35, when live weight peaked. The
maximum odour emission rate was measured on day 37 of the batch. As with Farm C in summer (see
Figure 73), there were no obvious reasons for this.
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45.3 Odour emission rate — summer vs winter

Figure 76 shows a direct comparison between the odour emission rates measured in summer and winter.
Around day 35, daily peak odour emissions measured during this study were similar in both summer and
winter. Odour emission rates appeared to remain high following the first pickup in summer, whereas in
winter the emission rate decreased following the first pickup (about 35 days).

Throughout the batch, daily minimum OER values were lower in winter than summer. This is likely to
have implications on the total daily emission of odour, which in turn will influence the potential for odour
impacts.

Displaying all of the data into just two categories has the effect of blending all of the data. For practical
use of the odour emission rate data, each odour emission rate needs to be considered independently with
associated weather, production, ventilation and litter conditions.
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Figure 76: Odour emission rates for broiler farms in summer and winter

The disparity between summer and winter odour emission rates is influenced by ventilation rate. Figure
77 displays odour emission rate plotted against ventilation rate. There is an approximately linear increase
in maximum daily odour emissions with ventilation rate; however, minimum odour emission rates appear
to be independent of ventilation rate.

In general, winter ventilation rates dominate the lower half of the spectrum, whereas the upper levels of
ventilation rate occurred mostly during summer. This was not unexpected, but serves as a reminder of the
importance of ventilation rate on odour emission rates; and ventilation requirements need to be clearly
understood when measuring or predicting odour emission rates at broiler farms.
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Figure 77: Odour emission rate versus ventilation rate in summer and winter

Statistical analyses were performed on log transformed odour emission rate per 1000 birds placed data
using the REML technique. For Farm A, analyses focussed on day 27 and day 28 of the summer and
winter batches, respectively. These days were used in an attempt to directly compare both batches. The
odour emission rate for Farm A was found to be significantly different, indicating that there were
differences between the summer and winter results. For Farm B, day 35 and 32 of the summer and winter
batches, respectively were used for analysis. No significant difference between summer and winter
emissions was found.

4.5.4 Odour emission rate — Queensland vs Victoria

Odour emission rates were measured at broiler farms in Queensland and Victoria to determine if localised
differences in litter material, litter management, feed constituents or climate would significantly affect
odour emission rates. Figure 78 shows, with the exception of some very high emission rates recoded in
Queensland, that the majority of odour emission rates appeared to be similar in both Queensland and
Victoria.
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Figure 78: Odour emission rates versus bird age for Queensland and Victorian farms

4.6 Comparison of emissions from single use litter and partial litter
reuse

Odour emissions were measured from a farm that partially reused litter to assess whether this litter
management process produced different emissions when compared to single litter use. One farm (Farm C)
was chosen that partially reused litter. Two batches of chickens were monitored in sequence from one
shed—the first batch with single use litter, the second batch grown on partially reused litter. Odour,
volatile organic compounds, particulate concentration and number, and litter moisture content were
monitored at approximately weekly intervals.

Odour emission rate per 1000 birds placed is shown in Figure 79. For the single use batch, measurements
ranged from 337-2939 ou/s per 1000 birds placed, whereas for the partially reused batch, measurements
ranged from 669-2806 ou/s per 1000 birds placed. The geometric mean OER measured during the single
use and partially reused batches was 1505 and 1393 ou/s/1000 birds placed respectively. The general
trend for both batches was of steady increase in OER up to day 35, after which emissions plateaued or fell
slightly. There were only minor observable differences in emissions when comparing single use and
partially reused litter.
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Figure 79: Odour emission rate per 1000 birds placed comparing fresh and partially reused litter

Odour emission rate per kg is shown in Figure 80. For the single use batch, measurements ranged from
0.53-1.84 ou/s per kg, whereas for the partially reused batch, measurements ranged from 0.65-2.12 ou/s
per kg. The geometric mean OER measured during the single use and partially reused batches was 1.22
and 1.14 ou/s per kg respectively. Emission rates were relatively constant for both batches. There were
few observable differences in emissions when comparing single use and partially reused litter.
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Figure 80: Odour emission rate per kilogram comparing fresh and partially reused litter

On face value, that the odour emissions measured during both batches at Farm C showed that odour

emissions did not increase when litter was partially reused; however, there are a number of differences in
the single use and partially reused litter batches. Firstly, the single use batch was grown between 30/1/07
and 30/3/07 (summer/autumn), whereas the partially reused batch was grown between 10/4/07 and 6/6/07
(autumn/winter). As shown in Figure 81, ambient temperature measured during the partially reused batch
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was lower than the temperature measured during the single use batch. The reduction in ambient
temperature would have resulted in reduced ventilation rates, which directly influences odour emission
rate.
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Figure 81: Daily minimum and maximum 2 m ambient temperature for Farm C

Secondly, the number of birds placed during each batch was not identical. The partially reused batch
stocking rate was 8% less than the single use batch. It is difficult to identify the impact this difference had
on odour emission; however, greater exposure of floor area for interaction between air flow and litter, and

less

manure deposition may result in reduced odour emissions. We can speculate on the effects, but they

cannot be quantified.

Thirdly, average litter moisture content was consistently lower for the partially reused batch (apart from
the measurement at day 14) (see Figure 82). As discussed later in Section 4.8.2.2, litter moisture content
appeared to have an effect on odour emission rate.
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Figure 82: Shed-average litter moisture content (wet basis) for both batches at Farm C
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In light of the differences between the single use and partially reused batches measured at Farm C,
statistical analyses were performed to assess whether there were any significant differences between the
two management practices. Using a linear fixed effects model, the measured odour emission rate per 1000
birds placed was assessed against bird age (Figure 83). A log transformation was performed on the OER
data to normalise the values. Neither bird age nor litter management practice significantly affected odour
emission rate. However, as the measurements relating to management are completely confounded with
other factors (such as ambient temperature, ventilation rate, live weight density), this limited the
analytical value. Apart from the environmental and production differences between the two measured
batches, it can be seen in Figure 83 that the use of single use or partially reused litter at Farm C did not
significantly influence odour emission rate.
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Figure 83: Linear mixed effects model for single use and partially reused litter

4.7 Round robin of Queensland farms

Variability in emissions between farms was assessed at eight broiler farms located in south-east
Queensland. Each farm was monitored only on the day before the first pickup for odour, volatile organic
compounds, ventilation rate, and litter moisture content. Dust measurements were not undertaken because
a duct was not constructed for each of these farms.

The odour emission rate results are shown in Figure 84 for Farms A, C and F—M. The odour emission rate
per 1000 birds placed ranged from 315-1794 ou/s for Farms F—M. The comparative emissions for the day
before first pickup for Farms A and C ranged from 1014-5187 ou/s and 1400-2471 ou/s respectively.
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Figure 84: Odour emission rate per 1000 birds placed for QLD farms at peak bird density

The results for Farm A are comparatively higher than the other farms. This may be due to the manual
overriding of fans and consequently, the three highest recordings for Farm A should probably be excluded
(as explained in Section 4.4). After excluding these measurements for Farm A, the range of odour
emissions for the 10 farms located in south-east Queensland was 315-3520 ou/s per 1000 birds placed
(see Figure 85—data presented using a box and whisker plot).
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Figure 85: Comparison of odour emission rate for all Queensland broiler farms at peak density. (note: the
three values above the chart represent three data points from Farm A, Summer, that were
removed to improve presentation of the remaining data and because these three values are likely
to be unrealistic due to the research team manually over-riding the fan controller).
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It can be seen in Figure 85 that there is variability between the farms, with some farms having lower
odour emissions than others. Reasons for inter-farm variability could not be determined from the
conditions recorded on each sampling day. Much of the variability seen at each farm was due to changes
in ventilation rate.

In terms of litter management, Farms I, G and F partially reused litter (as well as some of the data points
for Farm C), whereas the remaining farms practiced single litter use. Figure 85 shows that there is no
obvious trend in odour emissions when comparing litter management practice. For example, Farm I is
similar to Farms L and J; Farm G is similar to Farms J and M; and Farm F is similar to Farms M and H.
There are no trends that suggest that partial litter reuse will generate higher odour emissions compared to
single use management practices (at peak of bird density).

4.8 Odour emission rate relationships

4.8.1 Development of odour prediction models

The data was analysed to identify any relationships that may exist between odour emission rate and other
variables measured on-farm. A stepwise regression in both directions was used to determine the most
appropriate model to estimate odour emission. The model development process iterates through steps,
testing all factors in the model for possible inclusion or exclusion based on the significance of the factor
to the model. A final model is selected with the least number of significant factors while still producing
an acceptable fit to the data, qualified using AIC (Akaike’s Information Criterion) (Akaike, 1974).

The models chosen included the factors shown in Table 16, which were found to significantly influence
odour emission rates from Farms A, B and C. A single model could not be produced because of
differences between the three farms; however, individual models were able to be developed for each of
the three farms.

The models are comprised of a constant (intercept), singular factors and factors with two way
interactions. Two way interactions (where two variables are listed in one row) mean that the second
variable significantly influences odour emission only during the time when the first variable significantly
influences odour emission. For example, for Farm A, ventilation rate significantly influences odour
emission rate when season was also a significant influence. The coefficients in the models are multiplied
by the factors and added together to estimate the odour emission rate per bird placed as shown in
Equation 8.

OER per bird placed ~intercept + 2 {factors x coefficients) Equation 8

A worked example for the Farm C model is provided in Appendix 12.
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Table 16:

Stepwise regression coefficients for factors influencing odour emission for Farms A, B and C

: Model coefficients

Factors unit Farm A Farm B Farm C
Intercept - -9.3497907* | -3.291484 17.0451417*
Season (indicates season where — 3.9382325 2.192325 0.8127175
estimate applies) (winter)* (winter) (summer)*
Batch age Days 0.0315003 - -0.0569523
Ventilation rate m3/s 0.0614428* 0.141079* 0.0377881*
Ambient temperature °C 0.1480233 -0.140341 -0.7846743*
Live weight density kg/m2 -0.0553451 -0.042130* -0.4675131*
Litter moisture % wet basis | 0.1281601* 0.117204* -0.4117151
Season: Batch age — — —
Season: Ventilation rate -0.0834111* | -0.131991* -
Season: Ambient temperature - - -
Season: Live weight density — — -0.1023154*
Season: Litter moisture — — —
Batch age: Ventilation rate - - -
Batch age: Ambient temperature -0.0072937* - -0.0028754
Batch age: Live weight density 0.0036354* — 0.0055347*
Batch age: Litter moisture — — —
Ventilation rate: Ambient - -0.002791* -
temperature
Ventilation rate: Live weight 0.0029953* - -0.0009478
density
Ventilation rate: Litter moisture - — -
Ambient temperature: Live - - 0.0162404*
weight density
Ambient temperature: Litter - 0.005838* 0.0234855*
moisture
Live weight distribution: Litter - - -
moisture

Notes for applying the models:

e For the ‘Season’ factor — when the coefficient is listed as winter, the factor has a value 1 when it is winter
and a value of 0 when summer. When the coefficient is listed as summer, the reverse is true. For Farm C,
‘summer (= 1)’ is related to the first batch (fresh litter) and ‘not-summer (= 0)’ is related to the second
batch (partially reused litter)

e When applying two-way factors — multiply the two factors’ values and the coefficient.
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OER data produced by the models correlated well with the OER data measured at Farms A, B and C,
producing r2 values of 0.91, 0.92 and 0.87 respectively. Figure 86 shows the correlation between the
measured and modelled data for each of the three farms.
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Figure 86: Correlation between measured and model-generated log odour emission rate per 1000 birds
placed (top left — Farm A, top right — Farm B and bottom Farm C)

The models were compared to olfactometry and artificial olfaction system (AOS) data for Farm A
(winter) and Farm C (batch 2—partially reused litter). For each of these batches, the model was applied

using both ‘season’ values.
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Figure 87 displays the result of the Farm A model when applied to the Farm A winter batch. It can be
seen that the model performed poorly when compared to the AOS and olfactometry data. When the
alternate season coefficient was used (bottom chart in Figure 87), OER prediction was even worse;
highlighting the need for correct selection of this model factor. Necessity for selection of the correct
‘season’ value casts doubts on the use of this model using autumn or spring batches.
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Figure 87: Application of the model for Farm A to Farm A winter batch. (top — using the ‘winter’ coefficient
(season = 1) and bottom — using the ‘summer’ coefficient (season = 0)

Figure 88 displays the result of the Farm C model when applied to the Farm C partially reused litter batch
(batch 2). It can be seen that the model performed poorly when compared to the AOS and olfactometry
data by consistently over-predicting daily maximum OER and under-predicting daily minimum OER.

When the alternate season coefficient was used (bottom chart in Figure 88), OER prediction was
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particularly bad; highlighting the need for correct selection of this model factor. Necessity for selection of
the correct ‘season’ raises questions about which value should be selected for any non-summer batch.
Additionally, as shown in other parts of this report, the reuse of litter was found not to be a significant
factor for increasing odour. Considering that the two batches were sequential and weather conditions were
similar, questions could also be raised as to why the two batches were significantly different (by season).
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Figure 88: Application of the model for Farm C to Farm C partially reused litter batch. (top — using the ‘not-
summer coefficient (season = 0) and bottom — using the ‘summer’ coefficient (season = 1)

The time series charts in Figure 87 and Figure 88 demonstrate that the models provided relatively poor
capability for predicting OER when compared to the olfactometry and AOS measurements, even using
the data on which the models were based.

The method that was used to develop the models—stepwise linear regression—produced some counter-
intuitive relationships between the factors and OER. The influence of the input parameters on predicted
OER from Farms A, B and C are displayed in Figure 89. To interpret the figures, the x-axis corresponds
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to the value of the parameters (for example ventilation rate or live weight density) and the y-axis
corresponds to the relative change in OER (the middle of the y-axis, 0%, indicates no change). Low
gradient of the slope (i.e. close to horizontal) means that changes in the input parameter will only have a
small effect on OER. A negative slope (decreasing from right to left) indicates that the predicted OER
would decrease with increasing values of the individual parameter.

For Farm A (top charts in Figure 89), the model predicted increasing OER with increasing ventilation
rate, live weight density and litter moisture content, but decreasing OER with batch age and ambient
temperature. While the contribution of each of these parameters was slightly different when using
‘summer’ and ‘winter’ coefficients for season, the trend for OER to increase or decrease with each of the
parameters remained relatively consistent. For Farms B and C (middle and bottom charts in Figure 89);
however, the effect of the parameters on the prediction of OER changed between the two seasons, and
OER was seen to decrease with increasing values for ambient temperature, live weight density and litter
moisture content in some of these charts.
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Figure 89: Changes in predicted OER with changes in parameter values using the model developed from
data collected at: Farm A, summer (top left) and winter (top right); Farm B, summer (middle
left) and winter (middle right); and Farm C, summer (bottom left) and not-summer (bottom
right).
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The inconsistency of the effect of the parameters on the prediction of OER between each farm and season
demonstrates that these models are unlikely to be able to be applied to other farms, or at other times of the
year.

Consequently, these models should not be used for predicting odour emission rates at
broiler farms for planning purposes.

To improve the predictive ability of the models, more data will be required under a broader range of
conditions, potentially requiring instrumental odour monitoring such as AOS. Additionally, the effect of
the individual factors on OER need to be established and these effects need to be reflected in the model
(for example, OER would be expected to increase with live weight density, litter moisture content and
ventilation rate, which increases with temperature and batch age; therefore the model predicted OER
should increase with these factors).

4.8.2 Relationships between OER single factors

The production and emission of odour from broiler sheds is a complicated and intertwined process, and is
demonstrated through the complex interactions of the factors in the models (in the previous Section
4.8.1), where singular factors are inherently affected by many other factors (also see Figure 6 in Section
2.2.6.2).

The following sections expand on some of the single factor relationships:

ventilation rate;

litter moisture content;
live weight density; and
ambient temperature.

4.8.2.1 Effect of ventilation rate on odour emissions

The ventilation rate measured at the time of each odour sample collection was assessed in order to
identify any possible relationships between odour and ventilation rate. The relationship between odour
concentration and ventilation rate is shown in Figure 90. Odour concentration tends to decrease as
ventilation rate increases.
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Figure 90: Odour concentration with increasing ventilation rate
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The relationship between OER per 1000 birds placed and ventilation rate is shown in Figure 91. OER
tends to increase as ventilation rate increases.
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Figure 91: Odour emission rate per 1000 birds placed with increasing ventilation rate

The relationships observed with change in odour concentration and emission rate due to ventilation rate
were also observed by Simons (2006). In fact, it is common to all emission rate processes (Hudson and
Ayoko, 2009; Hudson et al., 2009)

4.8.2.2 Effect of litter moisture content on odour emissions

Litter moisture content was measured on each day that air quality was measured. The vast range of litter
conditions that can be experienced in a broiler shed make it difficult to accurately estimate litter moisture
content throughout the shed. By collecting samples in a grid pattern, we attempted to collect litter from
the whole spectrum of moisture ranges that were present in a shed on each day without bias. Contour
plots of the litter moisture content measured on (or close to) each sampling day are presented in Appendix
13 to Appendix 16.

Figure 92 represents the relationship between odour concentration and shed-average litter moisture
content while Figure 93 illustrates the relationship between odour emission rate (ou/s per 1000 birds
placed) and shed-average litter moisture content. In this study, there did not appear to be a clear trend
towards increased odour concentration or odour emission rate with increased shed-average litter moisture
content. However, as explained in section 2.2.6.1, shed-average litter moisture may not be the most
appropriate measure of litter moisture relating to odour emissions because small areas of very wet,
anaerobic litter may generate strong odours.
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Figure 93:

Small areas of wet litter may generate proportionally more odour than the rest of the floor area (as
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Odour emission rate (ou/s) with increasing shed-average litter moisture content

50

explained by Hudson et al. (2009) in reference to beef feedlot manure pad odour emissions). To explore
this hypothesis further, using only the collected moisture content data, the results were broken down into
ranges of moisture content. Figure 94 and Figure 95 (displaying odour concentration and odour emission
rate respectively) illustrate the range of litter moisture measured on each measurement day when bird
weight and density were greatest, i.e. before the first pickup. Using this method, we can see the frequency
of individual samples collected in a shed that had dry (less than 20%), typical (21-39%), or wet (greater
than 40%) moisture content.
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Figure 95: Odour emission rate versus litter moisture content for peak in-shed bird weight (day prior to first
pickup) (note: the number under the x-axis categories indicates the batch age)

The litter moisture results shown in Figure 94 and Figure 95 indicate that the proportion of dry, typical
and wet litter at the time of peak bird density can vary between farm and season. A conclusion that can be
drawn from these results is that farms with wetter litter did not necessarily have higher odour
concentrations or emission rates.

The data collected during this study contradict the previous observations made by Clarkson and

Misselbrook (1991) and support the observations by Sneath and Robertson (2000) and Simons (2006)
(discussed previously in Section 2.2.6.1).
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4.8.2.3 Effect of live weight density on odour emission rates

The relationship between live weight density, described as average kilograms per square metre floor area,
and odour concentration is shown in Figure 96—odour concentration did not generally increase with live
weight density.
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Figure 96: Odour concentration with increasing live weight density

The relationship between odour emission rate per 1000 birds placed and live weight density is shown in
Figure 97—odour emission rate per 1000 birds placed did not appear to increase with live weight density.
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Figure 97: Odour emission rate per 1000 birds placed with increasing live weight density

As shown in Table 16, live weight density was found to significantly influence odour emission rate
during the regression analysis; however, Simons’ (2006) data and the data presented in Figure 97 did not
visibly demonstrate any clear relationship. One reason for this may be that live weight density changes
along with other conditions/factors such as batch age, litter moisture content, ventilation rate, season—
evidenced by the two way interactions in Table 16.
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4.8.2.4 Effect of ambient temperature on odour emission rates

The relationship between ambient temperature (°C) and odour concentration is shown in Figure 98. There
is a slight downward trend in odour concentration as ambient temperature increases.
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Figure 98: Odour concentration with increasing ambient temperature (°C)

The relationship between ambient temperature (°C) and odour emission rate per 1000 birds placed is
shown in Figure 99. Odour emission rate tended to increase with ambient temperature. This was expected
to occur as ventilation rate generally increases with ambient temperature in order to maintain correct
target temperature for optimal bird performance (see Figure 100). As a result, increasing ventilation rate
usually results in increased odour emission rate.
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A relationship between OER and ambient temperature was also identified by Simons (2006), where
measurements from a local Bureau of Meteorology weather station were recorded at 0900 for the
minimum daily temperature.
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Figure 100: Broiler ventilation rate with increasing ambient temperature

4.9 Summary of broiler odour emissions

Odour emission rates need to be individually considered along with environmental and in-shed
conditions at the time of measurement (for example ambient temperature, ventilation rate, litter moisture
content, bird age and total bird live weight).

e From November 2005 to May 2008, 349 odour emission measurements were made at eleven broiler
farms located in Queensland and Victoria.
Odour emissions were measured throughout the production cycle.

The majority of odour emission rates range from:
o 2000-105,000 ouf/s
100-3000 ouf/s per 1000 birds placed

(@]
o 100-5000 ou/s per 1000 birds (in the shed at the time of measurement)
o 0.25-2.5 ou/s per kg live weight (of birds in the shed at the time of measurement)

Odour emission rates were observed to vary throughout the day (24 hour period); however the
majority of samples were collected between 5:30 am and 2:00 pm, consequently the majority of the
measured odour emission rates may not representative of the maximum daily spread of odour
emission rates. Odour was rarely measured at night (due to logistical challenges) and therefore the
measured emission rates are unlikely to be representative of daily minimum values and periods of
time when atmospheric conditions lead to poor dispersion.

Continued over the page.
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Summary of broiler odour results continued from previous page.

Odour emission rates before bird placement (on fresh litter) and after litter removal were found to be
lower than when birds were present in the shed. Odour emission rates decreased once birds were
removed from the shed.

Some of the measured odour emission rates were suspected of being unrealistic due to the ventilation
rate being manually increased above ‘normal’ levels (given the ambient temperature and batch age)
by the research team while attempting to measure the full range of possible odour emission rates.
These data points have been identified in the data set and should be disregarded.

Odour emission rates tended to be higher during summer, compared to winter, presumably due to
greater ventilation requirements.

Odour emission rates were similar for broiler farms located in Queensland and Victoria; however, this
conclusion is based on a very limited number of farms that may not represent other farms in each of
the respective states.

Reusing litter in broiler sheds did not appear to increase odour emissions; however, weather, litter
moisture content and stocking density were slightly different between the single use and partially
reused batches, which confounded the analysis of the data.

Odour emission rates measured at eight broiler farms in SE Queensland were different at each of the
farms, even though shed design and management were similar. Weather may have been a contributing
factor, but it is likely that odour emission rates will be variable between farms.

Stepwise regression techniques were used to develop models to estimate odour emission rates from
three different broiler farms using a selection of factors. Individual models were required to suit each
farm and the relationship between odour emission rate and the factors (for example ventilation rate
and live weight density) were inconsistent between the farms. For these reasons, model
development was not considered successful and the models should not be applied to other
poultry farms, especially for predictive or planning purposes.

Relationships between odour emission and individual factors:

o In-shed odour concentration generally tended to decrease with increasing ventilation rate,
presumably because of dilution.
Odour emission rate generally tended to increase with ventilation rate.
There was no clear relationship between shed-average litter moisture content and odour
emission rate. Maximum odour emission rates tended to occur when shed-average litter
moisture content was 26-40%.
There was no clear relationship between odour emission rate and live weight density.
There were only weak relationships between odour emission rate and ambient
temperature, even though ventilation rates tended to increase with ambient temperature.
It is unlikely that any of the aforementioned factors will influence odour emission rate in
isolation with other factors. Consequently, variability in odour emission rate must be
considered in conjunction with all contributing factors.
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5 Dust emissions

5.1 Overview of dust results

Dust was measured at three broiler farms in two states during different seasons and stages of the
production cycle. The dust-related variables recorded at each farm were particle mass concentration (for
both PMy and PM, 5 size fractions), particle number concentration and count median diameter (mid-point
of the size distribution). Concentration measurements were combined with ventilation rates to calculate
particle number and mass emission rates (see section 3.3.2). All of the dust data collected as part of this
project is provided in Appendix 5 to Appendix 23. The values in these appendices are themselves
averages of hundreds of dust measurements taken over time intervals when ventilation rate was relatively
constant (this interval varied from ~10 minutes up to a few hours).

The following section summarises the average dust data from broiler sheds in graphical form. As the
graphs will show, there is considerable spread in the measured dust concentrations and emission rates.
This is due to the complex interaction of a range of factors including ventilation rate, shed design, time of
day and in-shed microenvironment. Care should be taken to consider all of these factors and more when
interpreting the dust measurements.

5.1.1 PMj concentration and emission rates for Farms A, B and C

Figure 101 displays the PMyq concentrations measured at Farms A, B and C against bird age. PMyq
concentrations varied from 0.04—1.62 mg/me. These values fall towards the lower end of broiler shed
PMy, concentrations found in the literature (see Appendix 1). There is a lot of scatter observed in Figure
101, which was expected because of variation in the range of factors for each data point (ventilation rate,
season, time of day, litter). Nevertheless there appears to be a general increase in PMy, concentration up
to day 35 where a spike in concentration was observed. For most farms, day 35 was just prior to the first
pickup. After the first pickup, concentrations appear to stabilise.
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Figure 101: PMy, concentrations for Farms A, B and C

Figure 102 displays the PMy, emission rates measured at Farms A, B and C against bird age. The
maximum PM 3, emission rate measured was 158.5 mg/s (Farm C, single use litter batch). This was far
higher than all other emission rates during the project and was the result of high PM;, concentrations
during maximum ventilation. To improve the presentation of the remaining data in Figure 102, this
maximum value was written above the graph instead of presenting it as a data point. All the other
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emission rates measured at broiler farms during this project varied from 1.8-48.3 mg/s. These values are
towards the lower end of PMyq emission rates from broiler farms found in the literature (see Appendix 1).
Similarly to PM;, concentration, a spike in PMjo emission rate was observed around day 35 of the
production cycle.
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Figure 102: PM,, emission rates for Farms A, B and C. (The value 158.5 represents a single value recorded
at Farm C on day 35 that was removed to improve presentation of the chart.)

Figure 103 displays the PM;, emission rates per 1000 birds placed at Farms A, B and C. PM;, emission
rates per 1000 birds placed varied from 0.04-3.9 mg/s per 1000 birds placed, although the majority of
values were smaller than 1.4 mg/s per 1000 birds placed. From comparison of Figure 102 and Figure 103
it can be seen that normalising the emission rate to the number of birds placed in a shed has little effect on
the general trend observed across the whole emission rate dataset. In this report, emission rates will be
expressed as ‘per 1000 birds placed’ when emissions from different sized sheds are being compared.
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Figure 103: PM;, emission rates per 1000 birds placed for Farms A, B and C. (The value 3.9 represents a
single value recorded at Farm C on day 35 that was removed to improve chart presentation.)

Figure 104 displays the PM;, emission rates per kg live weight at Farms A, B and C. PM, emission rates
per kg live weight varied from 0.08 x 1073 to 2.05 x 107 mg/s per kg, although the majority of values were
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smaller than 0.8 x 107 mg/s per kg. Normalising emission rate values to the live weight of birds in the
sheds had a levelling effect on the dataset.
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Figure 104: PMy, emission rates per kg live weight for Farms A, B and C. (The value 2.05E-03 represents a
single value recorded at Farm C on day 35 that was removed to improve chart presentation.)

5.1.2 PMss concentration and emission rates for Farms A, B and C

PM, 5 was measured less frequently than PM, due to equipment availability. Figure 105 displays the
PM, 5 concentrations measured at Farms A, B and C. PM, s concentration generally varied from 0.001—
0.153 mg/m3. One relatively high measurement of 0.515 mg/m3 was also recorded (displayed as a label
above Figure 105 instead of a data point). These values were similar to PM, 5 values found in the
literature for broiler farms (see Appendix 1). Similarly to PM;, concentration (Figure 101), there is a
general trend of increasing PM, 5 concentration with bird age. However, PM, s concentrations did not
appear to spike at day 35 of the production cycle.
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Figure 105: PM,5 concentrations for Farms A, B and C. (The value 0.515 represents a single value recorded
at Farm C on day 35 that was removed to improve chart presentation.)

Figure 106 displays the PM, s emission rates measured at Farms A, B and C. PM, 5 emission rates
generally varied from 0.08-9.97 mg/s. One relatively high measurement of 50.3 mg/s was also recorded.
This was the result of an unusually high concentration measurement (0.515 mg/m?3) taken at maximum
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ventilation. In the literature there is only one measurement of PM, s emission rate from a broiler shed
(Roumeliotis and Van Heyst, 2007). An emission rate of 0.014 mg/s per kg live weight was measured
during the aforementioned study, which converts to 2.03 mg/s for a hypothetical shed of 40,000 birds at
an average weight of 1.8 kg. This value lies within the range of PM, s emission rates that we have
measured in this study.
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Figure 106: PM, s emission rates for Farms A, B and C. (The value 50.3 represents a single value recorded
at Farm C on day 35 that was removed to improve chart presentation.)

Figure 107 displays the PM, s emission rates per 1000 birds placed at Farms A, B and C. PM, s emission
rates per 1000 birds placed generally varied from 0.003-0.27 mg/s per 1000 birds placed. However, one
relatively high measurement of 1.24 mg/s per 1000 birds placed was also recorded.
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Figure 107: PM, s emission rates per 1000 birds placed for Farms A, B and C. (The value 1.24 represents a
single value recorded at Farm C on day 35 that was removed to improve chart presentation.)
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5.1.3 Particle number (PN) concentration and emission rates for Farms A, B
and C

Figure 108 displays the PN concentrations measured at Farms A, B and C. PN concentrations varied from
0.13 x 10" to 4.34 x 107 particles/m3. Unlike particle mass, particle number concentrations did not show a
clear increasing trend with bird age. This is probably because average PN concentrations were easily
influenced by random fluxes of small particles that would not have a significant effect on the total amount
(mass) of emitted particulate matter.
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Figure 108: Particle Number (PN) concentrations for Farms A, B and C

Figure 109 displays the PN emission rates measured at Farms A, B and C. PN emission rates varied from
0.015 x 10° to 2.34 x 10° particles/s. The number emission of dust particles was noticeably greater at
Farm C than Farms A and B.
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Figure 109: Particle Number (PN) emission rates for Farms A, B and C
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Figure 110 displays the PN emission rates per 1000 birds placed measured at Farms A, B and C. PN
emission rate per 1000 birds placed varied from 0.045 x 10" to 6.3 x 10’ particles/s per 1000 birds placed.
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Figure 110: Particle Number (PN) emission rates per 1000 birds placed for Farms A, B and C

5.1.4 Count median diameter (CMD) for Farms A, B and C

Figure 111 displays the CMD values measured at Farms A and C. CMD was not calculated at Farm B.
The spread in CMD values was much smaller than the spread in particle concentrations and emission
rates at the broiler farms, suggesting that farm specific and environmental factors have a greater effect on
the amount rather than the size distribution of dust particles emitted from broiler sheds. The average
CMD value for Farms A and C was 1.96 um. This means that, on average, 50% of the total number of
particles emitted from a broiler shed will be smaller than 1.96 um in diameter. This fraction of particles
will have a large effect on particle number concentration, but much less effect on particle mass
concentration.
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Figure 111: Count Median Diameter (CMD) for Farms A and C
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5.1.5 The effect of ventilation rate on broiler dust concentrations and
emissions

The variation seen in the data presented in Figure 101 to Figure 111 is due to a range of factors including
shed design, ventilation rate, microenvironment, time of day, season and litter management practices. Of
these factors, ventilation rate had the most noticeable impact on the broiler dust concentrations and
emissions. Increased ventilation rate means there is increased dilution of the shed air with air drawn from
upstream of the shed. If we assume that the dust concentration in the upstream air is relatively low
compared to the shed air, then increased dilution will tend to decrease the dust concentration in the shed
air. On the other hand, increased ventilation rate means that there is greater airspeed through a shed. One
method of dust generation in a poultry shed is the entrainment of matter into the air due to animal activity
or the movement of air, indicating that increased ventilation rates will increase the amount of dust
entrainment. Therefore at a given ventilation rate, dust concentration will be influenced by a ‘dilution
effect’” as well as a ‘dust generation effect’.

To investigate this in more detail, we categorised the PM;, concentrations and emission rates (per 1000
birds placed) at Farms A, B and C according to ventilation rate (Figure 112). PM;, was chosen as the dust
variable for this comparison because more PM;, data was collected than PM, 5 or particle number data.
The graph shows that higher concentrations of PM,, tended to occur during periods of low ventilation rate
(less than 40 md/s), while lower concentrations occurred at higher ventilation rates. On the other hand,
PMy, emission rates tended to increase with increasing ventilation rate. The error bars in Figure 112 are
one standard deviation of all the data collected for a particular ventilation rate category. They indicate that
there is considerable spread in the data which is not surprising considering the range of farm specific
factors, environmental factors and bird age between each measurement of PMy, concentration or emission
rate.
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Figure 112: PM;, concentration and emission rate versus ventilation rate for Farms A, Band C

In an attempt to reduce the day-to-day variance in the data and further investigate the relationship
between PMy, levels and ventilation rate, we normalised the PM;, measurements to the average PMyy
values measured on that day. For example, on a given day, PM;, concentration and emission rate may
have been measured at three different ventilation rates. To normalise these measurements, each one
would be divided by the average of all three measurements. The aim of this process is to observe the
relative changes in PMyq concentration and emission rate with ventilation rate. Normalised values greater
than one indicate concentrations or emission rates greater than the average measured value, while
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normalised values less than one indicate concentrations or emission rates less than the average. The
normalisation process was performed for each sampling day and the results are presented in Figure 113.
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Figure 113: Normalised PM,, concentration and emission rate versus ventilation rate for Farms A, B and C

The error bars in Figure 113 indicate that the normalisation process significantly reduced the standard
deviation in the PM,, datasets. The trends that were barely evident in Figure 112 were confirmed in
Figure 113. Initially, normalised PM, concentration decreased with ventilation rate. At the same time,
PMj emission rate increased sharply. This pattern indicates that both the ‘dilution effect’ and ‘dust
generation effect’ were in play. As the ventilation rate increased, the shed air became more diluted and
the mass of dust per unit volume of air (concentration) decreased. However, even though the
concentration was less, there was greater volume of air moving through the shed and the total mass of
dust emitted from the sheds per second (emission rate) was greater. This observation indicated that the
greater movement of air generated more dust. At ventilation rates above 30-40 m3/s the relative changes
in dust concentrations and emission rates stabilised.

5.2 Diurnal variation in broiler dust emissions

As described previously in Section 4.2 for odour emissions, diurnal variability of dust emissions from a
broiler shed was measured at Farm A in June 2007. Emissions were assessed over a 20 hour time frame
commencing in the afternoon and finishing at midday the following day (no measurements were made in
the remaining 4 hours).

PMy, particle mass concentrations and emission rates are shown in Figure 114. PMy, concentration and
emission rate increased in the evening as ventilation rate decreased from 50 m3/s to 25 m3/s.
Concentrations were then relatively stable throughout the night, except for a sharp unexplained decrease
at around 21:15. The next morning, concentrations and emission rates were significantly lower than the
night-time values. This complements the diurnal odour data which suggested that there was no significant
‘purge’ of built-up emissions during the night. However, in contrast to the diurnal odour data, no increase
in PMy, concentration or emission rate was observed as ventilation rate increased throughout mid-
morning.
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Figure 114: PMy, concentration and emission rates over a 20 hour period (Farm A, July 2006)

Particle number (PN) concentrations and emission rates are shown in Figure 115. The night-day
differences for both of these variables are similar to the respective differences for PM,. However there
are notable differences between the particle mass and number measurements. Firstly PN concentration
stayed relatively constant during the evening when ventilation rate fell from 50 m3/s to 25 md/s as
opposed to the increase seen in PMy, concentration. Secondly, PN concentration increased slightly with
the mid-morning increase in ventilation rate, while PM;, concentration stayed relatively constant. Again,
no significant purge of the night’s dust accumulation was observed in this dataset.
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5.2.1 Summary of diurnal variability of dust emissions

Similar trends were observed with dust concentrations as were seen with odour emissions. Dust
concentration and emission rates were highest in the afternoon and decreased during the evening. In the
morning, emission rates again began to increase as ventilation rate increased.

Afternoon emissions of PMy, were noticeably lower than the night time emissions; however, PN
concentration and emission rate in the afternoon were similar to the night time. For both PM, and PN
emissions, measurements taken in the early morning were considerably lower than those taken during the
afternoon and evening.

5.3 Broiler single litter use seasonal variability

53.1 Farm A

PMy, concentrations measured at Farm A during summer and winter are displayed against batch age in
Figure 116. For a given batch age, different columns represent concentrations when a particular number
of fans were in operation. The average concentrations over entire sampling days are also included as line
graphs. Both summer and winter graphs are displayed on an equal sized y-axis to enable easy comparison.

Firstly, for a given batch age PMy, concentration generally, but not always, decreased with increasing
number of fans operating (ventilation rate). This was because dilution of the shed air increased with
increasing ventilation rate (see Section 5.1.5). Also, a dependence of PM,, concentration on batch age
was clearly evident for the winter data, which showed a general trend of increasing concentration with
bird age. PMy, concentration appeared to decrease with increasing bird age in the summer data. However,
this observation was only based on two data points (18 days and 27 days), and there were more fans in
operation on day 27 than day 18 resulting in a greater dilution effect. From the summer data it is also
clear that PM,, concentrations were far lower when there were no birds present in the shed with fresh
litter or no litter (range 0.007-0.023 mg/m3), although significant concentrations of approximately 0.11
mg/m3 were still observed when there were no birds in the shed with used litter present.

In regards to the seasonal comparison, winter PM;o concentrations were higher than summer
concentrations. For example at a batch age of 28 days the average daily PMq concentration during winter
was 0.369 mg/md. The corresponding value during summer was only 0.163 mg/m?. Higher ventilation rate
in summer is the most likely explanation for this summer-winter difference (because of greater dilution).
During winter there were generally only 1-4 fans in operation; while during the summer, 2-8 fans were
usually in operation.
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Figure 116: PM;, concentrations versus batch age during summer (top) and winter (bottom) at Farm A.

PMy, emission rates per 1000 birds placed measured at Farm A during summer and winter are displayed
against batch age in Figure 117. For a given batch age, different columns represent emission rates when a
particular number of fans were in operation. The average emission rates over entire sampling days are
also included as line graphs. Both summer and winter graphs are displayed on an equal sized y-axis to
enable easy comparison.

PMy, emission rates generally increased with increasing number of fans (see Section 5.1.5). Emission rate
increased with batch age in both the summer and winter data, although the winter emission rate plateaued
at 34 days. It is interesting to compare the summer PM,, concentrations and emission rates at 18 and 27
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days. Although the PMy, concentration at 27 days was lower, the emission rate is actually higher because
ventilation rate was higher on this day.

In regards to the seasonal comparison, summer PM;, emission rates were noticeably higher than winter
emissions. For example, at a batch age of 27 days, the average daily PM;, emission rate during summer
was 0.54 mg/s per 1000 birds placed. The corresponding value during winter was only 0.18 mg/s per
1000 birds placed. This observation is a little surprising considering winter PM;, concentrations were far
higher than summer concentrations (see Figure 116). This difference may be due to higher ventilation
rates and therefore more dilution during summer. When ventilation rate is taken into account, the
emission rates show that at the same point in the production cycle far more dust is generated during
summer than winter. This could be because of meteorological-related factors such as higher temperatures
and lower litter moisture content. Average temperature during summer sampling was 29.1 °C and average
litter moisture content was 22.4%. The corresponding values for winter sampling were 18.4 °C and
33.3%. In addition, greater dust generation in summer may have been due to the fact that higher
ventilation rates caused greater entrainment of dust into the air.
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Figure 117: PM,, emission rates versus batch age during summer (top) and winter (bottom) at Farm A
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53.2 Farm B

PMy, concentrations measured at Farm B during summer and winter are displayed against bird age in
Figure 118. For a given bird age, different columns represent concentrations when a particular number of
fans were in operation. The average concentrations over entire sampling days are also included as line
graphs. Both summer and winter graphs are displayed on an equal sized y-axis to enable easy comparison.
Both datasets show a decrease in PM;, concentration with increasing ventilation rate (see section 5.1.5).
Also the relationship between PM,, concentration and bird age was similar to what is seen for the entire
broiler PMy, concentration dataset (see Section 5.1.1).

In regards to the seasonal comparison, winter PM;, concentrations were noticeably higher than summer
concentrations. For example, at a batch age of 35 days, the average daily PMy, concentration during
winter was 0.87 mg/m3. The corresponding value during summer was only 0.35 mg/m3 (at 32 days).
Ventilation rate is unable to explain this summer-winter difference because ventilation rates were
relatively similar between both seasons.
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Figure 118: PM;, concentrations during summer (top) and winter (bottom) at Farm B

148



PMy, emission rates per 1000 birds placed measured at Farm B during summer and winter are displayed
against bird age in Figure 119. For a given bird age, different columns represent emission rates when a
particular number of fans were in operation. The average emission rates over entire sampling days are
also included as line graphs. Both summer and winter graphs are displayed on an equal sized y-axis to
enable easy comparison.

The increase in PMy, emission rates with increasing ventilation rate observed at other broiler farms (see
section 5.1.5), is not apparent in the Farm B dataset. This is probably because measurements were
conducted over a narrower range of ventilation rates, especially during winter. Emission rate was
observed to initially increase before levelling out at 32—35 days in both the summer and winter data.

In regards to the seasonal comparison, winter PMj, emission rates were noticeably higher than summer
emissions. For example, at a batch age of 35 days, the average daily PM;, emission rate during winter
was 1.06 mg/s per 1000 birds placed. The corresponding value during summer was only 0.28 mg/s per
1000 birds placed (at 32 days). This observation was to be expected because for similar ventilation rates
because PMy4 concentrations during winter were higher than in summer. The reason PMy, concentrations
and emission rates at this farm were so much higher during winter than summer is unclear. During winter
the litter moisture content was generally quite high: the average value was 37.42% compared to 33.86%
during summer. Also, live weight was higher during winter (49,000 kg) than summer (40,000 kg) due to
placement of more birds in the winter batch. Only a limited amount of data was collected during the
winter sampling period, and caution drawing conclusions is required due to the small dataset.
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Figure 119: PM;, emission rates per 1000 birds placed during summer (top) and winter (bottom) at Farm B

5.3.3 Summary and conclusions from the seasonal studies

For both Farm A and Farm B, dust concentrations were noticeably higher in winter than summer. At Farm
A, higher winter dust concentrations could be explained by low ventilation rates.

Emission rate data from Farm A showed that individual emission rates taken at similar points in the
production cycle were higher in summer than winter (comparing emission rates at 27 days in summer
with rates at 28 days in winter in Figure 117). On the other hand, dust emission rates at Farm B during
winter were higher than the emission rates during summer (see Figure 119). Ventilation rates cannot
explain the winter-summer dust concentration difference seen at Farm B. Possible factors that could
explain the observed difference are litter moisture content, live weight, litter material—wood chips used
in summer and rice hulls used in winter—or may be artefacts due to small sample size.

150



5.4 Comparison of emissions from single use litter and partial litter
reuse

Comparing average dust concentrations over entire sampling periods should generally be avoided because
measurements were usually taken on different days during the production cycle at different times,
ventilation rates and so on. However, the litter reuse study is an exception to this rule. For this study we
will simply compare the averages of all dust concentration and emission rate measurements taken during
each sampling period. This is permissible for this study because dust concentrations did not vary a great
deal with bird age (see Appendix 9, Appendix 10, Appendix 22 and Appendix 23) and measurements
were taken at similar bird ages during each sampling period. Nevertheless, the variation in factors such as
ventilation rate, microenvironment, litter moisture content and live weight between individual data points
should be kept in mind when considering the average values graphed in this section.

High dust concentrations were detected during sampling on day 35 of the production cycle with single use
litter (6 March 2007). This day registered the highest PM;, (1.62 mg/m?, see Figure 101) and PM, 5 (0.515
mg/md, see Figure 105) concentrations and the second highest PN concentration (4.05 x 10 particles/m?,
see Figure 108) of all measurements taken as part of this project. These concentrations occurred at
maximum ventilation rate so the corresponding emission rates are also well above those measured on any
other day (see values on top of Figure 102, Figure 106, and Figure 109). Examination of all the
parameters recorded during sampling suggests only one possible reason why dust concentrations were so
high on this particular day. Air velocity in the polyethylene sampling duct was only ~2 m/s despite the
fact that the shed was operating at maximum ventilation. This duct velocity was one of the lowest
measured during the project, indicating that the ventilation rate through the sampling duct was unusually
low (even if the ventilation rate through the entire shed was high). The reduced movement of air through
the duct may have allowed dust concentrations to build up to artificially high levels at the measurement
point in the sampling duct. In any case, in the following analysis the high concentration values measured
on this day were considered outliers and excluded from the calculation of averages.

Figure 120 and Figure 121 display the average of all PM;o, PM, s and PN concentration measurements
taken at Farm C with single use and partially reused litter. It is clear that all three dust concentrations
were higher when partially reused litter was present in the shed. In particular, the average PN
concentration with partially reused litter was 3.14 times greater than the average concentration with single
use litter. This might be because the average temperature was 2—3 °C lower during the partially reused
litter sampling period which meant ventilation rates were generally lower and there was less dilution (see
section 5.1.5). In addition, the average shed litter moisture content was less during partial litter reuse
(26.7%) than single use litter (29.7%) which may have led to more dust generation with partially reused
litter. Finally, the difference might be related to the particle size of the single use and partially reused
litter.
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Figure 120: Average PMy, and PM, 5 concentrations at Farm C with single use and partially reused litter
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Figure 121: Average PN concentrations at Farm C with single use and partially reused litter

Wood shavings were employed as the litter material in this shed. This means the single use litter pieces
are quite large (~cm). However, during a production cycle bird movement grinds these wood shavings
into finer pieces. This means the partially reused litter would contain a greater number of smaller, fine
pieces of litter than the single use litter. These smaller litter pieces would be more easily entrained into
the shed air due to animal activity or the movement of air. Therefore we might expect that a greater
number of smaller dust particles might be generated from the finer partially reused litter. To investigate
this we calculated the average of all count median diameters measured at Farm C with single use and
partially reused litter (Figure 122). Count mean diameter (CMD) decreased when partially reused litter
was present in the shed, which means a greater numbers of smaller dust particles (< 1.85 pm) were in fact
generated from the partially reused litter. These small, light particles would have a greater effect on
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particle number concentration than mass concentration, which is consistent with the relatively greater
increase in PN concentrations (Figure 121) than PM;, or PM, 5 concentrations (Figure 120).
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Figure 122: Average CMD values at Farm C with single use and partially reused litter

Figure 123 and Figure 124 display the average of all PMy,, PM, s and PN emission rate per 1000 birds
placed measurements taken at Farm C with single use and partially reused litter. Again, there was an
increase in all three measurements of dust emission when partially reused litter was present in the shed.
By definition, dust emission rates take into account shed ventilation rate. Therefore if lower average
ventilation rates were the reason that dust concentrations were higher for partially reused litter than single
use litter, we would expect that the dust emission rates for the two litter types would be relatively similar.
Figure 123 and Figure 124 indicate that this is not the case. It is likely that lower litter moisture content
and the fineness of litter are the two main reasons why dust concentrations and emissions increased when
litter was used for more than one batch of birds in this shed.

It’s worth remembering at this point that litter moisture content is managed by the farmer to prevent
excessive dust and odour emissions that may result from dry or wet litter respectively. It was observed in
this shed that dust emissions were higher, with finer particles, when litter was reused. However, it cannot
be clearly concluded that the increased dust emissions were due solely to the litter being reused because
the litter was drier throughout the reused litter batch (see Figure 82) and this may have confounded the
results.
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5.5 Summary of broiler shed dust concentrations and emissions

Dust emission rates need to be individually considered along with environmental and in-shed conditions
at the time of measurement (for example ambient temperature, ventilation rate, litter moisture content,
bird age and total bird live weight).

e From November 2005 to June 2007, dust measurements were taken at three broiler farms — two in
Queensland and one in Victoria

PMy, and PM, s concentrations and emission rates, particle number concentration, and count median
diameter (Queensland only) measurements were recorded.

Dust emissions were measured throughout the production cycle.

The majority of broiler dust emission rates per 1000 birds placed ranged from:

o 0.1-1 mg/s per 1000 birds placed for PMyq
o 0.025-0.25 mg/s per 1000 birds placed for PM; 5
o (0.1-4) x 107 particles/s per 1000 birds placed for particle number

The count median diameter for the majority of measurements ranged from 1.5-2.5 pm.

The concentration of dust in the air exiting the broiler sheds was highly variable. Consequently, dust
emission rates from the sheds also varied widely. Dust emissions varied by ventilation rate, farm, bird
age, season, microenvironment, litter management practice and possibly due to other factors.

PMy, and PM, 5 emission rates peaked on the measurement day prior to the first pickup.
Emission rates varied throughout the batch, and throughout each day.

For Queensland, PM;, emission rates were higher in summer compared to winter; conversely for
Victoria, the opposite was true.

PMy, concentrations for both Queensland and Victoria were noticeably higher in winter compared to
summer.

Partially reusing litter in broiler sheds appeared to cause changes to dust emissions and composition.
Average PMy,, PM, s and particle number concentrations were higher for the partially reused batch as
compared to the single use batch. Average count median diameter was lower for the partially reused
batch. The differences may be due to the breakdown of the litter; however, weather, litter moisture
content and stocking density were slightly different between the batches and may have confounded
the results.
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6 Volatile organic compound emissions from broiler
farms

6.1 Introduction

The chemical characterisation of the non-methane volatile organic compounds (NMVOCs) from poultry
facilities entailed extensive field sampling during the project. Sites representative of a temperate and
tropical climate were selected and sampled during both summer and winter to gather information
pertaining to the chemical composition of the gas phase emissions. The chemical speciation and odorant
identification was performed with gas chromatography with simultaneous mass spectrometry and
olfactory stimulus detection.

The chemical assessment and odorant profiling consisted of three stages: the first stage was the
identification (qualitative assessment) of the NMVOCs; the second stage was the determination of
odorant species; and the third stage was the quantification of the NMVOCs.

6.2 Results Part A—Identification of non-methane volatile organic
compounds at broiler Farms A and B

The following sections outline the progressive changes to the composition of the air, with relation to
NMVOCs, at different stages throughout the batch. NMVOC samples were collected from the
polyethylene duct attached to the duty fan of the broiler sheds, with the exception of the diffusive samples
as indicated. As the laboratory methods were refined during the progression of this project, each spectral
figure is unique to that sample and can not be empirically compared to another unless otherwise specified.

6.2.1 Fresh bedding present, prior to bird placement

NMVOCs that were present at Farm A and Farm B prior to bird placement—following shed cleaning and
with clean bedding material laid in the shed—were dominated by compounds that were characteristic of
the bedding material. Consequently, NMVOC matrices from sheds using different bedding material were
distinctly different.

The two total ion chromatograms shown in Figure 125 and Figure 126 illustrate the representative variety
of chemical species obtained from the analysis of the sorbent tubes for a broiler shed in Queensland and
Victoria, respectively. The two spectra were both obtained from chromatographic separation on a non-
polar column.
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Figure 125: Total ion chromatogram from Farm A prior to bird placement, where pine
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Compounds identified from the mass spectral database are listed in Table 17, these compounds were
predominantly aromatic compounds and terpines.

Table 17: Chemical species identified at Farm A and Farm B prior to bird placement, containing only fresh
bedding material

Farm A Farm B
Season Summer Summer
Bird Age (days) Prior to Placement (-2) Prior to Placement (-2)
Decanal Toluene
Nonanal o-xylene
p-xylene
Benzene Styrene
Toluene
Ethylbenzene a-pinene
p-xylene B-pinene
Compounds Present o-xylene 3-Carene
Trimethylbenzene Camphene
Limonene
a-pinene Camphor
Fenchone
Dimethyl Disulphide Exo-Fenchol
Dimethyl Disulphide

6.2.2 Batch age ~2 weeks

As the birds began to grow and deposit manure on the bedding, changes with the number and abundance
of chemical species collected in the sorbent tubes was observed. Figure 127 to Figure 130 represent the
total ion chromatograms obtained from the GC-MS analysis of the sorbent tubes collected during
sampling when the sheds contained 24,000-32,000 birds 13-18 days old.

The chemical compounds that were identified within the matrices included a variety of aldehydes that
were not present within the samples from the initial sampling of the empty poultry shed. There were also
several sulphur species detected including dimethyl sulphide, dimethyl disulphide and dimethyl
trisulphide. The four spectra shown (Figure 127 to Figure 130) were obtained using different GC-MS
analysis methods and therefore the spectra can not be directly compared.
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Figure 128: Total ion chromatogram from Farm A during winter—32,282 birds @ 15
days old—GC performed using non-polar column

/Abundance TIC: TENAX-2.D

26000
24000
22000
20000
18000
16000
14000
=mil
10000
6000 i
6000
20
| |
A

2000 \ | \
VM I ‘ ‘

| | . “ \ | |
‘v"*w“'w, Ao L i ‘.JLx..JW\ A JI‘u Mo o ‘\ J Jod

) JMMWMV‘WW

0 T T T T f T T T i T
Time—> 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 17.00 1800 19.00 2000 2100 2200 2300 2400 2500 26.00

Figure 129: Total ion chromatogram from Farm B during summer—24,000 birds @ 13
days old—GC performed using non-polar column
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The spectra showed a large increase in the number of chemical compounds present within the samples

when compared with the empty broiler sheds. Table 18 lists the chemical compounds that were identified

from mass spectral databases.

Table 18: Chemical species identified at Farm A and B containing 24,000-32,000 birds at approximately 2
weeks old
Farm A Farm B
Season Summer Winter Summer Winter
Bird Age (days) 18 15 13 14
Acetone
3'me|:2¥(;g:;[ anal 1-butanol
Heptanal 3—methyl—butz31nal 3-methyl-butanal Acetone
1,3-butanediol 1-butanol
Octanal 3-hydroxy-2-
2-ethyl-1-hexanol 2-butanone
Nonanal butanone
Hexanal X 3-methyl-butanal
Decanal 2,3-butanedione
Nonanal 3-hydroxy-2-
Toluene Hexanal
Benzene butanone
Ethylbenzene Nonanal X
Toluene 2,3-butanedione
Benzaladehyde Benzene
Benzaladehyde 2-ethyl-1-hexanol
Compounds Acetophenone Toluene ; .
Acetophenone Acetic Acid
Present o-xylene | Benzaldehyde
xylene 0-xylene Benzene
ps p-xylene . Toluene
tyrene a-pinene
. Styrene . Acetophenone
a-pinene . B-pinene
. Ethanethiol . Styrene
Limonene . Limonene
Dimethyl
Dimethy! S‘I‘:Tﬁ’g‘t'ﬁel Dimethyl
disulphide o h.y disulphide
Dimethyl dls_u phide
trisulphide Dimethy|
P trisulphide

6.2.3 Batch age ~3 weeks

Figure 131 and Figure 132 show the total ion chromatograms obtained from the GC-MS analysis of the
sorbent tubes collected during winter at Farm A and Farm B respectively when the sheds housed 30,000—
32,000 birds 22—-23 days of age. The chemical compounds that were identified within the matrices
included a variety of aldehydes and aromatic compounds. These two chromatograms were obtained using
different GC-MS analysis methods and therefore can not be directly compared.
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Figure 132: Total ion chromatogram from Farm B during winter—30,013 birds @ 22
days old—GC performed on polar column

The spectra obtained and chemical species identified show slight variation from the previous (~2 weeks
old) sampling, however there is still a substantial difference from the chemicals identified from the
emissions from an empty broiler shed. Table 19 lists the chemical species identified within the samples
from the mass spectral databases.

Table 19: Chemical compounds identified at Farm A and B containing 30,000-32,000 birds at
approximately 3 weeks old

Farm A Farm B
Season Winter Winter
Bird Age (days) 23 22
Acetone
Ethanol
1-butanol Acetone
3-methyl-butanal 1-butanol
3-hydroxy-2-butanone 2-butanone
2,3-butanedione Butanal
2-ethyl-1-hexanol 2,3-butanedione
Acetic acid 2-ethyl-1-hexanol
Hexanal
Compounds Present Nonanal Toluene
Benzene Phenol
Toluene Acetophenone
Acetophenone Styrene
o-xylene
p-xylene Dimethyl disulphide
Styrene
Ethanethiol
Dimethyl disulphide
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6.2.4 Batch age ~4 weeks

The NMVOC field sampling of the broiler sheds continued as the birds grew; Figure 133 to Figure 136
are the total ion chromatograms obtained from the GC-MS analysis of the sorbent tubes collected during
sampling when the sheds contained 22,000-32,000 birds approximately 30 days old. The chemical
compounds that were identified within the matrices included a variety of aldehydes, ketones, aromatic
compounds and also sulphur compounds (see Table 20). The spectra shown were obtained using different
GC-MS analysis methods, and therefore the spectra can not be directly compared.
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Figure 133: Total ion chromatogram from Farm A during summer—26,000 birds @ 27
days old—GC performed on non-polar column
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days—GC performed on non-polar column
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Figure 135: Total ion chromatogram from Farm B during summer—22,000 birds @ 32

days old—GC performed on non-polar column
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Table 20: Chemical compounds identified at Farm A and B containing 22,000-32,000 birds at
approximately 4 weeks old
State Queensland Victoria
Season Summer Winter Summer Winter
Bird Age (days) 27 28 32 29
3-methyl-butanal Acetone
Heptanal Acetone Acetone
1-butanol
Octanal 1-butanol 2-butanone
2-butanone
Nonanal 2-butanone 3-methyl-
Butanal
Decanal 3-methyl-butanal butanal
3-methyl-butanal
2-butoxy-ethanol 3-hydroxy-2- 3-hydroxy-2-
3-hydroxy-2-
2-ethyl-1-hexanol butanone butanone b
: utanone
2,3-butanedione 2,3- X
. 2,3-butanedione
Benzene Nonanal butanedione
2-ethyl-1-hexanol
Toluene 2-ethyl-1-hexanol Nonanal Acetic Acid
Compounds Present Phenol Decanal
Benzaldehyde Benzene
Acetophenone Toluene a-pinene B
. enzene
Acetophenone B-pinene
) . Toluene
a-pinene Styrene Limonene
Benzaldehyde
Eucolyptol
. . Acetophenone
Dimethyl Dimethyl Styrene
Dimethyl sulphide disulphide y
disulphide Dimethyl . . .
Dimethyl disulphide Plnethy cloulphice
trisulphide y

6.2.4.1 Diffusive sampling at batch age ~4 weeks

During the winter broiler shed sampling at both Farm A and Farm B, a limited number of diffusive
samples were collected to observe the compounds that were dominant within the air inside the poultry
shed. The sorbent tubes were placed within the shed and left to passively collect any NMVOCs present.
Figure 137 and Figure 138 are the spectra obtained from the analysis of the sorbent tubes that were
collected passively over approximately one week.

Figure 137 shows the total ion chromatogram from the GC-MS analysis of a sorbent tube collected from
Farm A during winter commencing when the birds were 23 days old, concluding 8 days later. The spectra
shows only a limited number of compounds that were dominant within the composition of the air inside
the poultry shed. These passive samples support the presence of the identified compounds within the
actively sampled sorbent tubes from the sampling point within the duct.
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Figure 137: Spectra from Farm A during winter containing ~32,000 birds commencing at day
23 for 8 days duration—GC analysis performed on non-polar column

Figure 138 shows the spectra from the analysis of a sorbent tube collected from a broiler shed at Farm B
during winter commencing when the birds were 22 days old and concluding 7 days later. In similarity to

the passive sample from an analogous period at Farm A; the Farm B sample shows fewer peaks in the
total ion chromatogram than the actively collected samples.
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Figure 138: Spectra from Farm B during winter containing ~30,000 birds commencing at
day 22 for 7 days duration—GC analysis performed on a polar column

Table 21: Chemical compounds identified from the passively collected sorbent tubes

Farm A Farm B
Season Winter Winter
Bird Age (days) 23-31 22-29
3-methyl-2-butanal zﬁﬁfgﬁg‘;e

Compounds Present

3-hydroxy-2-butanone
2,3-butanedione
Butanoic Acid

Dimethyl sulphide
Dimethyl disulphide
Dimethyl trisulphide

3-methyl-butanal
3-hydroxy-2-butanone
2,3-butanedione
Acetic Acid

Dimethyl disulphide
Dimethyl trisulphide
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6.2.5 Batch age ~6 weeks

Figure 139 and Figure 140 are the total ion chromatograms obtained from the GC-MS analysis of the
sorbent tubes collected at Farm A and Farm B respectively during winter—the sheds containing 17,000—
20,000 birds. The chemical compounds that were identified within the matrices included a variety of
aldehydes, ketones and aromatic compounds. The two spectra shown were obtained using different GC-
MS analysis methods, and therefore the spectra can not be directly compared.
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Figure 139: Total ion chromatogram from Farm A during winter—17,067 birds @ 43
days old—GC performed on non-polar column
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Figure 140: Total ion chromatogram from Farm B during winter—19,504 birds @ 43
days old—GC performed on polar column

The analytes identified from the GC-MS analysis of the broiler shed samples from Farm A and B during
winter with approximately 20,000 birds, 43 days old, are listed in Table 22.
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Table 22: Chemical compounds identified at Farm A and B containing ~20,000 birds at approximately 6
weeks old

State Queensland Victoria
Season Winter Winter
Bird Age (days) 43 43
Acetone Acetone
1-butanol 1-butanol
2-butanone 2-butanol
3-hydroxy-2-butanone Butanal
2,3-butanedione 2-butanone
3-methyl-butanal 3-methyl-butanal
Hexanal 2,3-butanedione
2-ethyl-1-hexanol 2-ethyl-1-hexanol
Compounds Present Acetic Acid
Toluene
Acetophenone Benzene
p-xylene Toluene
Styrene Benzaldehyde
Acetophenone
Dimethyl sulphide
Dimethyl disulphide Dimethyl disulphide

6.2.5.1 Diffusive Sampling at batch age ~5—-7 weeks

To coincide with the pumped sorbent tube samples a second group of passive sorbent tubes were
collected as the birds reached full maturity. The results of the GC-MS analysis are shown in Figure 141
and Figure 142. These sorbent tubes were collected passively over approximately one week from sheds at
Farm A and B.

Figure 141 was the results of the analysis of a sorbent tube collected from Farm A during winter
commencing when the birds were 32 days old and concluding 11 days later. In relation to the previous
passive samples, there were fewer peaks than seen in the pumped sorbent tube samples; however, the
predominant peaks are unchanged from the previous passive samples.
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Figure 142 was the results of the analysis of a sorbent tube collected from Farm B during winter
commencing when the birds were 35 days old and concluding 8 days later.
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Figure 142: The spectra obtained from Farm B during winter—commencing on day 35
for 8 days duration

The analytes that were identified from the passive samples are listed in Table 23; although there were
fewer than was collected in the actively sample sorbent tubes, they are no less significant.

Table 23:  Chemical compounds identified at Farm A and B during winter

Farm A Farm B

Season Winter Winter
Bird Age (days) 32-43 35-43
Acetone

3-methyl-butanal
3-hydroxy-2-butanone

2,3-butanedione
Compounds Present Butanoic Acid

2-butanone
3-hydroxy-2-butanone
2,3-butanedione
Acetic Acid

Dimethyl disulphide

Dimethyl trisulphide Dimethyl disulphide

Dimethyl trisulphide

6.2.6 Batch age ~7 weeks

The final day of field sampling at the broiler facilities with birds present occurred when the remaining
birds were approximately 7 weeks of age. Although a number of the birds had already been removed
during previous pickups, the NMVOCs that were identified from the GC-MS analysis of the sorbent tubes
were more diverse in variety and of greater abundances. The total ion chromatograms shown in Figure
143 to Figure 146 illustrate the large abundance and variety of chemicals emitted from the sheds
containing 8,000-14,000 birds 46-49 day old.
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Figure 143: Total ion chromatogram from Farm A during summer—29,965 birds @ 47
days old—GC performed on non-polar column
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Figure 144: Total ion chromatogram from Farm A durmg winter—12,018 birds @ 49
days old—GC performed on non-polar column
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Figure 145: Total ion chromatogram from Farm B during summer—13,636 birds @ 46
days old—GC performed on non-polar column
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Figure 146: Total ion chromatogram from Farm B during winter—7,773 birds @ 49 days old—GC
performed on polar column

The chemical compounds that were identified from the sorbent tube analysis are listed in Table 24. These
spectra show the greatest diversity in chemical species and abundance. The dominance of the aldehydes

and ketones is of particular interest in subsequent odorant speciation.

Table 24: Chemical compounds identified at Farm A and B containing mature birds approximately 7 weeks
old
Farm A Farm B
Season Summer Winter Summer Winter
Bird Age (days) 47 49 46 49
3';]? ﬁt;g/rtggfgr_]al Acetone
butanone Acetone 2-butanone
1-butanol 3-methyl-butanal
Hexanal 2-butanone 3-hydroxy-2-
Heptanal hvi by y Acetone
2-heptanone 3-methyl- utanone 1-butanol
butanal 2,3-butanedione
Octanal 3-hvdroxy-2- Nonanal 2-butanone
Nonanal ydroxy 3-methyl-butanal
Decanal butanong 2,3-butanedione
2-ethyl-1-hexanol | 2Putanedione Toluene " Heptanal
y Hexanal Acetophenone P
Benzene 2-ethyl-1- Benzene
Compounds Present hexanol a-pinene
Toluene Acetic Acid B-pinene Toluene
Benzaldehyde P Phenol
Acetophenone Toluene Dimethyl Benzaldehyde
o0-xylene : . Acetophenone
Phenol disulphide Stvrene
. Benzaldehyde Dimethyl y
p-pinene Styrene trisulphide .
3-carene Dimethyl
_ Dimethyl disulphide
Dimethy| sulphide
disulphide P
Dimethyl
Trisulphide
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6.2.7 Post bird removal, spent litter present

At the completion of the grow-out cycle, the birds were removed from the sheds; however, the litter
remained for a few extra days—as is common practice. At this stage, the litter is mixture of bedding that
is enriched with approximately eight weeks of bird manure, and continues to emit NMVOCs. These were
collected into sorbent tubes and the results of the GC-MS analysis are shown in Figure 147 to Figure
150—the total ion chromatograms show definite peaks despite the absence of birds.

As explained previously in section 4.3 for odour emissions from sheds without birds, this exercise was
primarily academic because emissions of NMVOCs from sheds between batches are minimal due to
minimal shed ventilation. Artificial conditions, including elevated ventilation rates, were created by the
research team to allow sample collection and emission rate calculation.
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Figure 147: Total ion chromatogram obtained from Farm A during summer—containing
only spent litter
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Figure 148: Total ion chromatogram obtained from Farm A during winter—containing
only spent litter
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Figure 149: Total ion chromatogram obtained from Farm B during summer—containing
only spent litter
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Figure 150: Total ion chromatogram obtained from Farm B during winter—containing
only spent litter

Whilst the broilers were no longer present, the spent litter remaining in the broiler sheds continued to be a
source for NMVOCs. The results of the NMVOC speciation identified a large number of chemical
compounds within the samples collected from the sheds illustrating that it is not just the presence of the
birds that produces a NMVOC emission. Table 25 lists the chemical species identified from the GC-MS
analysis of the sorbent tubes collected from the broiler sheds post bird removal but prior to litter removal
and shed cleaning.
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Table 25:

Chemical compounds identified at Farm A and B containing only spent litter, no birds

Queensland Victoria
Season Summer Winter Summer | Winter
Bird Age (days) N/A (No Birds Present, spent litter)
1-butanol
3-methyl-2-butanal Acetone 2-butanol
Hexanal b | b
Heptanal 1-butano 2-butanone
2-butanol 2-ethyl-1-
Octanal
2-butanone 2,3- hexanol
Nonanal .
butanedione
Decanal |
2-ethyl-1-hexanol Hexana Benzene
2-ethyl-1- Toluene
Benzene hexanol Phenol
Compounds Present Toluene Ethylbenzene
P Toluene Phenol Benzaldehyde
Phenol
Ethylbenzene Acetophenone
Benzaldehyde
Benzaldehyde p-xylene
Acetophenone
Acetophenone o-xylene
. p-xylene Styrene
a-pinene Styrene
Dimethyl disulphide . Eucolyptol
Dimethyl Dimethy|
trisulohide disulphide Dimethyl Dimethyl
P disulphide disulphide

6.2.8 Post shed cleaning and fumigation

Once the birds were removed and the spent litter cleaned out, the sheds were cleaned and fumigated in
preparation for the next batch of birds. The results of the GC-MS analysis of sorbent tubes collected after

shed cleaning and fumigation are shown in Figure 151 and Figure 152.
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Figure 151: Total ion chromatogram obtained from Farm A during summer—shed cleaned
and fumigated
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Figure 152: Total ion chromatogram obtained from Farm B during summer—shed
cleaned and fumigated

The chemical species that were identified from the sorbent tubes collected at the broiler sheds after being
cleaned and fumigated are listed in Table 26. The total ion chromatogram from Farm B had no peaks
detectable above the baseline noise. Although it is plausible that various odorous and non-odorous
chemicals were present in the shed emissions post clean out, they were in abundances that fell below the
detection limits of the methodology engaged.

Table 26: Chemical compounds identified from Farm A after sheds were cleaned and fumigated

Farm A

Season Summer

Bird Age (days) N/A (Post shed cleaning and fumigation, no birds or litter present)

Hexanal
Nonanal
Decanal

Benzene
Toluene
Compounds Present Ethylbenzene
Benzaldehyde
p-xylene
Trimethylbenzene

a-pinene
B-pinene

6.2.9 Summary of non-methane volatile organic compounds identified at
Farms A and B

Collection and analysis of thermal desorption tubes using gas chromatography-mass spectrometry
provided insight into the NMVOC emissions from the broiler sheds during the grow-out cycle.

The GC-MS analysis of the broiler shed emissions provided a substantial list of NMVOCs (see Table 27)
including aldehydes and ketones (hexanal, heptanal, octanal, 2-butanone, 2,3-butanedione, 3-hydroxy-2-
butanone) alkanoic acids (ethanoic acid, propanoic acid, butanoic acid) with numerous other species
including terpines. Whilst beyond the classification of NMVOC, the broiler shed results also included
large abundances of sulphides (dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide) which were
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consistently identified from the vast majority of samples.

Table 27:  Summary table of the NMVOCs predominantly identified from GC-MS analysis of sorbent tubes
collected at Farms A and B
Farm A Farm B
Season Summer Winter Summer Winter
Ethanol
1-butanol 1-butanol 1-butanol
Alcohols 2-butanol 2-butanol
2-ethyl-1-hexanol 2-ethyl-1- 2-ethyl-1-
2-butoxy-ethanol hexanol hexanol
3-methyl-
3-methyl-butanal 3-methyl-butanal butangl Butanal
Hexanal Hexanal Hexanal 3-methyl-
Aldehydes Heptanal b
utanal
Octanal
Nonanal Nonanal Nonanal Heptanal
Decanal
Decanal
2-butanone Acetone Acetone Acetone
Ketones 3-hydroxy-2- 2-butanone 2-butanone 2-butanone
butanaone 3-hydroxy-2- 3-hydroxy-2- 3-hydroxy-2-
2 3-butanedione butanone butanone butanone
' 2,3-butanedione | 2,3-butanedione | 2,3-butanedione
2-heptanone
Carboxylic Acetic Acid . .
Acidz Butanoic Acid Acetic Acid
Benzene Benzene Benzene
Toluene Toluene Benzene Toluene
Ethylbenzene Ethylbenzene Toluene Ethylbenzene
Phenol Phenol Phenol
Aromatics Trimethylbenzene
Benzaldehyde Benzaldehyde Benzaldehyde
Acetophenone Acetophenone Benzaldehyde Acetophenone
o-xylene o-xylene Acetophenone o-xylene
p-xylene p-xylene p-xylene
Styrene Styrene Styrene
a-pinene a-pinene
B-pinene B-pinene
Terpines 3-carene 3-carene
Eucolyptol Eucolyptol
Limonene Limonene
Ethanethiol
Dimethyl
. Sulphide . .
Dimethyl : Dimethyl Dimethyl
Sulphur disulphide d'?'”;ethh.g' disulphide disulphide
Dimethy! Isufphice Dimethy! Dimethy!
trisulphide Dimethy| trisulphide trisulphide
trisulphide

One of the most significant results from the assessment of the NMVOCs from the broiler shed emissions
was the change in the chemical profile as the birds matured; from a matrix dominated by terpines from
the bedding material when the birds were young, through to a matrix dominated by aldehydes, ketones
and sulphide as the birds matured and the litter became soiled with manure.
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6.3 Results Part B—Identification of odorant species within the
NMVOCs

The non-methane volatile organic compound (NMVOC) speciation detailed in the preceding section
(Section 6.2) allows for the identification of the chemical species being emitted from the poultry houses;
however, chemical speciation does little to elucidate the odorant profile. The addition of the olfactometry
detection port (ODP) and the corresponding splitting of the gas chromatograph (GC) effluent between the
two detectors (mass selective detector (MSD) and (ODP)) provide both chemical speciation and odorant
identification. This section describes the odorants detected from the broiler sheds throughout the batch.

It should be noted that the identification of the odorants within a sample is often considered subjective
owing to the subjective nature of the human sense of smell. Different chemicals will often have differing
detection thresholds for different people; also different chemical species exhibit different levels of
olfactory stimulus. This means that while individual odorants will contribute to the strength and character
pleasantness of the ‘whole’ odour, there is presently no way to quantify this contribution (i.e. it is possible
that a whole air sample may contain a mixture of pleasant and unpleasant odorants and still have a
pleasant or neutral character and low strength or intensity).

The odorant chromatograms that appear in the proceeding text seek to be an average representation of the
multiple samples collected from a given site at a particular time. Whilst the method of analysis was
constant (i.e. gas chromatography with mass spectrometry and olfactory detection), refinement of the
method during the project means that a given chromatogram pair is unique and can not empirically be
compared to another.

6.3.1 Clean broiler house, no birds, fresh litter

As observed from the chemical speciation of NMVOCs; a broiler shed void of birds can potentially emit
NMVOCs. Litter material that is placed within the poultry shed for bedding may acts as an emission
source of NMVOCs; however, ventilation rates are minimal when birds are absent so emission rates will
also be minimal. Figure 153 shows both the total ion chromatogram and the corresponding odour
chromatogram obtained from a sorbent tube sample collected from Farm B during the summer prior to the
bird placement, with fresh bedding material laid in the shed. The chemical speciation was performed
using the mass spectral data, whilst the odorant identification was performed using a combination of the
descriptor as recorded by the operator and the retention time (RI).
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Figure 153: Total ion chromatogram (top) and the olfactory chromatogram (bottom) from
Farm B - fresh litter, no birds

The mass spectral data identified numerous chemical species; however the dominant chemicals were
terpines; including a-pinene, -pinene, camphor, camphene and limonene. The odorants identified from
the olfactory stimulus data were dominated by pine scents, with characteristic odour descriptors of pine
featuring prominently. Table 28 lists the ODP peaks as seen in the odour spectra and their respective
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descriptor, and the chemical responsible for the odour. Odorant species within this sample included a-
pinene and B-pinene.

Table 28: Odorants identified from Farm B with no birds, only fresh bedding material

Odour Peak . .
Label” | RI (min) Descriptor Chemical
A 4.66 Pungent Unknown (no MSD peak)
B 6.86 Pine a-pinene
C 8.48 Pine B-pinene
D 12.84 Mildly Unpleasant camphor

" refers to peaks in Figure 153

In similarity to the NMVOC analysis of the fresh bedding with no birds in the broiler shed, the odorant
emissions are characterised by terpines with natural wood and pine scents, which although effect an
olfactory response are not generally unpleasant in hedonic tone.

6.3.2 Batch age ~2 weeks

After the bird placement, the litter material that is within the shed begins to become soiled with the
manure of the birds. As the litter material becomes soiled, the NMVOCs that are being identified within
the emissions from the poultry shed changes, and so to does the odorant profile.

6.3.2.1 Broiler sheds in Queensland (Farms A and C)

Figure 154 and Figure 155 show the total ion chromatograms and odorant chromatograms from two
different samples representative of the respective broiler sheds in summer and winter in Queensland.
Sheds at Farm C and Farm A contained 39,913 and 32,282 birds aged 14 and 15 days respectively. Table
29 and Table 30 lists the odorants identified from the chemical and olfactory analysis.
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Figure 154: Total ion chromatogram and odorant chromatogram from Farm C during
summer containing 39,913 birds 14 days old

The chemical compounds labelled in Figure 154 (A,B,C,D & E) that have been identified as the odorants
are listed in Table 29. It should be noted that the presence of an olfactory stimulus peak does not always

correspond to a peak in the total ion chromatogram. When a chemical is asterisked (*), it is a speculation
based upon the retention time and the odorant descriptor if available.
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Table 29: Odorants identified from samples (see Figure 154) collected during summer at Farm C,
containing 39,913 birds at 14 days old

Odour Peak . .
Label”® | RI (min) Descriptor Chemical
A 3.97 Unpleasant, malt 3-methyl-butanal
B 4,73 Rancid, butter 2,3-butanedione
C 6.84 Unpleasant Dimethyl disulphide
D 11.62 Butter 3-hydroxy-2-butanone
E 12.96 Pungent Sulphur Dimethyl trisulphide*

* refers to peaks in Figure 154

The odorant characteristics have shifted from the pine scents observed in the samples prior to bird
placement to a more unpleasant, rancid and sulphur-esque odours as listed in Table 29 attributed to
chemical species including 3-methyl-butanal with an unpleasant malt odour, 2,3-butanedione with a
rancid butter odour and dimethyl trisulphide with a pungent sulphur odour.
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Figure 155: Total ion chromatogram and odorant chromatogram from a sample collected
during winter at Farm A, containing 32,282 birds at 15 day old

The chemical compounds labelled in Figure 155 (A,B,C,D & E) that have been identified as the odorants
from a broiler facility sampled during winter in Queensland are listed in Table 30.

Table 30: Odorants identified from the sample collected during winter at Farm A, containing 32,282 birds

at 15 day old
Odour Peak . .
Label™ RI (min) Descriptor Chemical
A 2.56 Rancid, butter 2,3-butanedione
B 3.00 Sweet Benzene
C 4.47 Solvent Toluene
D 8.94 Pungent, sulphur Dimethyl trisulphide*
E 9.22 Earthy/mushroom B -pinene*

" refers to peaks in Figure 155
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The odorant characteristics have shifted from the pine scents observed in the samples prior to bird
placement to more solvent, rancid and sulphur-esque odours as listed in Table 30 attributed to chemical
species including 2,3-butanedione with a rancid butter odour and dimethyl trisulphide with a pungent
sulphur odour.

6.3.2.2 Broiler sheds in Victoria (Farm B)

Figure 156 and Figure 157 show the total ion chromatograms and odorant chromatograms from two
different samples representative of the respective broiler sheds in summer and winter in Victoria; with the
sheds containing 24,000 and 30,215 birds aged 13 and 14 days respectively. Table 31 and Table 32 list
the odorants identified from the chemical and olfactory analysis.
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Figure 156: Total ion chromatogram and odorant chromatogram from a sample collected
during summer at Farm B, containing 24,000 birds at 13 days old

The chemical compounds labelled in Figure 156 (A,B,C,D, E & F) that have been identified as the
odorants from a broiler facility sampled during summer in Victoria are listed in Table 31.

Table 31: Chemical species identified as odorants from the NMVOC suite from Farm B, containing 24,000
birds at 13 days old

Odour Peak ] .
L abel™ RI (min) Descriptor Chemical
A&B 2.86 & 3.00 Sweet/organic/Fruit 3-methyl-isovaline
C 3.52 Smoke Toluene
D 6.94 Pine a -pinene
E 11.05 Unpleasant, burning L-Fenchone*(terpine)
F 14.48 Unpleasant/Earthy Camphor*

" refers to peaks in Figure 156

The odorant characteristics changed to include unpleasant, earthy scents additional to the pine scents
observed in the samples prior to bird placement. These odorants and their descriptors are listed in Table
31 and attributed to chemical species including 3-methyl-isovaline and a sweet organic odour, toluene,
with a smoke-like odour and o —pinene with a pine scent.
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Figure 157: Total ion chromatogram and the odorant chromatogram from winter at
Farm B, containing 30,215 birds at 14 day old

The chemical compounds labelled in Figure 157 (A,B,C,D, E & F) that have been identified as the
odorants from a broiler facility sampled during winter in Victoria are listed in Table 32.

Table 32:  Odorants identified from the chemical and olfactory stimulus analysis from Farm B during
winter with 30,215 birds at 14 days old

Odour Peak . .
L abel® RI (min.) Descriptor Chemical

A 4,77 Rancid, butter 2,3-butanedione

B 5.20 Faint solvent 2-propenenitrile*

C 6.90 Solvent/burning Dimethyl Disulphide*
D 10.00 Unpleasant/Solvent Unknown (no MSD peak)
E 11.74 Earth, mushroom 3-hydroxy-2-butanone
F 13.82 Metallic/Pungent Dimethyl trisulphide

" refers to peaks in Figure 157

The odorant characteristics have again shifted from the pine scents observed in the samples prior to bird
placement to more unpleasant, rancid and sulphur-esque odours as listed in Table 32 attributed to
chemical species including 2,3-butanedione with a rancid butter odour, 3-hydroxy-2-butanone with an
earthy mushroom scent and dimethyl trisulphide with a pungent sulphur odour.

In comparison to the odorants identified from the initial samples collected from a broiler shed void of
birds (only containing bedding), the observed odorants at 13-15 days show that the chemical species are
different and most likely reflect the impact promoted by the presence of the birds. The identification of
sulphides and butyl species at 13-15 days is consistent with a change from a pleasant pine or woody scent
observed from the empty poultry shed to more of a ‘poultry’ odour as the bedding material becomes
soiled with bird manure.

The chemical species responsible for the olfactory stimulus within the shed at two weeks are primarily
2,3-butanedione with a rancid butter odour, 3-methyl-butanal with an unpleasant malt odour and dimethyl
trisulphide with a pungent sulphur odour. These chemical species are known to be nuisance odorants
(Schiffman et al., 2001).
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6.3.3 Batch age ~4 weeks

With the birds now approaching four weeks of age there was an observed change in the number and
abundance of the NMVOCs identified from the chemical analysis, which was comparable with an
increase in the number of odorants identified within the NMVOC suite. Figure 158 to Figure 161 show
the total ion chromatograms and the odorant chromatograms for the respective samples collected in
Queensland and Victoria during summer and winter. Table 33 to Table 36 list the odorants identified from
the simultaneous mass selective detection and olfactory stimulus detection.

6.3.3.1 Broiler sheds in Queensland (Farm A and Farm C)
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Figure 158: Total ion chromatogram and the odorant chromatogram from a sample
collected during summer at Farm C, containing 39,747 birds at 28 days old

The chemical compounds labelled in Figure 158 (A,B,C,D & E) that have been identified as the odorants
from a broiler shed sampled during summer in Queensland are listed in Table 33.

Table 33:  Odorants identified from the olfactory detection port from a sample collected during summer at
Farm C containing 39,747 birds at 28 days old

Odour Peak . i
Label” | RI (min) Descriptor Chemical
A 4.77 Butter 2,3-butanedione
B 6.90 Solvent/burning Dimethyl Disulphide*
C 7.36 Faint Earthy Unknown (no MSD Peak)
D 11.65 Faint Earthy 3-hydroxy-2-butanone
E 13.70 Metallic/Pungent Dimethyl trisulphide

* refers to peaks in Figure 158
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Figure 159: Total ion chromatogram and odorant chromatogram from a sample collected
during winter at Farm A, containing 31,913 birds at 28 days old

The chemical compounds labelled in Figure 159 (A,B,C,D & E) that have been identified as the odorants
from a broiler shed sampled during winter in Queensland are listed in Table 34.

Table 34: Odorants identified from a sample collected during winter in Queensland from Farm A,
containing 31,913 birds at 28 days old

Odour Peak . .
Label” | RI (min) Descriptor Chemical

A 2.52 Butter, rancid 2,3-butanedione

B 2.94 Malt, unpleasant 3-methyl-butanal

C 4.02 Smoke, burning Dimethyl disulphide

D 8.96 Pungent, metallic Dimethyl trisulphide*

E 9.26 Earthy, mushroom B-pinene*

" refers to peaks in Figure 159

6.3.3.2 Broiler sheds in Victoria (Farm B)
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Figure 160: Total ion chromatogram and odorant chromatogram from a sample collected
during summer at Farm B containing 22,000 birds at 32 days old
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The chemical compounds labelled in Figure 160 (A,B,C & D) that have been identified as the odorants
from a broiler shed sampled during summer in Victoria are listed in Table 35.

Table 35:  Odorants identified from a sample collected during summer at Farm B containing 22,000 birds at

32 days old
Odour Peak Descrint Chemical
- escriptor emica
Label™ | RI (min.) P
A 2.55 Cheese, unpleasant 2,3-butanedione
B 4.55 Smoke, burning Dimethyl disulphide
C 9.30 Pungent, metallic Dimethyl trisulphide
D 16.05 Rancid, citrus Heptanal
" refers to peaks in Figure 160
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Figure 161: Total ion chromatogram and the odorant chromatogram from a sample
collected during winter at Farm B containing 29,876 birds at 29 days old

The chemical compounds labelled in Figure 161 (A,B,C,D, E, F & G) that have been identified as the
odorants from a broiler shed sampled during winter in Victoria are listed in Table 36.

Table 36: Odorants identified from a sample collected during winter at Farm B containing 29,876 birds at

29 days old
Odour Peak . .
Label™ RI (min) Descriptor Chemical

A 3.50 Sweet, solvent Acetone*

B 4.75 Butter, rancid 2,3-butanedione
C 11.65 Non-descript 3-hydroxy-2-butanone

D 12.61 Non-descript Unknown (no MSD peak)
E 13.68 Non-descript Dimethyl trisulphide

F 19.35 Non-descript Unknown (no MSD peak)
G 20.16 Non-descript Unknown (no MSD peak)

* refers to peaks in Figure 161

Note: Occasionally the microphone used to record the odorant descriptor was unable to effectively record the voice
comment of the operator and thus the descriptor was listed as non-descript.
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A suite of odorant species have been identified with characteristics consistent with a trend towards an
unpleasant hedonic tone. Chemical species identified from the simultaneous mass spectral and olfactory
stimulus detection have included 2,3-butanedione with a rancid butter odour, dimethyl trisulphide with a
pungent sulphur odour, 3-hydroxy-2-butanone with an earthy mushroom odour and dimethyl disulphide
with a smoky, burning odour. These have been previously reported as nuisance odorants (Schiffman et
al., 2001), but they were found in the exhaust air, their contribution to the character of the whole odour
was not quantified.

6.3.4 Batch age ~7 weeks

Figure 162 to Figure 165 show the total ion chromatograms and the odorant chromatograms from Farms
A, B and C during summer and winter, with each broiler shed containing 7,000~21,000 birds of

approximately 7 weeks of age. Table 37 to Table 40 list the odorants identified from the chemical and
odorant analysis.
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Figure 162: Total ion chromatogram and odorant chromatogram from a sample collected
during summer at Farm C containing 21,083 birds of 49 days old

The chemical compounds labelled in Figure 162 (A,B,C & D) that have been identified as the odorants
from a broiler shed sampled during summer in Queensland are listed in Table 37.

Table 37: Odorants identified from a sample collected during summer at Farm C, containing 21,083 birds
at 49 days old

Odour Peak . .
Label™ RI (min) Descriptor Chemical
A 4.68 Rancid 3-methyl-butanal
B 11.56 Mushroom, earth 3-hydroxy-2-butanone
C 12.50 Meat Unknown (no MSD Peak)
D 13.56 Pungent Metallic Dimethyl trisulphide

* refers to peaks in Figure 162
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Figure 163: Total ion chromatogram from a sample collected during winter in
Queensland from Farm A containing 12,018 birds at 48 days old

The chemical compounds labelled in Figure 163 (A,B,C,D & E) that have been identified as the odorants

from a broiler shed sampled during winter in Queensland are listed in Table 38.

Table 38: Odorants identified from a sample collected during winter at Farm A, containing 12,018 birds at

48 days old
Odour Peak ) i

L abel™ RI (min) Descriptor Chemical
A 2.58 Butter, rancid 2,3-butanedione
B 3.04 Solvent 1-butanol
C 4.56 Solvent Toluene
D 9.06 Pungent, metallic Dimethyl trisulphide*
E 9.28 Earth B-pinene*

" refers to peaks in Figure 163
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Figure 164: Total ion chromatogram and odorant chromatogram from a sample collected
during summer at Farm B containing 13,636 birds at 46 days old

185



The chemical compounds labelled in Figure 164 (A,B,C,D & E) that have been identified as the odorants
from a broiler shed sampled during summer in Victoria are listed in Table 39.

Table 39: Odorants identified from a sample collected during summer from Farm B, containing 13,636
birds at 46 days old

Odour Peak Descriptor Chemical
Label™ RI (min.)
A 2.54 Butter, rancid 2,3-butanedione
B 4.47 Burning, rubber Dimethyl disulphide
C 9.00 Pungent, metallic Dimethyl trisulphide
D 9.25 Earth, mushroom B-pinene
E 16.02 Gas, earth Unknown (no MSD peak)

* refers to peaks in Figure 164
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Figure 165: Total ion chromatogram and the odorant chromatogram from a sample
collected during winter at Farm B containing 7,773 birds at 49 days old

The chemical compounds labelled in Figure 165 (A,B & C) that have been identified as the odorants from
a broiler shed sampled during winter in Victoria are listed in Table 40.

Table 40: Odorants identified from a sample collected during winter from Farm B containing 7,773 birds at

49 days old
Odour Peak . i
L abel® RI (min) Descriptor Chemical
A 4.76 Rancid, fat 2,3-butandione
B 11.66 Mushroom 3-hydroxy-2-butanone
C 13.70 Metallic Dimethyl trisulphide

* refers to peaks in Figure 165

The chemical and odorant analysis of the samples collected at the different farms toward the end of each
batch showed a presence of 2,3-butanedione and 3-methyl-butanal. There was also a consistent
dominance of dimethyl trisulphide within the odorant profiles, characterised by a pungent sulphur odour,
although frequently having little to almost negligible response from the mass selective detector. While
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odorants described as unpleasant were found in the exhaust air, their contribution to the character of the
whole odour was not quantified.

6.3.5 Post bird removal

The presence of the spent litter within the broiler shed once the grow-out cycle of the birds has concluded
represents a potential emission source for odour emissions. Samples were collected during summer in
Victoria once the birds were removed from the shed before the spent litter had been removed. Figure 166
illustrates the total ion chromatogram and odorant chromatogram from a sample collected, whilst the
abundances of the chemical species was lower than when the birds were present, there were still
discernable odorant peaks. Table 41 lists the odorants identified from the chemical and odorant analysis.
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Figure 166: Total ion chromatogram and odorant chromatogram from a sample collected
during summer from Farm B with only the spent litter present

The chemical compounds labelled in Figure 166 (A,B & C) that have been identified as the odorants from
a broiler shed sampled post bird removal in Victoria during summer are listed in Table 41.

Table 41: Odorants identified from a sample collected during summer from Farm B with only the spent
litter present

Odour Peak . .
L abel® RI (min)) Descriptor Chemical
A 2.35 Faint solvent Acetone
B 9.06 Pungent, sulphur Dimethyl trisulphide*
C 9.25 Earth, mushroom B-pinene

# refers to peaks in Figure 166

The presence of odorants with descriptors pungent, sulphur and earthy mushroom detected in the broiler
shed post bird removal demonstrates that the spent litter is a source of unpleasant smelling odorants.

6.3.6 Queensland broiler shed comparison (Farms | to M)

During the initial broiler shed sampling during 2005-2006, the results of the dilution olfactometry testing
and NMVOC analysis revealed that odour and NMVOC emissions peaked when the birds were
approximately five weeks of age (35 days). For this reason, a series of broiler sheds in Queensland were
selected to determine any similarities between sites when the birds were approximately 35 days.
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Field sampling of sorbent tubes was undertaken at different broiler sheds with birds ranging from 31 to 36
day of age, with bird numbers ranging from 29,680-42910, the following total ion chromatograms are
illustrated with two odour stimulus chromatograms. Each pair of olfactory stimulus chromatograms
(OSC) represents a highly sensitive (upper OSC) receptor and a normal receptor (lower OSC) as
determined by the Australian Standard (AS/NZS 4323.3:2001) n-butanol test for assessing panellist
suitability for dilution olfactometry. By engaging multiple operators to undertake the olfactory detection
an understanding can be gained as to the subjective nature of the odours and how different odorants will
potentially impact on different receptors. A series of replicates were collected and analysed by two
experienced operators; the first being highly sensitive and the second considered to fall within the normal
(20-80 ppb) range for n-butanol sensitivity.

(Note: NMVOC samples were also collected at Farms F, G and H, but analysis of the sorbent tubes was
unable to be completed due to an equipment malfunction.)

6.3.6.1 Farm |

The first broiler shed for the comparison contained 42,463 broilers at 34 days of age. Figure 167
illustrates the total ion chromatogram and the olfactory stimulus chromatogram from this broiler shed,
whilst Table 42 lists the odorants detected by the two operators and the characteristic of these odorants as
interpreted by each operator respectively.
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Figure 167: Total ion chromatogram and olfactory stimulus chromatograms from Farm I, containing
42,463 birds aged 34 days

The chemical compounds that have been identified as the odorants and their respective descriptors as
characterised by the two operators from Farm | containing 42,463 birds aged 34 days are listed in Table
42.

Table 42: Odorants and the descriptors given by each operator identified from samples collected during
autumn from Farm | containing 42,463 birds aged 34 days

Odour Peak Descriptor .
. Chemical
RI1 (min) Operator 1 Operator 2

3.68 Acrid, solvent 3-methyl-butanal
4.40 Butter, rancid Solvent smell 2,3-butanedione
6.45 Burning, solvent hexanal

11.08 Earthy, mushroom Solvent smell 3-hydroxy-2-butanone
13.12 Pungent, metallic Dimethyl trisulphide
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6.3.6.2 FarmJ

The second broiler shed for the comparison contained 42,910 broilers at 35 days of age. Figure 168
illustrates the total ion chromatogram and the olfactory stimulus chromatogram from this broiler shed,
whilst Table 43 lists the odorants and their descriptors as identified by the two operators.
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Figure 168: Total ion chromatogram and olfactory stimulus chromatograms from Farm J, containing
42,910 birds aged 35 days

The chemical compounds that have been identified as the odorants and their respective descriptors as
characterised by the two operators from Farm J containing 42,910 birds aged 35 days are listed in Table

43.

Table 43: Odorants and the descriptors given by each operator identified from samples collected during
autumn from Farm J containing 42,910 birds aged 35 days

Odour Peak Descriptor .

RI (min) Operator 1 Operator 2 Chemical
4.40 Rancid, butter 2,3-butanedione
6.40 Smoke, burning Solvent smell hexanal
10.80 Green, citrus Octanal
11.10 Earth, mushroom Solvent smell 3-hydroxy-2-butanone
13.16 Pungent, sulphur Sulphur compound dimethyl trisulphide
13.66 Sweet, ether 2-butoxy-ethanol*
14,57 Plastic, solvent unknown
14.84 Plastic, solvent unknown
16.20 Solvent, plastic 2-ethyl-1-hexanol
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6.3.6.3 Farm K

The third broiler shed for the comparison contained 43,000 broilers at 31 days of age. Figure 169
illustrates the total ion chromatogram and the olfactory stimulus chromatogram from this broiler shed,
whilst Table 44 lists the odorants and their descriptors as characterised by the two operators.
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Figure 169: Total ion chromatogram and olfactory stimulus chromatograms from Farm K containing
43,000 birds aged 31 days

The chemical compounds that have been identified as the odorants and their respective descriptors as
characterised by the two operators from Farm K containing 43,000 birds aged 31 days are listed in Table
44,

Table 44: Odorants and the descriptors given by each operator identified from samples collected during
autumn from Farm K containing 43,000 birds aged 31 days
Odour Peak Descriptor .

RI (min) Operator 1 Operator 2 Chemical
3.76 Ethereal Butanol 3-methyl-butanal
4.40 Rancid, butter Solvent 2,3-butanedione
6.40 Smoke, burning hexanal
11.10 Earth, mushroom Solvent 3-hydroxy-2-butanone
12.05 Meat, cooking unknown
13.10 Pungent, sulphur dimethyl trisulphide
13.68 Earthy, mushroom Solvent 2-butoxy-ethanol*
14.60 Plastic, solvent unknown
14.88 Plastic unknown
16.38 Solvent, plastic 2-ethyl-1-hexanol
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6.3.6.4 FarmL

The fourth broiler shed for the comparison contained 42,675 broilers at 34 days of age. Figure 170
illustrates the total ion chromatogram and the olfactory stimulus chromatogram from this broiler shed,
whilst Table 45 lists the odorants identified from the chemical and odorant analysis.
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Figure 170:

Total ion chromatogram and olfactory stimulus chromatograms from Farm L containing
42,675 birds aged 34 days

The chemical compounds that have been identified as the odorants and their respective descriptors as
characterised by the two operators from Farm L containing 42,675 birds aged 34 days are listed in Table

45,
Table 45: Odorants and the descriptors given by each operator identified from samples collected during
autumn from Farm L containing 42,675 birds aged 34 days
Odour Peak Descriptor )
RI (min) Operator 1 Operator 2 Chemical

3.70 Pungent 3-methyl-butanal
4.40 Rancid, butter Solvent 2,3-butanedione
6.40 Smoke, solvent hexanal*
9.70 Rancid unknown
10.78 Detergent, citrus octanal
11.10 Earth, mushroom Solvent 3-hydroxy-2-butanone
12.00 Popcorn, butter Roasted nut N,N-dimethyl-formamide
13.10 Pungent, sulphur Sulphur compound dimethyl trisulphide
13.65 Solvent 2-butoxy-ethanol*
16.22 Solvent 2-ethyl-1-hexanol
16.86 Solvent Benzaldehyde
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6.3.6.5 Farm M

The fifth broiler shed for the comparison contained 33,684 broilers at 32 days of age. Figure 171
illustrates the total ion chromatogram and the olfactory stimulus chromatogram from this broiler shed.
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Figure 171:Total ion chromatogram and olfactory stimulus chromatograms from Farm M, containing
33,684 birds aged 32 days

The chemical compounds that have been identified as the odorants and their respective descriptors as
characterised by the two operators from Farm M containing 33,684 birds aged 34 days are listed in Table
46.

Table 46: Odorants and the descriptors given by each operator identified from samples collected during
autumn in Queensland from a broiler house containing 33,684 birds aged 32 days

Odour Peak Descriptor .
. Chemical
RI1 (min) Operator 1 Operator 2

3.70 Pungent Butanol 3-methyl-butanal
4.40 Rancid, butter Solvent 2,3-butanedione
6.00 Pungent, sulphur dimethyl disulphide
6.40 Smoke, solvent hexanal*
9.68 Smoke, burning unknown
10.78 Detergent, citrus octanal
11.10 Earth, mushroom Solvent 3-hydroxy-2-butanone
12.00 Cooking, oil Roasted nut N,N-dimethyl-formamide
13.10 Pungent, sulphur Sulphur compound dimethyl trisulphide
13.65 Mushroom 2-butoxy-ethanol*
16.14 Plastic, solvent 2-ethyl-1-hexanol
16.84 Solvent Benzaldehyde
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6.3.6.6 Broiler farm comparison summary

The results from the comparison of the broiler sheds containing birds aged approximately 5 weeks
revealed that there were similarities in the chemical species present and the odorants being detected by
the two operators. One of these operators was hypersensitive to odour according to the n-butanol test and
consequently recorded higher levels of odorant stimulus compared to the other operator, who had
‘normal’ sensitivity to n-butanol.

The chemical species identified and characterised by the operators as odorants that were consistently
detected within the majority of the samples included a predominance of aldehydes and ketones, with
sulphide species also present. These odorants were characterised by general unpleasant descriptors
including 2,3-butanedione with a rancid butter odour, 3-methyl-butanal with a pungent odour,
burning/solvent odour of hexanal, the citrus/detergent odour of octanal, with the additional pungent and
sulphur odours of dimethyl disulphide and dimethyl trisulphide.

6.3.7 Summary of broiler shed odorant identification

The chemical speciation of the NMVOCs that were identified from the different broiler sheds provided
insight into the chemical composition of the emissions. The identification and characterisation of the
odorants within the NMVOC suite improves understanding of the contribution of these chemicals to the
strength and character of what is recognised as ‘poultry odour’. It must be remembered that the presence
of individual odorants will not necessarily dominate the overall character or strength of the whole odour.

The odorants identified from the broiler shed prior to bird placement were dominated by woody, pine
scents of various terpines including a-pinene, 3-pinene and limonene. Once the birds were placed and the
bedding material within the broiler sheds became increasingly soiled, the character of the odorants being
detected shifted towards descriptors of an unpleasant nature. These odorants were predominantly
characterised by aldehydes and ketones with unpleasant descriptors including rancid butter of 2,3-
butanedione, unpleasant malt of 3-methyl-butanal, rancid citrus of heptanal and burning solvent of
hexanal. The presence of sulphur compounds was significant as they are odorants with very low odour
detection thresholds, and are characterised by the pungent sulphur of dimethyl trisulphide and burning
sulphur of dimethyl disulphide. Table 47 lists the odorants and their descriptors identified in the majority
of samples from the sampling at broiler sheds.

Table 47: Odorants and their respective descriptors identified from broiler shed emissions

Descriptor Chemical
Solvent, sweet Acetone
Butter, rancid, fat 2,3-butanedione
Mushroom, earth 3-hydroxy-2-butanone
Smoke, burning, rubber Dimethyl disulphide
Solvent 1-butanol
Malt, rancid 3-methyl-butanal
Rancid, citrus Heptanal
Green, citrus Octanal
Sweet, solvent Benzene
Sweet, solvent Toluene
Metallic, sulphur, pungent dimethyl trisulphide
Pine a-pinene
Earth, mushroom B-pinene
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6.4 Quantification of NMVOC odorants

The non-methane volatile organic compound (NMVOC) and odorant emissions from poultry houses
contain numerous chemical species including aldehydes, ketones, terpines and sulphides. Following on
from chemical speciation and odorant identification, the a selection of chemicals identified as the key
odorants within the NMVOC emissions were quantified—including 2,3-butanedione, 3-methyl-butanal 3-
hydroxy-2-butanone and toluene; additionally dimethyl disulphide was quantified as it was observed to be
an odorant in the majority of samples. Quantification of some compounds was not possible for all
samples collected—a chemical species may have elicited an olfactory response yet been absent in a mass
spectral response, or it may have been of inadequate abundance to be considered above the level of
quantification.

6.4.1 Details of NMVOC quantification — refinement of methods

Throughout the initial stages of the project, the laboratory analysis method was refined to improve data
acquisition and maximize the interpretation of the data collected from each sample. These methodological
improvements must be considered when comparing spectra from different sampling campaigns to ensure
that the correct conclusions are drawn.

Improved GC column selection

Initial gas chromatographic analysis was performed using a non-polar column (HP-5ms, (5%-Phenyl)-
methylpolysiloxane) but it was soon realised that this would not be the most appropriate option for low
molecular weight moderately polar molecules (aldehydes and ketones). A comparative experiment was
conducted using a series of duplicate samples to evaluate the relative performance of a polar column (HP-
INNOWax, polyethylene glycol). It was found that the polar column provided increased compound
separation over the same run time without the co-elution of the non-polar column allowing for more
accurate peak integration and hence quantification.

Compounds present but not quantifiable

The analysis procedure could not be targeted to ideally suit the quantification of each compound of
interest because each sample had a diverse range and abundance of NMVOCs. Consequently, there were
instances when a compound was found to be present but was below the level of quantification. To further
explain this, it is commonly accepted with chemical analysis that the signal from a detector will have a
baseline value (considered to be unavoidable noise) above which will be the actual detector response. The
limit of detection for a chemical is considered to be at a detector response signal three times the baseline
(level of detection; LOD = 3 x the baseline). The limit of quantification is considered to be at a detector
response signal ten times higher than the baseline (limit of quantification; LOQ = 10 x baseline).
Therefore, the abundance of a chemical in each sample needed to be ten times greater than the baseline
value otherwise it wouldn’t be quantifiable.

Calibration compounds

To enable quantification of compounds detected in each sorbent tube, specific compounds of known
concentration are used to calibrate or scale the response from the GC-MS. The compounds selected for
the calibration were either compounds that frequently appeared in field samples or closely related species
to provide a method of relative quantification. To afford coverage of a large range of compounds, nine
diverse compounds were selected: these were 2-butanone, 3-methyl-2-butanone, benzene, 2,3-
butanedione, toluene, dimethyl disulphide, 1-butanol, 3-hydroxy-2-butanone and acetic acid. Of the
extensive list of compounds that have been identified within the VOC suite from the poultry house
emissions, only a few have been identified as odorants, therefore quantification has focussed on these
odorants. The rationale for the selection of these compounds is both their frequency of identification in
different samples, and their dominance within the olfactory stimulus chromatograms.
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6.4.2 Abundance of NMVOC odorants present in broiler sheds

One of the NMVOCs consistently identified as an odorant using gas chromatography-mass
spectrometry/olfactometry (GC-MS/O) was 2,3-butanedione. It was chosen for detailed quantification
throughout the sampling campaigns of the broiler houses. Dimethyl disulphide was also selected for
quantification despite not being an NMVOC, as it was recognised to be a frequently occurring odorant in
the broiler sheds.

Abundance results have been expressed per bird to simplify comparison between batches and farms. To
approximate the total emission rate of the compound, the abundance value needs to be multiplied by the
number of birds in the shed and the ventilation rate.

It can be seen in the following sections that certain odorants increase in abundance in the shed throughout
the batch. This increase in odorant abundance compares well with the increase in odour emissions
(determined using dilution olfactometry) throughout the batch and may help to explain the observed
changes.

6.4.2.1 2,3-butanedione from Farms A, B and C

Emission of 2,3-butanedione was able to be quantified at Farms A during winter (except samples
collected on 21/06/2006), Farm B during winter and Farm C during summer (see Figure 172, Figure 173
and Figure 174 respectively). These figures illustrate the variation of 2,3-butanedione with the growth
cycle of the birds. Sampling conditions on each date can be derived from the tables provided in the
appendices.

It was observed that the abundance of 2,3-butanedione generally tended to increase throughout each batch
(with the exception of Farm C, due to an unexplainable high abundance recorded on the first sampling
day). With ventilation rate also expected to generally increase throughout the batch, it would be expected
that the emission of this compound would also increase throughout each batch.

The unrefined gas-chromatographic method used for analysing samples from Farm A and Farm B during
summer yielded inadequate retention time separation between 2,3-butanedione and 2-butanone,
consequently there was not possible to quantify NMVOCs for these batches.
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6.4.2.2 Dimethyl disulphide from Farms A, B and C

Although not a NMVOC, the significance of the presence of dimethyl disulphide should not be
disregarded. It is per se an odorant and it also indicates towards a strong probability that methyl
mercaptan (a considerably more potent odorant) may be present in the shed.

Abundance of dimethyl disulphide was able to be quantified for samples collected at Farm A during
winter, Farm B during summer and Farm C during summer (see Figure 175, Figure 176 and Figure 177
respectively). These figures illustrate the variation of the dimethyl disulphide with the growth cycle of the
birds. Note that there are more sample points for Farm C because of the revised sampling program.

As observed with 2,3-butanedione, there was a tendency for the abundance of dimethyl disulphide to
increase throughout the batch. With the expectation of increasing ventilation rate through the batch, it
would be expected that the emission rate of this compound would also be increasing.
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6.4.2.3 NMVOC diversity and abundance - comparison at Farms Hto M

NMVOCs were quantified at broiler sheds H to M around 31 — 35 days of bird age to assess inter-farm
variability. It was intended that Farms F and G would also be included in this comparison but the data is
not available due to an equipment malfunction during the quantification analysis. Figure 178 illustrates
the variability in the chemical composition of five broiler houses when standardised to the number of the
birds in each shed. It can be seen that the composition of the air was different at each of the five broiler
sheds.

In general, there was a lower overall abundance of odorants at Farm | and a higher abundance of odorants
at Farm M. Farm M also featured a higher abundance of Dimethyl Disulphide than the other farms. If the
combined abundance of these selected odorants are compared with the odour concentrations results
(measured using dilution olfactometry, see Appendix 10), it can be seen that they are generally
comparable—Farm M had the highest odour concentration of these six farms and the remaining five
farms had similar but lower odour concentrations. The odour concentration and odorant abundance values
are not automatically transferable to emission rates because ventilation rates were quite different at each
of these farms.
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6.4.2.4 Quantification of diurnal variation

A series of samples were collected over a 20 hour period during the winter sampling at Farm A to observe
any diurnal influence on the emissions. Figure 179 shows the trends in abundance of dimethyl disulphide
(DMDS) and diacetyl over the 20 hour monitoring period. The observed variation of the chemical
abundances was loosely reflected by the variation in the measured odour concentrations (reported
previously in Section 4.2) with the exception of the low abundance of NMVOCS at 06:00 when slightly
higher odour concentrations were measured.
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Figure 179: Diurnal variation of dimethyl disulphide and 2,3-butanedione from Farm A.

6.4.3 NMVOC quantification summary

The quantification of the NMVOCs within the emissions from the broiler facilities illustrated that there
exists significant variation across the growth cycle of the broilers and also between different sampling
sites. With a particular emphasis upon the key odorants such as 2,3-butanedione and dimethyl disulphide,
it was observed that the concentrations of these compounds vary between 2.0 x 10° ng/m? per bird and
1.2 x 10™ ng/m2 per bird during the 31-35 day old at Farms H to M.

The similarity between the measured odour concentration as determined with dilution olfactometry and

the abundances of 2,3-butanedione and dimethy!l disulphide detected within the thermal desorption
analysis indicate that these should be given a high priority within the suite of odorant compounds.
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6.5 Summary of broiler VOC results

NMVOC emission need to be individually considered along with environmental and in-shed conditions at
the time of measurement (for example ambient temperature, ventilation rate, litter moisture content, bird
age and total bird live weight)

NMVOC data was collected between November 2005 and May 2008.

The abundance and type of chemicals changed throughout the life of the batch.

The type and composition of the bedding material influence the NMVOC emissions from the broiler
houses in the initial growth stages.

Initial odorant emissions were dominated by terpine (B-pinene and a-pinene).

As the birds mature the odorant profile becomes dominated by aldehydes, ketones and aromatics
including; 2-butanone, 3-hydroxy-2-butanone, 2,3-butanedione, 3-methyl-butanal, hexanal, octanal,
toluene, benzene, acetophenone, benzaldehyde and styrene.

Although beyond the definition of NMVOC, the sulphides were important from an odorant
perspective. Sulphides identified as odorants within the broiler house emissions included dimethy!l
sulphide, dimethyl disulphide and dimethyl trisulphide.

There were observed variations from different sites sampled during the round robin sampling
campaign at 31-35 days of age.

Variations in the abundance of odorants were observed during the diurnal sampling during winter at
Farm A.

Abundance of key odorants 2,3-butanedione and dimethyl disulphide were observed to follow a
similar trend to odour concentration.

There was no observed seasonal behaviours in the emission of the NMVOCs from the broiler houses
studied.
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7 Selection of a suitable ventilation measurement
method for poultry sheds

There are several methods that may be used to measure ventilation rate in tunnel ventilated broiler sheds
(described in section 3.2.9), which are based on standard methods for measuring airspeed in stacks or
ducts (described in AS 4323.1:1995 (Standards Australia, 1995a)). An alternate method is to use fan
performance data, supplied by the manufacturer or independent laboratories, obtained through an
assessment of a new fan under standardised laboratory conditions.

Multiple methods were used to measure ventilation rate throughout this project, with the view that one
method would be chosen for the calculation of emission rates. This section discusses the benefits and
disadvantages of each of the ventilation rate measurement techniques used, and ultimately, the reasons
behind the selection of the fan performance method (as described in section 3.2.9.3).

7.1 Comparison of ventilation rate measurement methods

The use of a hot wire anemometer to measure airspeed, either at the fan face or inside the shed, provides
measurements that are directly related to the specific conditions experienced at the farm. Specific
variability in static pressure and fan performance (due to age, wear or cleanliness) are accounted for.
However, there are inherent inaccuracies and difficulties with the measurement of airspeed from within a
poultry shed or at the fan face.

Measurement of airspeed at the fan face has the following shortcomings:

e inaccurate measurement by the hot wire anemometer due to pulsating flow from the fan;

¢ non-conformance with the Australian Standard 4323.1 (1995a) due to close proximity to source
of flow; and

o vulnerability to external sources of flow such as cross-winds.

Measurement of airspeed inside the shed also has shortcomings:

¢ inability to account for flow from side wall fans or fans located at the opposite end to the tunnel
ventilation fans;

e inability to account for flow from mini-vents when the shed is not in tunnel ventilation mode
because air flow through the shed is not laminar, or moving along the length of the shed (as
designed, mini-vent ventilation does not generate much airspeed);

o at low ventilation rates, airspeed is very low, increasing the contribution of instrumentation errors
on the airspeed measurement; and

e shed structures (including posts and rafters) and the birds will change the effective cross-sectional
shed area and interfere with air flow (and the exact contribution of these are difficult to account
for).

A comparison between airspeed measured inside the shed and at the fan face during this investigation is
shown in Figure 180. Even though the measurement of airspeed at the fan face does not comply with the
Australian Standard, the difference in the ventilation rate compared to those measured inside the shed is
minimal (r2=0.90).
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Figure 180: Comparison between ventilation rate measured from fan face and inside the shed

In terms of calculating ventilation rate using fan performance curves (corrected for shed static pressure),
the inability to account for wear or poor maintenance on fans, which would negatively impact
performance, is the main weakness. Even though this can cause inaccuracies in calculating ventilation
rate using fan performance curves, the relationship shown in Figure 181 shows that the differences
between flow measured using a hot wire anemometer and those calculated using fan curves is minimal
(r?=0.93). The variance from the 1:1 line shown at low ventilation rates is presumably due to reduced
accuracy of the hot wire anemometer method during minimum ventilation conditions—primarily due to
reduced precision when measuring very low airspeeds and no accounting for side wall duty fans. On the
other hand, the fan curve method ensured that flow from all fans was included in the ventilation rate
estimations and removed instrument precision errors.
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7.2 Application of Australian Standard methods to tunnel ventilated
sheds

Australian Standard AS 4323.1:1995 (Standards Australia, 1995a) specifies a number of conditions that
must be met at the sampling plane, summarised in the following points:

gas flow is basically in the same direction at all points along each sampling traverse;

gas velocity at all points is greater than 3 m/s (assumes use of vane anemometer or pitot tubes);
gas flow profile must be steady, evenly distributed and not cyclonic in nature;

the ratio between the highest to lowest velocities must not exceed 3:1.

In addition, the sampling plane must be located 2—3 D upstream of a disturbance and 6-8 D downstream
from a disturbance (where D is the diameter of a circular duct, or the hydraulic diameter of a non—circular
duct, calculated as four times the duct internal area divided by the duct perimeter). For typical tunnel
ventilated broiler sheds, hydraulic diameter is of the order of 4.1-4.6 m, if working on the dimensions
underneath a baffle, or 5.4-6.0 m if working on the total internal shed cross-sectional area including the
roof line. This requires the sampling plane to be positioned a minimum of 12.5-18.0 m upstream of the
fans (depending on exact shed dimensions).

For internal shed measurement, the minimum required number of sampling points is 24 for a typical shed.
For measurement at the fan face, the number of sampling points is at least 12 per fan (using 2 transects
with 6 sampling locations per transect). These numbers need to be increased when the position of the
sampling plane cannot meet the required minimum distance from the disturbance (i.e. the fan, louvers or

grill).

7.2.1 Internal shed measurement

In response to the required sampling conditions (listed in dot points above), it would be reasonable to
assume that air flow inside will be in roughly the same direction when the shed is in tunnel ventilation,
but unlikely to be in the one direction during mini-vent ventilation because of the way that air enters the
shed. Air velocity is unlikely to be greater than 3 m/s; however, it could be argued that the use of a hot-
wire anemometer instead of pitot-tubes or vane anemometers may make this condition less critical. The
air flow across the sampling plane is unlikely to be evenly distributed unless all fans are active. When a
proportion of fans are active, shed air flow will be higher in front of these fans and lower in front of
inactive fans.

7.2.2 External shed measurement

In response to the required sampling conditions (listed in dot points above), air flow from the fan will be
greater than 3 m/s; however, the air flow profile across the face of an axial fan is not uniform. Air flow at
the centre of the fan may actually be zero or in the opposite direction (drawing air back into the fan). Air
flow will be cyclonic and turbulent, adversely affecting the measurements.

In addition, the minimum number of sampling points—12 per fan—is arduous when the shed approaches
full ventilation—96 samples for 8 fans and 144 samples for 12 fans.

7.2.3 Summary of applying the Australian Standards to measure ventilation
in tunnel ventilated poultry sheds

Measurement of ventilation rate by measuring airspeed across the internal cross section of the shed, or by
measuring the airspeed through ventilation fans, is not ideal for the many reasons identified in sections
7.1 and 7.2. However, measurement of ventilation rate is required to determine emission rates so
compromises need to be made in the absence of a perfect method. In effect, measurements cannot be
made in strict accordance with AS 4323.1:1995, but useful results may still be possible to obtain. It is
recommended that far more sampling points be used than the minimum numbers recommended in the
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Standard. This will help to overcome non-uniformity of air flow across the sampling plane. When the
shed is in mini-vent ventilation mode, internal shed airspeed measurements are not recommended.

7.3 Recommended ventilation measurement technique

It is recommended that fan performance curves be used to estimate ventilation rate in mechanically
ventilated poultry sheds comparing to in-shed and fan face measurement with a hot wire anemometer.
However, accurate records of fan specifications and shed static pressure must be taken, and the fans
must be clean and well maintained. It is also recommended that additional hot wire anemometer
measurements be made as a cross-check for the calculated curve ventilation rates to ensure that
maintenance or other issues are not adversely affecting the estimation of ventilation rates. This can be
done either inside the shed (during tunnel ventilation only) or at the fan face (not to Australian
Standard).

Consistent estimation of ventilation rates in different sheds and under different conditions (tunnel and
mini-vent ventilation; calm weather and windy, rainy weather; and where fans are properly maintained
in terms of cleanliness, belt tensioning and wear) can be achieved by calculating ventilation rate based
on fan performance data (when fans are tested according to recognised standards) and adjusted for
shed static pressure (and temperature and barometric pressure when values for standard temperature
and pressure, STP, are required). It is, however, imperative that the correct fan performance curve is
selected. Details of fan dimensions, fan manufacturer, fan model, blade pitch (where adjustable),
motor manufacturer and motor size will be required to ensure the correct fan curve is selected.

The direct measurement of airspeed in poultry sheds (in the shed or at the fan face) may be used to
provide estimates of ventilation rate at the time of sample collection (accounting for fan activity,
specific fan performance and operating conditions), but when sheds are ventilating in mini-vent mode,
i.e. not in tunnel ventilation, the measurement of airspeed within the shed is inaccurate due to the
swirling action of the air rather than laminar flow down the length of the shed. It also doesn’t account
for the activity of duty fans. One way to overcome this problem is to measure the flow directly from
the fan face; however, this method does not comply with the Australian Standard, is affected by
interferences from the fan and cross winds, and is time consuming. Measurements must be conducted
in a manner that exceeds the minimum requirements of the Australian Standard (number of samples
and position of sampling plane). This is necessary because the fundamental requirements of
AS4323.1:1995 cannot be met. In addition, ventilation rate needs to be measured at each fan, or inside
the shed, every time that ventilation conditions changes in the shed, which can be an arduous task.
Ventilation rate may change mid-measurement, preventing complete and accurate measurement of
airspeed.
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8 Investigation of appropriate storage time for odour
samples

Odour samples are known to be unstable and change with time due to interactions of the numerous
odorous constituents with themselves and sample storage materials. Previous studies have shown that
odour can change over time when stored in sample bags (Pollock and Friebel, 2002a; Trabue et al., 2006;
van Harreveld, 2003) and the Australian Standard AS/NZS 4323.3:2001 provides recommendations for
sample storage times to minimise changes within the sample and ensure that sample integrity is
maintained until olfactometry analysis can be completed. The Standard recommends that samples be
analysed as soon as possible after sampling (ideally 4-5 hours) and that the interval between sampling
and measurement shall not exceed 30 hours. While the Standard provides these arbitrary
recommendations, the behaviour of poultry odours in odour sample drums (in particular the sample bags
material used during this project) is not clearly understood. To address this issue, three odour decay
investigations were undertaken to assess how poultry odour samples change over time, and to provide
recommendations on how long poultry odour samples should be stored prior to analysis.

8.1 Methods

Odour samples were collected on three days at three different broiler farms, and analysed using dynamic
olfactometry at specified times from 1.5 to 28 hours after collection.

Nine drums were filled simultaneously (arranged in three groups of triplicates) from within the shed (see
Figure 182). An assumption was made that samples collected in each drum were identical.

5 > T ,--4!: KX e
odour decay study

o

Figure 182: CoIIectin of oaour samles for

One drum from each triplicate groups was randomly selected to be analysed at staggered times post
collection. Storage time varied slightly for each of these pre-designated times due to allowances for travel
and olfactometry analysis time (approximately 45 minutes per sample). Unique drum descriptors and
sample storage time for each of the three farms is detailed in Table 48.

Each set of triplicates was allocated a descriptor (A, B or C), with each drum within a triplicate randomly
allocated a number (1, 2 or 3). For the first decay study, each triplicate was analysed in order, with
repeated analyses on triplicates 1 and 2 for sessions 4 and 5 respectively (see Table 48). For the second
and third decay studies, one drum from each triplicate was randomly chosen for each session.
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Table 48: Sample code and time (hours:minutes) between collection and analysis for each decay study

Ag”r%'z;'s 12/05/2005 21/07/2005 12/07/2006

1 1A 1B 1C 3B 1A 2C 3B 1A 2C
2:57 | 3:31 | 3:55 2:29 | 3:05 | 3:24 1:23 | 1:37 | 2:30

) 2A 2B 2C 3C 2A 1B 3C 2A 1B
6:43 7:28 8:00 5:11 5:35 6:56 4:10 4:29 5:09

3 3A 3B 3C 2B 1C 3A 2B 1C 3A
11:02 | 11:49 | 12:42 8:55 | 10:08 | 10:47 7:52 | 824 | 9:30

4 1A 1B 1C 2B 3C 1A 2B 3C 1A
21:16 | 21:54 | 22:46 21:05 | 22:18 | 22:54 19:47 | 20:50 | 21:09

. 2A 2B 2C 3B 2A 1C 3B 2A 1C
26:21 | 26:57 | 27:50 25:26 | 25:49 | 27:00 24:09 | 24:47 | 25:09

8.2 Results

The odour decay results for each of the three tests showed that decay of poultry odour was not consistent.
All results for the three tests are shown in Figure 183 (all data is provided in Appendix 4). Results were
averaged for each designated analysis group (each a different storage period, see Figure 184). For the first
test, on 12 May 2005, odour concentration slowly increased up to 22.5 hours post collection, then rose
sharply at 27 hours. For both the second and third tests on 21 July 2005 and 12 July 2006 respectively,
odour concentration decreased slightly, with the third test increasing sharply at 24 hours post collection.
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Figure 183: Change in odour concentration over time (individual sample results)
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Figure 184: Change in average odour concentration over time (results averaged at each time interval)

When the data is presented in a format which shows percentage gain or loss compared to the initial
olfactometry analysis (see Figure 185 and Figure 186), it can be seen that test 1 on 12 May 2005
increased by approximately 12.5% of the initial odour concentration up to 22.5 hours post collection, then
at 27 hours post collection increased by approximately 75%. For test 2 on 21 July 2005, the odour
steadily reduced concentration compared to the initial olfactometry analysis, to end at approximately 65%
of the initial concentration. For test 3 on 12 July 2006, odour concentration decreased to 50% of the initial
concentration, but then increased to the initial analysis concentration at 25 hours post collection.
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Figure 185: Percentage change in odour over time compared to initial analysis—average of samples in the
first analysis group (individual sample results)
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Figure 186: Average percentage change in odour over time compared to initial analysis (results averaged for
each time interval)

Changes in odour over time were different for the three tests. Figure 187 displays the log transformed
data that was used to normalise the measured odour concentrations. An ANOVA (analysis of variance)
test was used to calculate any significant differences between sample age and test. The analysis showed
that the mean odour concentration measured 21.5 hours after sample collection was significantly different
to the mean odour concentration measured at 2.75 hours after sample collection. Also, the mean odour
concentration measured 21.5 hours after sample collection at tests 2 and 3 were significantly different
from test 1. However, as shown in Figure 187, divergence from the initial measured odour concentration
began at 6 hours post sample collection.
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Figure 187: Log change in odour concentration over time (note - % sign in the x-axis caption is an artefact of
the graphical program and the numbers indicate the length of storage time in hours—e.g. 2.75
hours)

There is no simple explanation as to what caused the increase in odour concentration for the first test, or
decrease in odour concentration for the second and third tests. There were possibly differences in
temperature and humidity (during collection, transport and storage) on the three sampling days; or
different combinations of odorants and subsequent reactivity within the samples.

8.3 Summary and recommendations to minimise sample changes
during storage

The measured odour concentration for poultry odour began to diverge from the original measurement
at 6 hours post collection. Divergence from the original odour measurement became significant 21.5
hours post collection. It is recommended that poultry odour samples are analysed within 6 hours of
collection, however samples may be analysed up to a maximum of 21.5 hours post collection.

The recommendation from the analysis of poultry air samples over time is that broiler exhaust air
samples should be analysed as soon as possible post sample collection (preferably before 6 hours,

definitely before 21.5 hours post sample collection). The best ways to achieve this are to:

choose an olfactometry laboratory in close proximity to the test site;
transport the samples to the olfactometry laboratory as soon as possible;

pre-arrange delivery and analysis time to ensure the samples are analysed as soon as possible after
delivery; and

samples should be transported and stored using the recommendations provided in AS/NZS
4323.3:2001 (clause 10.3.3, Standards Australia (2001))—kept at a temperature less than 25 °C
but above dew point to avoid condensation.
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9 Odour and dust interactions

9.1 Importance of dust in odour concentration

It has long been hypothesised that dust particles can carry odorous compounds—this may affect the way
that odours are perceived in the areas surrounding poultry farms and may affect the analysis of odours
using olfactometry. In an attempt to quantify the significance of the adherence and transport of poultry
odour to on particulate matter, three separate methods were trialled. Initially, an inline HEPA filter was
used to filter one odour sample in a series of duplicates in order to quantify the difference between un-
filtered and filtered poultry air. Secondly, odour samples were filtered using glass fibre filters. The filters
were subsequently heated in order to release odorants from the particulates captured on the filter and re-
capture them into another sample using high-purity nitrogen. Thirdly, in-line filters used during the
collection of VOC samples were analysed using a GC-MS/O in order to identify compounds that adhered
to the particulate matter on the filters.

9.2 Filtration of odour samples

9.2.1 In-line HEPA and glass fibre filtration

The first test aimed to remove all the particulate matter from poultry air samples in order to assess the
impact on odour concentration. On the four occasions that odour samples were filtered, the first two used
HEPA capsule filters (Gelman Sciences, product number 12144), and the final two used glass fibre filters
(nominal pore size 1.2 um). Duplicate odour samples were collected, with one drum fitted with a filter.
The samples were analysed consecutively through the DEEDI olfactometer.

Where HEPA filters were used, samples were collected from within the shed as shown in Figure 188. The
HEPA filter was attached to the inlet fittings of the sample drum. A short length of PTFE tubing was
attached to the inlet of the unfiltered sample drum so that the air collected in each drum was drawn from
approximately the same height from the shed floor.

Unfiltered
sample line

Figure 188: Simultaneous collection of HEPA filtered sample and unfiltered sample
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Where glass fibre filters were used, samples were drawn from within a polyethylene duct as described
previously in Section 3.2.4, except that one of the paired samples was filtered while the other was not.

The results for all four sample collection days are shown in Figure 189. There is no clear indication that
filtration of poultry odour samples will reduce measured odour concentrations when analysed using
olfactometry. In fact, on many occasions, the filtered odour concentrations were higher than the unfiltered
concentrations.
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Figure 189: Comparison of filtered and unfiltered odour samples

One possible reason for the limited difference in odour concentration is the electrostatic charge on the
surface of the odour sample bags and the olfactometry system. When sample air was drawn from within
the unfiltered sample bag through a laser particle analyser (TSI Incorporated DustTrak™ Model 8520), it
was found that little if any particles were suspended inside the sample bag. The particles appear to adhere
to the sample bag material where they remain trapped. The olfactometry system may act in a similar
fashion in which the particulate matter adheres to the PTFE tubing.

As this method for measuring the importance of particulate matter on odour concentration produced
inconclusive results, a new method was developed whereby odour samples were generated directly from
the odorants on captured particulate matter. This test is discussed in 9.2.2.

9.2.2 Glass fibre filtration and regeneration of odour from particulate matter

The second test focussed on the odorous nature of the particulate matter. The aim of the test was to
capture the particulate matter in the poultry air and conduct olfactometry testing on the odorants present
on the particulate matter. This was achieved by filtering the poultry air then passing warmed nitrogen
over the filter to release and re-capture odorants into a new odour sample bag.

Duplicate odour samples were collected from within a broiler shed. One duplicate set was collected
without filtration in order to measure the entire poultry air sample. The remaining two duplicate sets were
collected with in-line glass fibre filters (nominal pore size of 1.2 um, see Figure 190). The filters were
then used to regenerate odour samples using heated nitrogen gas. Figure 191 shows the particulate matter
used to regenerate the odour samples as captured on a glass fibre filter. VVolatile material was recovered
from the particulate material trapped on the filter using the customised equipment provided by QUT.
Individual filters were placed in stainless steel holders with thermocouples before and after the filters. A
stream of high purity nitrogen (5 L per min) was preheated to achieve an effective temperature of either
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60 °C or 100 °C at the filter. The air stream from the filter was captured in a Melinex® sample bag stored
in a sample drum. Air was recovered for 20 minutes to ensure that each drum contained 100 L of sample.

Figure 190: Filters attached to inlet of sample Figure 191: Glass fibre filter post sample
drum collection (air volume 120 L)

The following samples shown in Table 49 were analysed using DEEDI’s olfactometer.

Table 49: Description of samples used for filter odorant regeneration study

Sample Number Sample Description Regeneration Temperature
1 Unfiltered N/A
2 Unfiltered N/A
3 Filter 1 N/A
4 Filter 2 N/A
5 Filter 3 N/A
6 Filter 4 N/A
7 Regenerated from filter 1 Nitrogen Gas at 60 °C
8 Regenerated from filter 2 Nitrogen Gas at 100 °C
9 Regenerated from filter 3 Nitrogen Gas at 60 °C
10 Regenerated from filter 4 Nitrogen Gas at 100 °C
11 Control clean filter (blank) Nitrogen Gas at 100 °C

Odour concentration results are shown in Figure 192. The comparison of the average unfiltered odour
concentration and the four separate filtered odour samples indicate that filtration of poultry air does not
consistently reduce the measured odour concentration. In terms of regeneration of odour samples using
particulate matter captured on the inline filters, there is no apparent trend in the amount of odour
regenerated from the filters. Unfortunately, problems were experienced with the regenerated samples
from Filter 1, and no odour concentration was recorded. For Filter 2 and Filter 4 which were heated at 100
°C (35% and 8% of original respectively), the regeneration rate was lower than Filter 3 which was heated
at 60 °C (75% of original). Interestingly, the odour concentration of the blank filter was higher than that
of the regenerated sample from Filter 4.
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Figure 192: Odour concentration results from regeneration of odour using glass fibre filters

9.3 Particle losses in sampling bags

The static nature of the Melinex® odour bags was raised as a possible contributor to the lack of difference
in odour results between filtered and unfiltered samples. Air inside Melinex® bags was assessed for the
presence of particles. After collection of odour samples, the number and size of particles was measured
over time.

Losses were measured both for laboratory generated particles and poultry dust. The tests conducted on the
poultry dust covered particles less than 20 um. We found that the particle concentration inside the bags
dropped by 1-2 orders of magnitude in the first 2-3 hours after filling of the Melinex® bags (see Figure
193). This indicates that by the time the odour sampling bags are brought from the field to the
olfactometer, the majority of particles will be lost from the airstream and attached to the plastic bag due to
wall deposition.
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Figure 193: Relative change in particle number concentration inside a Melinex® bag as a function of time
for data collected during field measurements
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Measurements conducted on laboratory generated aerosol particles in Melinex® bags indicated that even
after a short period of time (20 minutes) the particle concentration dropped by a factor of 5 (see Figure
194).
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Figure 194: Short term relative changes of submicron particles inside a Melinex® bag. The data was collected

for laboratory generated particles

Additional tests were conducted on bags made of conductive material (3M™ conductive bags) to assess
whether the Melinex® material was the cause of particle loss. Although losses in these bags were smaller
than the losses on Melinex® bags, the particle concentration after 2 hours was still significantly smaller
than the initial concentration (see Figure 195). This indicates that even the use of conductive bags for
olfactometry analysis is not a suitable method for investigating odour carried by particulates.
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Figure 195: Short term relative changes of submicron particles inside a conductive bag. The data was

collected for laboratory generated particles.

The relationship between dust and odour has not been adequately resolved or clarified adequately using
the procedures applied to date. The methods that include any kind of bag sampling are prone to
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significant particle losses; therefore by the time the poultry air samples are analysed by an olfactometer
the majority of particles will be lost. No benefit will be gained from repeating these procedures again.
More resources will be required to clarify this issue than was originally anticipated. It is anticipated that
the GC-MS procedures will be very useful in identifying the relationship between dust and odour.

9.4 Recommendations for further odour/dust assessment

Olfactometry was not successful for determining the effectiveness of removal of particulate matter on
odour concentration. The static nature of the Melinex® bags attract all particulate matter to the bag walls,
causing all samples analysed through an olfactometer to be ‘filtered’. This problem was also experienced
by Williams (1989), where Tedlar® sample bags were used in an attempt to quantify the effect of
particulate matter on odour concentration. The ability to discriminate between glass fibre filtered and
unfiltered samples was made more difficult because no duplication of filtered samples occurred. It was
not possible to determine which purge air temperature was more appropriate due to the failure of one
filter and minimal experimental duplication.

The methods used during this project were not able to determine the effect of dust on perceived odour
concentration. Where unfiltered and filtered (HEPA or glass fibre) odour samples were compared, no
difference in odour concentration was measured. Measurement of particle concentration inside odour
sampling bags found that particle concentration rapidly decreased post collection.

9.5 Relationships between odour and dust emissions

The results from Sections 4 and 5 indicate that odour and dust emissions appear to follow similar paths
throughout each day of sample collection, and over time throughout batches of broilers. Investigations
were undertaken to assess whether there was any statistically significant interaction between emission of
dust and odour from broiler sheds. Emission of odour, number of particles, PM, and PM, s were assessed
for any relationship in the magnitude of these variables.

All data in which concurrent odour, PM;o, PM,sand PN measurements were collected was used to assess
statistically significant interactions. A log transform was performed on all measurements.

The relationships involving odour emission rate per 1000 birds placed, PMy, PM,5 and PN can be seen in
Figure 196. A pairs plot was used to compare variables in a matrix format. For example, Row 1 and
Column 1 depict the relationship between batch age and all other variables. Row 2 and Column 2 depict
the relationship between log Number Emission Rate and all other variables. PMyo, PM, 5 and PN appear to
have a linear relationship with odour emission rate per 1000 birds placed (which can be seen by the
section of the plot enclosed by the dashed area).
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Figure 196: Pairs plot for emission of odour per 1000 birds placed, PM o, PM,5s and PN

Since all dust fractions appear to be related to the magnitude of odour emission, a statistical investigation
was undertaken to assess whether it was possible to accurately predict odour emission by measuring dust
emission. A linear mixed effects model was used to determine which variables were needed to model the
relationship of odour and dust. The model used was:

log(OER) ~ log(NER) + log(PMy() + log(PM, ) + batch age + property/management/season

Property is a random effect in which management and season are nested within. Of these, property and
season had significant effects; however management (i.e. litter reuse status) was not influential.

In this model the fixed effects indicate that log(PMyy) is the only significant variable in the model
(p=0.0420).

By using this technique, we have found that (for the occasions when all variables were collected
concurrently), PM;, and odour emissions were statistically related. However, the relationship between
odour emission and dust emission was different at different farms and in different seasons. This means
that the relationship between odour and dust emissions was not consistent or straight forward.
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9.6 Summary of the interactions between odour and dust

Poultry air samples were filtered using HEPA and glass fibre filters, and compared against unfiltered
samples through olfactometry analysis.

The methods used during this project were not able to determine the effect of dust on perceived odour
concentration.

e Olfactometry could not be used to assess the contribution of particulate matter on odour
concentration due to the static nature of the odour sample bag material.

e Odour could not be reliably regenerated using particulate matter captured on filters.

The relationship between odour emission and dust emission was different at different farms and in
different seasons. This means that the relationship between odour and dust emissions was not
consistent or straight forward.
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10Continuous monitoring in-shed of air quality using
sensor networks

10.1Introduction

A variety of environmental and air quality monitoring sensors, connected using a wireless network, were
installed into broiler sheds at Farms A, B and C over the full duration of a production cycle during the
following periods:
e FarmA
o Summer - Dec 05 — Jan 06
o Winter - Jun 06 — July 06
e FarmB
o Summer - Feb 06 — Apr 06
o Winter - Aug 06 — Oct 06
e FarmC
o Single use litter - Feb 07 — Mar 07
o Partial re-use of litter - Apr 07 — Jun 07

A substantial quantity of data was recorded by the sensor networks.

The sensor networks were assessed in terms of:
o durability of the sensors within the broiler shed environment;
o reliability of the wireless network; and
e comparability with conventional measurements of odour and dust (using conventional
olfactometry and dust measurement methods).

10.2Reliability of the wireless network

The reliability of the network was assessed by comparing the proportion of sensor readings collected
against the number of expected sensor readings. Table 50 shows that the reliability ranged between 21%
and 93%. Poor reliability for the ‘Farm A summer’ study was primarily due to a prolonged outage at the
start of that study; once rectified, the reliability of the rest of the study was 76%.

Table 50: Proportional reliability of sensors from all sensor stations for broiler studies

Temp Humidity AirFlow  NH; Dust VOC Combined
average of all

Sensors
Farm A summer  40% 28% 36% 38% 38% - 36%
Farm B summer 89% 81% 69% 62% 76% 54% 72%
Farm A winter 82% 82% 78% 78% 57% - 75%
Farm B winter 93% 93% 93% 86% 21%  93% 80%
Farm C 83% 82% 70% 55% 63%  78% 2%

Loss of readings occurred due to a variety of reasons:
e power interruptions;

hardware failures;

cable failures;

radio connection failures; and

temporary decommissioning during pickups.

Power interruptions were one of the major reasons for loss of data. During the early trials, when the
sensor stations were battery powered, regular replacement and recharging of the batteries was required (at
approximately weekly intervals). During later trials, when the addition of extra sensors necessitated the
use of mains power (240 V), there was a noticeable increase in power interruptions, which temporarily
prevented data recording. Options to minimise future power supply problems may include using sensors
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with lower power requirements thus enabling battery power to be used; or to include an uninterruptible
power supply (UPS) on mains powered stations to overcome short power outages.

Hardware failures were principally related to the sensors. Humidity sensors failed on two occasions, and
the refurbishment and recalibration of the ammonia sensors caused interruptions to data collection.

On a number of occasions the wireless mesh network took a considerable time to establish connections.
This was never fully diagnosed although it was suspected that it may have been due to the wireless
system being sensitive to multi-path reflections inside the poultry buildings. More advanced mesh
network software currently available for this hardware is reported to be less prone to this problem.

Detecting failures initially relied on site visits, but later studies included remote monitoring capability
using a dial-up modem and remote access software. Remote access relied on sufficient mobile phone
network coverage, and whilst this was good for Farm B, and fair for Farm A, connections could only
rarely be made at Farm C. Remote access capability decreased the time taken to detect and rectify
equipment failures.

While the reliability of the sensor network was not satisfactory during these studies, recent developments
in several aspects of the technology and procedures may improve reliability.

10.3Durability of the sensors within the broiler shed environment

Direct sensor failures due to mechanical and electrical breakdowns were uncommon; however, three
issues that were encountered included:

1. fouling of the dust sensor optics (especially at Farm B);
2. requirement to change the sensitivity range for the VOC sensor; and
3. saturation or contamination of the sensors (especially ammonia sensors).

The combination of these issues resulted in periods of data where sensor readings were unrepresentative
of actual conditions and therefore unusable.

The following sections present examples of the data collected by each sensor; describe the reliability of
each sensor; and provide recommendations for future application of the sensors.

10.3.1 Temperature and humidity

Most temperature and humidity readings were taken with a custom built sensor incorporating modern,
low cost micro-sensors. Retail cost of the sensors and components was approximately $100. Apart from
one humidity chip failure, these sensors were robust and reliable.

Temperatures within the sheds were well controlled and while a slight gradient of 1-5 °C degrees was
noted from the door end to the fan end of the sheds, daily oscillations were less than 10 °C (see Figure
197 for the first five weeks at Farm B, summer).
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Figure 197: Temperature profiles for the first five weeks of Farm B monitoring

10.3.2 Airspeed

Airspeed was measured using commercially available three cup anemometers. In-shed airspeed fluctuated
daily as seen in Figure 198 (as expected). While the placement of the anemometers provided a general
indication of air flow, it was not sufficient for measurements of ventilation rates, principally due to:
e the turbulent and stratified nature of tunnel air flow;
e the influence of side fans and inlets; and
o lack of a relationship between airspeed and ventilation rate whenever the shed was not operating
in tunnel ventilation mode.

In practical settings where continuous monitoring of ventilation rates was required, integrating the
number of tunnel fans operating may give a superior measurement.
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Figure 198: Changes in air flow due to increased ventilation rates in response to increasing ambient
temperature (Farm A, summer)
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10.3.3 Ammonia

The electrochemical reaction with ammonia that produces the sensor response consumed the electrolytes,
and this consumption increased with ammonia concentration. For this reason, sensors were refurbished
and recalibrated after each study. Not only was this costly, but also introduced dependencies on service
companies that eventually led to poor reliability in the last series of studies due to mishandling of the
recalibration.

Ammonia can alternatively be measured using metal oxide sensors (MOS) (similar to the VOC sensors
used in this study), which are cheaper and longer-lasting; however, sensitivity is lower, and power
consumption is higher.

Ammonia measurements (see Figure 199) showed the expected inverse relationship with airspeed (as a
measure of ventilation rate). There was also a consistent gradient in concentration along the length of the
shed, with higher levels towards the fan end, which was more obvious during ventilation. Ammonia
levels also tended to increase over time, although this was influenced by changes in bird number and
overall ventilation rate as related to the external temperature.
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Figure 199: Changes in ammonia concentration over latter stages of production cycle at three positions as
related to ventilation rate indicated by air flow at the fan end of the shed

One drawback with this type of electrochemical ammonia sensor is the high cost of refurbishing and
recalibration. Furthermore, it is difficult with this type of senor to monitor electrolyte consumption, which
is affected by the level of ammonia the sensor has been exposed to, and determine when the sensor is
reaching the end of its life due to exhaustion of the electrolyte. These sensors are expensive and high
maintenance, which reduces their suitability for continuous ammonia measurement on commercial broiler
farms.

10.3.4 Volatile organic compounds

The metal oxide VOC sensors used in this study were sensitive to a wide range of compounds and
enabled VOC concentrations to be monitored in the broiler sheds. However, because of the wide range of
specificity it was not possible to calibrate the sensors in a meaningful way with relation to odour
concentration.

One drawback of the metal oxide sensors (MOS) used in this investigation was their high power usage,
requiring mains power connection rather than battery power. Recent developments in VOC sensor
technology have reduced the power requirements for MOS sensors. For example, the sensor used in this
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project used 400 mW of power whereas more recent research has described micro-machined MOS that
consume less than 10 mW (Elmi et al., 2008).

Initial studies showed an inverse response to ventilation (see Figure 200) and indicated that VOC
concentrations generally increased throughout the batch, presumably due to bird growth and increasing
biological activity in the shed (see Figure 201). Values were highest during the night, and declined as the
shed was ventilated during the day.
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Figure 200: Response of VOC sensors to ventilation at Farm C
1 NN M
4000 l\‘ ‘w IN \wo l “
T '
2 3500 - A \‘ "‘
E KA b
3 I dl . |
O 3000 - i « \ | | |
) (v |
= N IR h" | I \
kS o UN 'Hm‘ | l 1’ |
Q I / | ) | N
& 2000 - b ,‘,",\,Aw“\& M | | ‘ ’ || \ |
2 | [ '\i ;«w‘“ ‘I‘\ \ ' ‘ “ | l’i \ \/’ "”,,11 ‘1
5 1500- Jf Tl | O
3 i o ™o
O 1000 - A i) ' '. \ ol '.
e} . “'JL‘/I' ! » J“ \‘ ” w‘ 1! \ 'q |
> ",.ﬂ “' “w-t | “A & ‘.’ ’
500 - ’ 1\‘ ,‘rva |'\I‘ [ ‘w“"““,_v' V\"\.J
Feb9  Feb 10 Feb 11 Feb 12 Feb 13 Feb 14 Feb15 Feb 16
Sample Time

Figure 201: VOC sensor measurements during the first week of the batch (Farm B, summer)

10.3.5 Dust

The challenge for measuring dust for the sensor network was to provide a device that was of moderate
cost, low maintenance, low power and able to measure either continuously or frequently. Low cost
particle sensors are available for use in indoor air quality measurements, and we selected a model
(PPD20V) designed for continuous monitoring utilising a simple heating element to draw the air sample

by convection.
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In situ calibrations were conducted during a summer study by co-deploying a DustTrak™ along with a
sensor station. Both sensors recorded variable dust concentrations throughout the monitoring period (see
Figure 202).
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Figure 202: Plot of raw readings of dust measurements from DustTrak and PPD20V sensor

Correlation of the dust measurements by the DustTrak™ and PPD20V sensor were found to be significant
(P < 0.0001) (see Figure 203).

2.5
y = 0.0016x + 0.1788
2 _
R%=0.4886 . K
@ 4
) CR
£
X
(&)
s
=
0
>
o
o T T T T T
0 200 400 600 800 1000 1200

PPD20V (counts)
Figure 203: Correlation of dust measurements by DustTrak and PPD sensor
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The sensors consistently showed an inverse relationship to air flow, with high concentration during low
flow, and low concentration when during higher air flow (see Figure 204). This is in agreement with the
dust concentration measurements using conventional techniques (reported in Chapter 5).
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Figure 204: Relationship between dust measurement and air flow

Maintenance requirements for the sensor were found to vary depending on bedding/litter material used in
the shed. During the first three studies at farms using wood shavings, the sensor lenses were cleaned
according to manufacturer’s recommendations at between two and four weekly intervals. At these times,
particulate matter was observed on the lenses and removed with an alcohol swab. Comparing sensor
response before and after cleaning indicated there was no evidence that cleaning had any consistent effect
on the measurements recorded by the sensor.

A problem with the sensors emerged at Farm B when rice hulls were used as bedding. Subjectively, the
initial level of dust was high, but decreased substantially over the first weeks of the study. This was
apparently reflected in the outputs of the sensors. Due to the previous lack of effect of maintenance on the
PPD sensor performance, the dust sensors were operated without cleaning. During the comparative dust
studies (described previously in 3.2.5 and Chapter 5), it was noted that dust levels determined by
conventional measures were still relatively high, although the PPD sensors were indicating very low
ambient dust levels. Upon examination, the PPD sensor optics were found to be coated with a layer of
dust. Upon removal, the sensor response increased noticeably (see Figure 205). Clearly, the nature of the
dust from rice hulls was quite different from previous materials in the degree to which it adhered to the
glass optics.
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Figure 205: Measurement of dust on PPD20V sensor and effect of maintenance

The combination of un-calibrated sensor response and susceptibility to fouling effectively render the PPD
sensor, as supplied, unsuitable for reliable dust measurement in broiler sheds. These sensors would
require regular testing and calibration for each type of litter material. They would also require frequent
maintenance and cleaning either by farm staff to undertake the fairly delicate task of wiping the optics
without damaging the sensor, or some form of automatic cleaning.

10.4Comparability with conventional measurements of odour and
dust

The outputs from the sensor network were compared to:

odour concentrations measured by dynamic olfactometry;

ventilation rate monitoring results;

dust concentration results; and

continuous odour concentration results calculated from an artificial olfaction system developed
by DEEDI.

The data sets from VDPI and DEEDI were merged into a data base through alignment of data points
using date and time index for the development of odour and dust calibration models.

Four data mining techniques were applied to the combined data base. They were: (1) data pre-processing;
(2) conventional statistical analysis (i.e., correlation analysis, linear and non-linear regressions); (3)
chemometric methods (i.e., partial least squares regression); and (4) artificial neural network using back-
propagation algorithms.

The results of data mining indicated that:

o relationships could not be found between the sensor outputs and conventional odour and dust
measurements — The task to relate the two data sets was especially difficult because each of the
measures were different in nature (i.e. the response from a non-specific VOC sensor was used as
an indicative measure of odour concentration and a non-specific dust sensor was compared with
PM,, measurements) and air quality was being measured in different locations (odour and dust
were measured at the tunnel ventilation fans while the sensor motes were positioned at 25%, 50%
and 75% along the length of the shed);

o the chosen sensors used for monitoring air quality were not stable and were a limiting factor to
the overall performance of the sensor network; and
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o the sensors were unreliable and the network occasionally malfunctioned, resulting in extended
periods where no data was collected.

Due to these issues, it was not possible to develop reliable and repeatable odour and dust calibration
models from the data produced by the sensor networks.

10.5Discussion

The prospect of using multiple measurements from low cost sensors to provide equivalent measures to
high quality odour and dust measurements appears difficult to achieve. The analysis was difficult to
conduct effectively because of the limitations in the amount and quality of the sensor data. However, the
very different nature of the types of measurements; indoor vs outdoor; sensor vs human panel; and
divergent particle size coupled with the high variability between facilities makes it difficult to imagine
that a single relationship could be developed even under optimum conditions. The possibility that some
sensors could be used as indicators of odour based on conditions inside the shed is reasonable, given
improvements in technology. The challenge would be to show the value of these measures in the routine
management of broiler facilities.

Low cost sensors are available for a range of the factors that may be useful in monitoring the environment
within broiler sheds.

Air flow inside sheds can be measured automatically, but the value of single point measures (i.e. the
sensor station) is questionable where the flow inside the shed is complex and turbulent. For most
purposes, air flow estimates based on fan operation probably provide sufficient accuracy where indoor
airflow and emissions need to be quantified.

The dust sensor described in this report appeared capable of measuring dust within the shed, at modest
cost and modest power usage; however, before this sensor could be used for continuous monitoring, some
form of automated cleaning system would be required.

Odour is clearly an important management issue for poultry facilities but accurate measurement of odour
is difficult and very costly — with limited likelihood of accurate, low cost sensors being available in the
foreseeable future. As such, low cost monitoring would have to rely on surrogates such as specific gasses
(ammonia, hydrogen sulphide) or general mixtures with some odorous components such as VOCs.

Two principal limitations in implementing sensor based air quality monitoring systems exist at present.
First, the provision of a convenient power source. As indicated earlier, technologies are improving in this
area, and there are good prospects that low power metal oxide-type sensors will be available, suited to
limited power systems. The second limitation is the calibration, processing and presentation of the data
that would allow odour and dust ‘risks’ to be identified in a meaningful way and in real time. Early
development of such a system to deliver on-line odour warnings is being conducted by Pan et al. (2007)
in Ontario, Canada for the monitoring of emissions from livestock farms. Full development of such a
system would require some significant work in validating the sensing systems and models used to process
the data that is collected. It also requires that some meaningful management options be developed, if
possible, to mitigate short and long term risks from high level emissions. This is not a trivial point
because, at present, ‘turn-key’ mitigation techniques for from broiler shed odour and dust emissions do
not exist.
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10.6Conclusions

Wireless sensor networks were found to be useful from an academic perspective for continuously
monitoring the in-shed environment (in a largely qualitative sense); however they suffered from
poor reliability.

The low-cost VOC and dust sensors were found to be useful for measuring relative ‘odour’ and
dust concentrations but were not robust enough for continuous monitoring in broiler sheds.

The results of data mining indicated that:
o relationships could not be found between the sensor outputs and conventional odour and
dust measurements;
the chosen sensors used for monitoring air quality were not stable and were a limiting
factor to the overall performance of the sensor network; and
the sensors were unreliable and the network occasionally malfunctioned, resulting in
extended periods where no data was collected.

Due to these issues, it was not possible to develop reliable and repeatable odour and dust
calibration models from the data produced by the sensor networks.

Sensor networks are not ready for deployment into poultry sheds, other than for research purposes

10.7Recommendations and other considerations

Application of sensing stations in poultry sheds

Using sensors to monitor in-shed air quality will not influence shed management or reduce
emissions into the surrounding environment. We therefore do not recommend that air quality
sensors be installed into broiler sheds except for research purposes.

Representative sampling locations need to be determined to enable meaningful and useful
measurement of air quality and in-shed environmental conditions. Such sampling locations need
to be applicable during both tunnel and mini-vent modes of ventilation.

The position of sensors, and required mobility, need to be determined to enable selection of
power supply (battery or mains power)—can the sensor station be built into the shed (e.g.
suspended from the ceiling) or does it need to be mobile?

Sensor measurements need to be integrated with ventilation rate (e.g. using fan activity) to enable
the estimation of emissions.

Whilst sensor based measurements could not be correlated against conventional measures of dust
and odour concentration, they did provide relative measures of dust, ammonia, VOC (surrogate
for odour) and air flow (surrogate for ventilation rate) within the shed.

Potential users of sensing stations need to identify what really needs to be monitored in order to
reduce the number of sensors, which will improve power usage, mobility, price and size of a
sensor system.

Sensor and network selection

Select sensors that are robust and suited to the environment within poultry sheds, especially in
terms of dust accumulation, high humidity, variable air flow and cleaning requirements.

Sensor networks should be evaluated for suitability of operation in enclosed spaces, and
intermittent interruption in operation to ensure robust transmission of data, and prompt recovery
from interruptions.

Calibrate the ‘gain’ setting on VOC and other sensors so that the sensor response equals the
highest VOC concentrations within the shed. Whilst lower VOC concentrations may not elicit a
sensor response, these lower levels would be of less interest.

Utilise ‘off-the-shelf” sensors (in un-modified form) to simplify construction and replacement of
faulty/exhausted sensors.
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11Measuring odour emissions using an artificial
olfaction system

The AOS system was used to continuously measure odour concentration at Farm A and Farm C to
complement the discrete odour measurements obtained using olfactometry. At Farm A, the AOS
monitored in-shed odour concentration over two successive batches during winter. Olfactometry
measurements were also performed during the first batch. At Farm C, the AOS monitored in-shed odour
concentration for both batches (single use litter and partially reused litter).

11.1Development of a calibration formula to train the artificial
olfaction system

The artificial olfaction system (AOS) was trained to measure odour concentration at Farms A and C. A

calibration formula was developed using the method described in section 3.6.1. The relationships between

odour concentrations measured by olfactometry and the AOS had a strong correlation and are presented in
Figure 206. The r2 values for Farms A and C were 0.73 and 0.77, respectively.
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Figure 206: Comparison scatter plot of odour concentrations measured using olfactometry and AOS at Farm
Aand Farm C

The root-mean-square error of cross-validation (RMSECV) method was used to evaluate the performance
of the models. RMSECYV values for Farms A and C were 377.30 and 187.54, respectively. These values
indicated that the odour concentrations measured by the AOS are expected to have maximum error range
of £ 377.30 ou for Farm A and + 187.54 ou for Farm C. The reason why the maximum error range at
Farm A is higher than that of Farm C is due to the greater range of measured odour concentrations (200—
4200 ou at Farm A and 200-1400 ou at Farm C).

The strong correlation to olfactometry results and relatively small error ranges support the use of this
AOS for measuring broiler shed odour. The accuracy of AOS measurement may be enhanced by
improving model generalisation capabilities to minimise ‘over-fitting” and ‘under-fitting’ using other
calibration algorithms (e.g., with artificial neural network); or by implementing a multi-step modelling
technique considering the dilution steps of dynamic olfactometry. This technique may be useful for
preventing the error range increasing as the range of odour concentrations increases (as what happened
with Farm A compared to Farm C).
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11.2Continuous odour records for Farm A (winter) and Farm C

Odour concentration data from the AOS was combined with ventilation rate, olfactometry and weather
data (when this data was available) to produce continuous records of odour emission rate.

Figure 207 displays the combined data sets for Farm A (winter, June to July 2006).

o
[} (=}
S A 8 300 100
ﬁ wn
—— Odour conc.-AOS
Ventilation rates
®  ou-Olfactometry
o
=} —— 2m Temp.
S A ) r 250
3 S —a— Total livemass [
- 7 —— xcolumnvsy column 8o
8
S o I 200
8|k ]
o) o _
= 3 S Afﬁoé
« ] ()
] c Q -~
2 ) > 3
EL % o 2
2815 02|z
=o| e u 5
= © 8 [ k=
° g 2| &
S g g o E|l %
l=- 8 =409
o >
[=] °
=Bl
S ° F 100
i ®
o L]
o 8 . k20
o - . L}
81 a k50
N L]
L]
a® \,—/\/
L
" \
™ L]
mm® -
o- ° +r—r-r—r-rTr—rr—rTrT V7T T T T T T 7T T T T[T T T T T T T T T T T T T 0 Lo
12/06/06 19/06/06 26/06/06 3/07/06 10/07/06 17/07/06 24/07/06
Date
r T T T T T 1
0 10 20 30 40 50 60
Batch days
o
8 300 100
~N
- o
Ventilation rates
—— OER-AOS
®  OER-Olfactometry
=4 —— 2mTemp
S —a— Total Livemass [ 250
o
— g L
;.‘f '] 80
@ q
©
£
g g
E S r 200
© 0
- —_
°© [ ~L g2
° - G ¢
e q o ~
] ® e 2
@ S S <
(=] - =
R 108 | c
L® g| o
m =
3 de L gl 2
- o =
] Lo FlLa§
c - " ° L] >
o o L] L)
=] = a®" @
8 S < TR e r 100
< o ] L]
GE) $ L] an" =
- [ ] ) o=
g = ® [ )
° < '
SIS s $ k20
o
o - r 50
5 [ °
bﬁ ) ;
m B '
B L]
L A L B e o B B S e e e e N B B o B o e e L A e S A o e SO Lo
12/06/06 19/06/06 26/06/06 3/07/06 10/07/06 17/07/06 24/07/06
Date
r T T T T T 1
0 10 20 30 40 50 60

Batch days

Figure 207: AOS, olfactometry, ventilation and weather data for Farm A (winter) (odour concentration (top)
and odour emission rate (bottom))
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Figure 208 displays the combined data sets for Farm A (the batch following the winter batch). Use of the
AOS was continued during this batch because there were periods of missing data from the winter batch
(as shown in Figure 207).
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Figure 208: AOS, ventilation and weather data for Farm A (batch following the winter batch)

Figure 209 displays the combined data sets from Farm C (single use litter batch, January to March 2007).
Odour emission rate was not available because ventilation rate data was not available during this batch.
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Figure 209: AOS, olfactometry, ventilation and weather data for Farm C (single use litter)
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Figure 210 displays the combined data sets from Farm C (batch following the fresh litter batch, when the

litter was partially reused, April to June 2007).

8 o
w =
g (8
- Ventilation rate
— RH
2m Temp
S m T Liveweight
S 4 Odour conc.-AOS L&
o o . o
- § - ou-Olfactometry Fg
g
>
S 2
=] — N
81, rs E
® | E
- S8 m 2 Gy
g | 2&77 . ¢ [°E
» c e £ -
i) g ) Elhelth S| 3
g 8 © L} alm - b
28] € of a"® ré = S
=° ] = = = £ =
© o u m L o ©
- < ) = h [=) =
5 oo . . Q £
Ll ©o | = = | =[5
55 - s 58
o . L 3
8 ° r = =R
g1 O = rg &
o | o Q
N %
I e :
Il | I O
| \Il f, | ] “3 =
° 1
o R 1 | | -1 rs
g | Fa
=} [ o
i |
\ \
I [ t1n i
it VAL AR
. VYUY
o - e LI B R B N N B R LI B B N B B I N N O O N O N B B B B B N B B B R B N} ° -e
16/04/07 23/04/07 30/04/07 7/05/07 14/05/07 21/05/07 28/05/07 4/06/07
te
r T T T T T
0 10 20 30 40 50 60
Batch days
8
o o
g g 8
- Ventilation rate
—— OER-AOS ° °
@® OER-Olfactometry °
—— RH
o
o 2m Temp ° r o
8 - L] T. Livemass F8
&
= [ )
= [ ] ¢ —
] d £
2 [ ¢ ° § .
£ S o i Il £ r 82
= & ® [ £
° = 2 -
] o n [ & ]
— I l By T) ®
Q3 ol | g o
S L " e S <
s u 1 n = 5 2
2 P n| ® . u " S ®
-n : 2 L " T R
8% " el g 1%
a | 9 |m " S g
£ - Sa
o ( B £
5 w
g L] =
©
o
o
3 5 I LAY
- all[] VAL i { { | ra
o M A w v
I AN N N
A ﬁﬂw\‘ Al ﬁ»mh/\]
\ MM WN MAA A
L] \ N
° +r—r-r—rr1—-+—"r 1+ T T T T T T T T 7T ° Lo
16/04/07 23/04/07 30/04/07 7/05/07D 14/05/07 21/05/07 28/05/07 4/06/07
ate
r T T T T T |
0 10 20 30 40 50 60
Batch days

Figure 210: AOS, olfactometry, ventilation and weather data for Farm C (partially reused litter) (Odour
concentration (top) and odour emission rate (bottom))
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Continuous collection of odour, ventilation and weather data at Farms A and C demonstrated that:

e in-shed odour concentration and odour emission rates were much more variable than has been
previously seen;

e OER changed throughout the batch, with a general trend to increase throughout the batch, but
reduce following each pickup;

e odour concentration and OER fluctuated diurnally, presumably due to changes in ventilation rate;
and

e odour emission rates sometimes spiked, for reasons that could not be explained by the data that
has been collected.

The continuous odour records presented in this section need to be considered cautiously because it was
not possible to collect data on all of the parameters that may affect odour emission rate (e.g. bird activity
and litter moisture content).

11.3Diurnal variation of the shed air quality

Figure 211 displays hourly average odour concentration, ventilation rate and odour emission rate data
collected on days 29-35 of the production cycle for Farm A (the second of the winter batches, displayed
previously in Figure 208) and Farm C (partial litter reuse batch, displayed previously in Figure 210).
These charts show that ventilation rate and in-shed odour concentration varied diurnally in the week
leading up to day 35 of the batch.

At Farm A, in-shed odour concentration was inversely related to ventilation rate. Odour emission rate
generally increased with ventilation rate.

At Farm C, in-shed odour concentration began to increase when the ventilation rate began to reduce at
approximately 8-11 pm. When ventilation rate began to rise at 4—7 am, the odour concentration continued
to rise and did not begin to decrease until about 11 am to 1 pm. This complex relationship demonstrates
that in-shed odour concentration does not have a simple relationship with ventilation rate (dilution effect)
and is most likely influenced by other factors such as temperature and bird activity, which will influence
the production and release of odour from the litter and birds. While the relationship between odour
concentration and ventilation rate was not straight forward, odour emission rate was generally related to
ventilation rate.

Ventilation activity was clearly different during these batches at Farm A and C. At Farm A, ventilation
rate tended to increase daily between 8-10 am and then began to decrease between 4-6 pm whereas at
Farm C, ventilation rate increased daily between 4-7 am but did not decrease until 8-11 pm. It is likely
that the extra hours of high ventilation contributed to the different in-shed odour concentration trends, but
did not appear to have an appreciable effect on daily trends in odour emission rate, which tended to reach
a daily maximum around noon.
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To simplify presentation of daily trends in odour concentration, ventilation rate and odour emission rate,
the hourly average values were averaged across the week leading up to day 35 and re-presented in Figure
212. This figure shows the contrasting relationships between odour concentration and ventilation rate at
Farms A and C.

Daily fluctuations of in-shed odour concentration are presumably related to the biological, chemical and
physical mechanisms that control the generation, storage, release and transport of odours (these concepts
were introduced in Section 2.2.6). In Figure 212, periods of the day have been highlighted as the times
when odours may have been accumulating in the shed as well as when they may have been diluted or
stripped from the shed.
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Figure 212: Hourly average odour concentration, odour emission rate and ventilation rate, averaged from
day 29-35: Farm A-following winter batch (top); and Farm C-partially reused litter (bottom)

Odour concentration and odour emission rate for the week leading up to day 35 at Farm A and C
(previously presented in Figure 211) have been plotted against ventilation rate in Figure 213. If the
generation and release of odour from the litter and birds (i.e. odour flux) had remained constant
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throughout the day, it would be expected that odour concentration would decrease and odour emission
rate would remain constant as ventilation rate increased; however, as displayed in Figure 213, while these
relationships partly held true at Farm A, they were not observed at Farm C. At Farm A, odour
concentration generally decreased with increasing ventilation rate; however, odour emission rate was seen
to increase with ventilation at low levels of ventilation (less than 100,000 m3/hr) but was relatively
constant at higher levels of ventilation. At Farm C, however, odour concentration remained relatively
constant up to a ventilation rate of approximately 220,000 m3/h, when there was a noticeable increase.
Consequently odour emission rate increased linearly with ventilation rate until 220,000 m3/h, when OER
appeared to suddenly increase.
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Figure 213: Odour concentration (top) and odour emission rate (bottom) trends with increasing ventilation
rate for Farms A and C
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The observed daily fluctuations of in-shed odour concentration and emission rate were almost certainly
influenced by ventilation rate; however, other factors that influence the generation, storage, release and
transport of odour—such as bird activity, temperature, humidity, litter moisture content, odorant
concentration gradients between the litter surface and shed air; airspeed and microbial activity—will also
influence odour emission rate.

Continuous monitoring of odour using the AOS has been useful in demonstrating the complex
fluctuations of odour concentration and odour emission rate, which highlights the need for further
research to improve understanding and to quantify the effects of all of the factors contributing to odour
emissions.

11.4Comparison of odour emission profiles from two consecutive
batches at Farm C

Odour concentration was measured for two consecutive batches at Farm C using the AQS, as presented in
Figure 209, Figure 210 and Figure 214. The purpose for measuring odour for these two consecutive
batches at Farm C was to investigate whether partially reusing litter will increase odour emissions. In
general, odour concentrations fluctuated between the two batches in a similar pattern. Prior to day 21 of
Batch No. 1, except for days 14 and 15, odour concentration measurements were not made with the AOS
due to equipment malfunctions, so it was not possible to make comparisons during this period. Odour
measurements on these two days, however, displayed similar trends for both batches. Ventilation activity
was not able to be collected during the first batch, so odour emission rates were not able to be compared.

The data presented in Figure 214 demonstrated that there was no substantial increase in odour
concentration throughout the entire batch due to the practice of partially reusing litter.
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Figure 214: Comparison of odour emission profiles from two consecutive batches in Farm C (Batch No. 1 is
single use litter, Batch No. 2 is partially reused litter)
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11.5Comparison of odour emissions between Farm A and Farm C

Odour concentrations were measured at Farm A (winter) and C (partially reused litter). Daily average
odour concentration and ventilation rate are presented in Figure 215. Daily averaged odour emission rates
were calculated and are presented in Figure 216.

Allowing for expected differences due to shed design and management, season and shed ventilation
requirements, odour concentrations from both farms followed a typical odour fluctuation pattern during
the production cycle; however, the AOS odour concentrations in Farm A were usually higher and more
variable than those of Farm C.
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Figure 215: Comparison of odour concentrations at Farm A (winter B1) and C (partially reused litter B2)
measured continuously using the AOS
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Figure 216: Comparison of daily averaged odour emission rate profiles using the AOS at Farm A (winter B1)
and C (partially reused litter)

For both farms, odour emission rates increased until the first pickup. The highest odour emission rate was
observed just before the first pickup—30,912 ou/s at Farm A on day 32 and 45,013 ou/s at Farm C on day
36. After the first pickup, odour emission rates for both farms decreased as the number of birds decreased.
Odour emissions from Farm C were lower than Farm A until the end of week 4. From week 5, odour
emission rates from Farm C were higher than Farm A, possibly due to the later first pickup at Farm C—
four days later than Farm A. The second pickup was also 7 days later than at Farm A. After the second
pickup around 41st day of the batch, odour emission rates from Farm A and C decreased and remained at
a similar level of total odour emission rate.
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11.6Combining continuous odour emission rate measurement with
weather station data
Continuous odour emission rate measurement at Farm A (batch following the winter batch) was

combined with on-site weather data. This combined data set may be useful for improving understanding
how odour emissions are interacting with the weather and atmospheric conditions that influence

dispersion

and dilution.

Dispersion of odour occurs between a source (the farm) and receptor (neighbours) and ideally dilutes the

odour to a

stability—

conditions

concentration where it isn’t detected. Dispersion is strongly influenced by atmospheric
stable conditions commonly occur at night and result in poor dispersion whereas unstable
usually occur on warm, sunny days and encourage great dispersion.

Figure 217 shows the combined data set including odour emission rate, ventilation rate, ambient
temperature, total live weight and atmospheric stability class at Farm A from days 30-37 (9-16
September 2006). The data demonstrates how the OER was still at an elevated level when stable
atmospheric conditions (with associated poor dispersion) began in the late afternoon. This is just one
example of how the AOS data may be combined with other data sets to improve understanding of broiler
shed odour emissions beyond what is possible with discrete olfactometry sampling methods.
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11.7Summary of continuous odour monitoring using the artificial
olfaction system

AOS measurements of odour concentration correlated well with olfactometry measurements (and
had relatively small error ranges).

Calibration formulae were slightly different for Farm A and Farm C.

When combined with continuous measurement of ventilation rate, the AOS was a valuable tool
for continuously measuring odour emission rates.

The AOS measured substantial diurnal variation in odour concentration and odour emission rate,
presumably due to ventilation trends and other factors that control the production, accumulation,
release and transport of odours from the source (litter and birds) to the in-shed air and out of the
shed.

Using the AQS, different relationships between odour concentration, odour emission rate and
ventilation rate were observed at two different farms. These differences would not have been
identified without the continuous monitoring capability provided by the AOS.

The AOS was used to compare the in-shed odour concentration of sequential batches using
different litter management practices—fresh litter and partially reused litter. The AOS was well
suited to this application and provided significantly more information about odour than infrequent
olfactometry odour analysis.

AOS was combined with continuous ventilation rate and on-site weather data to produce a unique
data set including odour emission rate and atmospheric stability class—two of the factors that
contribute to odour nuisance potential.

Comparison of AOS and olfactometry data highlights an issue—the majority of odour samples
were NOT collected during the periods of the day when poor odour dispersion would be likely.
The AQOS showed that odour emission rates are usually lower at these times compared to the
times when olfactometry samples were collected.

11.8Recommendations for future use of AOS in poultry sheds

e Using AOS to monitor in-shed odour concentration will not directly influence shed management
or reduce emissions into the surrounding environment. A farm operator will usually be aware of
an increase in odour (using their nose) but there is often little that can be done to reduce odour
emissions. We therefore do not recommend that AOS be installed into broiler sheds except for
research purposes.

Use of the AOS should be considered in future research assessments of odour in poultry sheds
because it produces a more comprehensive record of the highly variable emissions than is
possible with olfactometry alone.

AOS must be calibrated using poultry odour samples, ideally collected from the farm/source of
interest.

To measure odour emissions from the shed, the sample collection point for the AOS should be
positioned closer to the fans to ensure that the air measured by the AOS is the same as the air
being emitted from the shed.

For odour emission measurement, AOS must be combined with a ventilation monitoring system.

Additional research should be directed toward combining AOS with weather data to improve
understanding of when odour emissions combine with poor dispersion conditions.
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12Conclusions

This project had the following objectives:

Development of a database of odour and dust emissions from tunnel ventilated broiler sheds.

Development of a dust and odour emissions model for representative broiler sheds based upon
management factors.

Examining the relationship between dust and odour emissions, in particular, the importance of dust
as a carrier of odour.

Development and testing of cost effective instrumentation to measure dust, odour and other
production factors on commercial poultry farms.

Application of an artificial olfaction system (AOS) to continuously monitor odour emissions.
Identification of specific poultry shed non-methane volatile organic compounds and odorants.

Quantification and evaluation of specific poultry shed odorants.

Achievement of these objectives is summarised in the following sections.

12.1Development of an odour and dust emission database

12.1.1 Summary of methods and sampling program

Eleven tunnel ventilated broiler farms were included in this project. At three of the broiler farms;
odour, dust and VOC emissions were measured at approximately weekly intervals. At the remaining
eight broiler farms, only odour was measured and only on one day when bird mass in the shed was
maximum.

In total, 434 odour samples were included in the odour emission rate database:

e 349 samples from broiler farms

e 85 additional samples from broiler farms for method development (diurnal study, dust and odour
relationship, and odour decay)

o 34 samples were discarded due to excessive olfactometry variability (6.2% of total collected)

Semi-continuous dust measurements were conducted on 50 separate days at 3 broiler farms.

The majority of odour, dust and VOC samples were collected from within a temporary flexible duct
that was attached to one of the tunnel ventilation fans at each farm.

Odour concentration was measured using dynamic olfactometry to AS/NZS 4323.3:2001. Two
laboratories were used, and comparative testing was conducted between the laboratories to ensure
comparability of odour concentration measurement.

Dust was measured using a DustTrak™ and an aerodynamic particle sizer (APS) and reported in
terms of mass concentrations (PMyo and PM,5), particle number concentrations and count median
diameters (mid-point of the number size distribution). Isokinetic sampling techniques were used.

VOCs were collected using sorption tubes for subsequent analysis with a GC-MS/O.

Ventilation rate was estimated by measuring in-shed or fan airspeeds, or by calculating the flow rate
through each active fan using manufacturer supplied fan flow rate date (and adjusting for shed static
pressure), which was selected as the preferred method.

Two instrumental approaches were used to monitor in-shed conditions and odour concentration—
wireless sensor networks and an artificial olfaction system (AOS).

The differences in emissions between single use and partially reused litter were assessed at one farm.

All odour samples were analysed within 8.5 hours of collection.
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12.1.2 Odour emissions summary

Odour emission rates need to be individually considered along with environmental and in-shed
conditions at the time of measurement (for example ambient temperature, ventilation rate, litter
moisture content, bird age and total bird live weight).

e Broiler odour emission rates are summarised in Table 51.

Table 51:  Summary of measured broiler odour emission rates using olfactometry

Units Full measured range Range for majority of data
ou/s 2070-135,375 5000-105,000
0u/s/1000 birds placed 68-5187 100-3000
0u/s/1000 birds (while sampling) 86-6335 100-5000
ou/s/kg (total live weight) 0.18-5.13 0.25-2.5

o Broiler farm odour emission rates were highly variable. OER varied by farm, bird age, bird weight,
season, time of day, ventilation rate, bird weight distribution and litter moisture. Not all variability
could be explained by these factors: consequently other factors were likely to be involved.

¢ Diurnal variation in odour emission was observed. Changes to temperature, ventilation rate and bird
activity (presumably coinciding with light programs) may have contributed to the variable emissions.

e ‘Morning flush’ of odorants accumulated during the night was not observed.
¢ OER increased with bird weight up to the day of the first pickup—commonly day 35.
e OER dropped sharply following each pickup.

e There was no clear relationship between OER and shed-average litter moisture content. Odour
emission rates measured in this study did not increase with increasing moisture content.

o Odour emission rates were observed to vary throughout the day (20 hour continuous period); however
the majority of samples were collected between 5:30 am and 2:00 pm, consequently the majority of
the measured odour emission rates may not be representative of the daily spread of odour emission
rates (evident from the AOS results). Few, if any, olfactometry measurements corresponded with
periods of the day when odour emission rates would be minimal. These times are also when poor
odour dispersion conditions are most likely to occur.

e Odour emission rates before bird placement (on fresh litter) and after litter removal were found to be
lower than when birds were present in the shed. Odour emission rates decreased once birds were
removed from the shed.

e Some of the measured odour emission rates were suspected of being unrealistic due to the ventilation
rate being manually increased above ‘normal’ levels (given the ambient temperature and batch age)
by the research team while attempting to measure the full range of possible odour emission rates.
These data points have been identified in the data set and should be disregarded.

e Odour emission rates tended to be higher during summer, compared to winter, presumably due to
greater ventilation requirements.

o Odour emission rates were similar for broiler farms located in Queensland and Victoria; however, this
conclusion is based on a very limited number of farms that may not represent other farms in each of
the respective states.

e Reusing litter in broiler sheds did not appear to increase odour emissions; however, weather, litter
moisture content and stocking density were slightly different between the single use and partially
reused batches, which confounded the analysis of the data.
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Odour emission rates measured at eight broiler farms in SE Queensland were found to be slightly
different at each of the farms, even though shed design and management were similar. Weather may
have been a contributing factor, but it is likely that odour emission rates will be highly variable
between farms.

Odour emission rate measurements from three farms were used while attempting to develop an odour
emission model with stepwise regression techniques. Unfortunately, a robust model was not able to
be developed.

Relationships between odour emission and individual factors:

¢ In-shed odour concentration generally tended to decrease with increasing ventilation rate,
presumably because of dilution.

e Odour emission rate generally tended to increase with ventilation rate.

e There was no clear relationship between shed-average litter moisture content and odour emission
rate. Maximum odour emission rates tended to occur when shed-average litter moisture content
was 26-40%.

e There was no clear relationship between odour emission rate and live weight density.

e There were only weak relationships between odour emission rate and ambient temperature, even
though ventilation rates tended to increase with ambient temperature.

e |tis unlikely that any of the aforementioned factors will influence odour emission rate in isolation
with other factors. Consequently, variability in odour emission rate must be considered in
conjunction with all contributing factors.

12.1.3 Dust concentration and emission summary

Dust emission rates need to be individually considered along with environmental and in-shed
conditions at the time of measurement (for example ambient temperature, ventilation rate, litter
moisture content, bird age and total bird live weight).

Broiler dust concentration and emission rates are summarised in Table 52.

Table 52: Summary of measured broiler dust concentrations and emission rates

Dust fraction Units Full measured range | Range for majority
of data
mg/m?3 (concentration) 0.04-1.62 0.1-0.8
oM mg/s (ER) 1.8-158.5 5-50
10 mg/s/1000 birds placed (ER) 0.04-3.90 0.1-1
mg/s/kg (total live weight) (ER) (0.08-2.05) x 107 (1-8) x 10
mg/m3 (concentration) 0.001-0.515 0.02-0.14
BM mg/s (ER) 0.08-50.3 1-10
2® mg/s/1000 birds placed (ER) 0.003-1.24 0.025-0.25
mg/s/kg (total live weight) (ER) (0.02-1.84) x 10* (0.4-1.6) x 10
particles/m3 (concentration) (0.13-4.34) x 10’ (0.4-2.5) x 10’
) particles/s (ER) (0.015-2.34) x 10° (0.1-1.5) x 10°
Particle number . . 7 7
particles/s/1000 birds placed (ER) (0.045-6.3) x 10 (0.1-4)x 10
particles/s/kg (total live weight) (ER) (0.03-7.45) x 10* (0.1-3) x 10*
Count median pm 1.4-34 1.5-25
diameter (CMD)

The concentration of dust in the air exiting the broiler sheds was highly variable. Consequently, dust
emission rates from the sheds also varied widely. Dust emissions varied by ventilation rate, farm, bird
age, season, microenvironment, litter management practice and other factors.

Dust mass concentration and emission rate tended to increase with bird age (or weight). However this
was not proven statistically.
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e Seasonal differences in dust levels could be partly explained by seasonal differences in ventilation
rates; however, this relationship was inconsistent between the farms.

o Dust particle mass and number concentrations and emission rates were generally higher when
partially reused litter was employed compared to when single use litter was used. In addition, a
greater proportion of fine dust particles (< 1 um) were generated with partially reused litter.

e When no birds were present in the shed, dust emissions were substantially lower than emissions when
birds were present.

e Diurnal variation in dust emission rates was observed.

e ‘Morning flush’ of dust accumulated during the night was not observed.

12.1.4 Possible effects of methodology on the measurement of odour and
dust

e Manually overriding the automatic ventilation system during sample collection may have influenced
some of the measured emission rates, producing ‘unrealistic’ data. The practice of manually
controlling fan activity during sample collection was abandoned once this effect was suspected.

o Dust particles collected into odour sampling bags were rapidly attracted to the bag material,
excluding them from analysis in the olfactometer; consequently, olfactometry was not an appropriate
instrument to assess the influence of dust on perceived odour concentration.

e When using olfactometry to analyse poultry odour, samples must be analysed with 21.5 hours of
collection. Divergence in odour concentration was evident 6 hours post sample collection, with
significantly different odour concentration measured 21.5 hours post sample collection.

12.2Development of an odour and dust emissions model

It was originally anticipated that data collected by the sensor networks would be suitable for the
development of odour and dust emission models. Unfortunately, as the project progressed, it became
apparent that the in-shed VOC and dust concentration data collected by the sensor networks did not
correlate well with measured odour and dust emission rates and was therefore not suitable for use during
model development.

In an attempt to develop an odour emission rate model, stepwise regression methods were applied to the
odour emission measurements (olfactometry) using environmental and production factors—season, batch
age, ventilation rate, ambient temperature, live weight distribution and litter moisture—to explain the
variability in the data. Individual models were developed for the three primary broiler farms; however,
not all of the variability in the odour emission rate data could be explained. Use of these models to
predict odour emission rates at other farms is not recommended due to significant differences
between the models—especially with different interactions between the various factors—and
uncertainty over which of these models should be selected.

12.3Relationship between dust and odour

The relationship between dust and odour emissions was examined; in particular, the importance of dust as
a carrier of odour. During a series of experiments, poultry air samples were filtered using HEPA and glass
fibre filters, and compared against unfiltered samples through olfactometry analysis. Also, attempts were
made to regenerate odour samples from dust collected on the filters. It was found that the methods used
during this project were not able to determine the effect of dust on perceived odour concentration:

o Dust particles collected into odour sampling bags were rapidly attracted to the bag material,
excluding them from analysis in the olfactometer; consequently, olfactometry was not an
appropriate instrument to assess the influence of particulates on perceived odour concentration.

e Odour could not be reliably regenerated using particulate matter captured on filters.
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12.4Development and testing of cost effective instrumentation to
measure dust, odour and other production factors on commercial
poultry farms

Wireless sensor networks were found to be useful from an academic perspective for continuously the in-
shed environment (in a largely qualitative sense); however they suffered from poor reliability.

Investigation of the sensor data showed that:
o relationships could not be found between the sensor outputs and conventional odour and dust
measurements;
o the chosen sensors used for monitoring air quality were not stable and were a limiting factor to
the overall performance of the sensor network; and
o the sensors were unreliable and the network occasionally malfunctioned, resulting in extended
periods where no data was collected.

Due to these issues, it was not possible to develop robust odour and dust calibration models from the data
produced by the sensor networks.

Sensor networks are not ready for deployment into poultry sheds, other than for research purposes.

12.5Application of an artificial olfaction system to continuously
monitor odour emissions

An artificial olfaction system (AOS) was successfully deployed into two broiler sheds and used to
monitor in-shed odour concentration on a semi-continuous basis. When combined with continuous
ventilation rate data, the AOS provided a highly detailed record of odour emission rate from the sheds.

The AOS was trained using olfactometry data collected throughout the project. Odour concentration
measurements by the AOS correlated well with olfactometry measurements and had relatively small error
ranges. The calibration formula was revised several times during the project, resulting in slightly different
formulas for different farms; however the refinements were minimal and the AOS could be used at other
broiler sheds with reasonable confidence for research purposes.

The AOS measured significant diurnal variation in odour concentration and odour emission rate,
presumably due to ventilation trends and other factors that control the production, accumulation, release
and transport of odours from the source (litter and birds) to the in-shed air and out of the shed.

Using the AOS, different relationships between odour concentration, odour emission rate and ventilation
rate were observed at two different farms. These differences would not have been identified without the
continuous monitoring capability provided by the AOS.

The AOS was used to compare the in-shed odour concentration of sequential batches using different litter
management practices—fresh litter and partially reused litter. The AOS was well suited to this application
and provided significantly more information about odour than infrequent olfactometry odour analysis.

AOS was combined with continuous ventilation rate and on-site weather data to produce a unique data set
including odour emission rate and atmospheric stability class—two of the factors that contribute to odour
nuisance potential.

While the AOS was used successfully in this project to monitor odour, and produced considerably more
detailed odour emission rate data than was possible with olfactometry alone, it is a research tool that is
still undergoing development and significant amounts of manual data processing are required to convert
the raw sensor responses into odour concentration values—use of AOS by consultants or producers is not
currently feasible. Prospective users of alternative instrumental odour sensing systems to measure poultry
shed odour need to ensure that the equipment has been thoroughly calibrated and has demonstrated
measurement capabilities specifically with poultry shed odour.
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12.6 Quantification and evaluation of specific poultry shed odorants

The gas phase emissions broiler sheds were analysed in three stages: chemical speciation; odorant
identification and prioritisation; and NMVOC quantification. Table 53 lists the chemicals and odorants
frequently identified in the NMVOC samples collected. The results of the NMVOC analysis from the
broiler houses revealed that there was an impact from the soiling of the litter material within the broiler
house.

The chemical species that dominated the NMVOC analysis of the broiler house samples were acetone, 2-
butanone, 3-methyl-butanal, 2,3-butanedione, 3-hydroxy-2-butanone and acetic acid. Beyond the
definition of NMVOC, the presence of sulphide species should not be disregarded. Sulphides present
within the results included dimethyl sulphide, dimethyl disulphide and dimethyl trisulphide.

Table 53: Chemical compounds frequently occurring in poultry house samples
Compound Family Compounds Identified Odorants Identified" | Odorant Descriptor?
Benzene
Toluene

Aromatics

Xylene (0-,m-,p-)
Trimethylbenzene
Styrene
Acetophenone
Benzaladehyde
Phenol

Toluene

Solvent/Sweet

Alcohols

1-butanol
2-butanol
2-ethyl-1-hexanol

1-butanol

Sweet/Solvent

Aldehydes

Butanal
3-methyl-butanal
Hexanal
Heptanal
Octanal
Nonanal
Decanal

3-methyl-butanal

Octanal

Pungent/malt

Citrus/Green/Detergent

Ketones

2-butanone
2,3-butanedione
3-methyl-2-butanone
3-hydroxy-2-butanone

2,3-butanedione

Rancid/fatty/butter

Carboxylic Acids

Ethanoic acid
Propanoic acid
Butanoic acid

a-pinene a-pinene Pine
B-pinene B-pinene Pine
Terpines Limonene Limonene Citrus/Lemon
Camphene Camphene Camphor
Camphor Camphor Camphor
Carene Carene Citrus
Eucalyptol Eucalyptol Pine/Eucalyptus
Tetradecane
Other Hydrocarbons Hexadecane Hexadecane Solvent/Plastic/Alkane
Tetrahydrofuran
Nitrogen Trimethylamine
Dimethyl Sulphide Dimethyl Sulphide
Sulphur Dimethyl Disulphide Dimethyl Disulphide Smokey

Dimethyl Trisulphide

Dimethyl Trisulphide

Pungent/metallic

The third column identifies which of the chemicals are also odorants; and

2 provides a descriptor of the odorant
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The results of the quantification of selected NMVOCs revealed that there is a variation as the birds
mature, a general increase as the birds increase; however an almost constant relationship when related to
the mass of the birds within the shed. Hence an increase in bird mass will correspond to an increase in
NMVOC emissions. Figure 218 illustrates these two relations with respect to the amount of
2,3-butanedione being emitted from a particular broiler house.
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Figure 218: The variation of 2,3-butanedione across a growth cycle of a broiler as observed from the
NMVOC sampling

From the results that were obtained from the NMVOC sampling during this project, there was no
observed correlation between the season or the geographical location of the poultry facility sampled.
There was also no observed impact upon the concentration of the NMVOCs analysed as a result of the
ventilation rate applied during the collection of samples from the poultry houses. The round robin and
diurnal sampling that was undertaken at the broiler sites revealed that the abundances of chemical species
varied significantly. Figure 219 shows the average abundance and standard deviation of key NMVOCs
when sampled at similar stages of growth of the birds.
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Figure 219: Variation in chemical abundance of key odorants observed from the round robin sampling

These observations led to the investigation of the composition and emissions of the litter material alone as
a primary source of emissions. The increasing accumulation of faeces in the litter material corresponded
with a change in the composition of NMVOCs and character of the odour. This suggests that degradation
of organic matter in the litter is likely to be the principal mechanism influencing the chemical
composition of the overall emission matrix.
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13Implications

13.1The effect of variability and unpredictability of odour emission
rates on industry planning and expansion

Odour emission rates were found to be highly variable, and the variability on each sampling day,
throughout each batch, between batches and between farms could not always be explained by the
environmental or production conditions recorded by the research team. Additionally, the range of odour
emission rates was similar or slightly higher than values reported in literature. Consequently, prediction
of odour emission rates by consultants for dispersion modelling purposes is unlikely to significantly
change.

13.2Volatile organic compounds in odour

The identification and quantification of non-methane volatile organic compounds (NMVOCs) combined
with the prioritisation of odorant species within these NMVOCs will support the development of tailored
odour mitigation strategies. By focussing on nuisance odorants, researchers can develop strategies to
develop odour abatement and mitigation techniques, with the aim of improving the management of
poultry shed emissions. Furthermore the identification of key odorants will support the development of
real-time monitoring systems that can be targeted at assessing these nuisance compounds in order to
estimate the overall odour emission.

13.3Modelling of dust impacts

Further modelling work (e.g. dispersion modelling) will be required to use the database of dust emission
rates obtained in this project to determine dust concentrations downstream of tunnel-ventilated poultry
sheds as a function of distance. This information is necessary to determine dust concentrations in the
areas surrounding poultry farms.
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14Recommendations

14.1Measuring odour emissions at poultry farms

Odour sampling programs and methodologies need to be carefully chosen to provide meaningful and
representative emission rates because broiler odour emissions are highly variable.

At the time of sample collection, it is essential to record information including:

e Sampling conditions—time, date, and sampling position.

o Ambient conditions—ambient temperature, ambient humidity, internal shed temperature, and
internal shed humidity.

e Shed dimensions and conditions—ventilation rate, number and position of active fans, fan details
(dimension, manufacturer), mode of ventilation (tunnel or mini-vent), shed length, shed width,
wall height, roof apex height, ceiling baffle height, litter moisture content, litter depth, litter reuse
status (single use or reused litter), lighting conditions and drinker type.

e Batch information—bird age, bird numbers, bird live weight, total live weight, number of birds
placed at the start of the batch, bird breed.

Daily fan activity should be understood/surveyed for that time of the batch and year. Odour sampling
should be scheduled so that samples are collected at a representative ventilation rate or at several
ventilation rates over the normal daily range. Efforts must be made to collect odour samples during
the night when odour emission rates are lowest (and is also the time when atmospheric conditions are
most stable and poor odour dispersion is likely).

Fan activity should not be manually over-ridden, and stabilisation time should be allowed, if
possible, following each change in fan activity. If fan activity changes during the collection of
samples, it is recommended to record the changes in fan activity and calculate a time-weighted-
averaged ventilation rate rather than manually lock-in the number of active fans. By locking in fans,
abnormal shed conditions may be produced—especially in terms of temperature, bird activity and
odour production/release mechanisms—that will result in the measurement of unrealistic odour
emissions.

Odour samples should be collected and analysed in duplicate to improve olfactometry confidence and
accuracy. Samples should be analysed as soon as possible following collection.

Efforts should be made not to disturb the chickens prior to, or during, sample collection as additional
activity may increase the release of odour from the litter and birds.

14.2Measuring dust emissions at poultry farms

Dust sampling programs and methodologies need to be carefully chosen to provide meaningful and
representative emission rates because poultry dust emissions are highly variable.

Continuous, size-resolved dust measurements are necessary for studies that attempt to characterise the
mechanisms of dust generation in intensive poultry sheds.

For studies that integrate dust measurements over extended periods of time (e.g. gravimetric filter
analysis), it should be recognized that large variations in dust concentrations are likely to occur
during the sample collection period.

At the time of sample collection, it is essential to record information including:

e Sampling conditions—time, date, and sampling position.

e Ambient conditions—ambient temperature, ambient humidity, internal shed temperature, and
internal shed humidity.

e Shed dimensions and conditions—ventilation rate, number and position of active fans, mode of
ventilation (tunnel or mini-vent), shed length, shed width, wall height, roof apex height, ceiling
baffle height, litter moisture content, litter depth, litter reuse status (single use or reused litter),
lighting conditions, drinker type.
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o Batch information—Dbird age, bird numbers, bird live weight, total live weight, number of birds
placed at the start of the batch, bird breed.

14.3Sampling methodology

14.3.1 Dilution olfactometry analysis

e  Odour samples should only be analysed at reputable, experienced olfactometry labs that can
demonstrate compliance with AS/NZS 4323.3:2001. Olfactometry labs need to report the accuracy
and precision of their laboratory, ensuring that A <0.217 and r < 0.477.

e  Odour samples are unstable and must be treated carefully. Odour samples should be analysed as soon
as possible (preferably within 12 hours, maximum 24 hours) by:
e choosing an olfactometry laboratory in close proximity to the test site;
e transporting the samples to the olfactometry laboratory as soon as possible; and
e pre-arranging delivery time to ensure the samples are analysed as soon as possible after delivery
to the olfactometer.

¢ Where more than one olfactometry laboratory is used for a single trial, it is recommended that a test
be performed to ensure similarity in results from all laboratories.

14.3.2 Ventilation rate measurement

e It is recommended that ventilation rate be estimated using manufacturer’s performance data (from
certified testing laboratories), number of active fans and shed static pressure. This method is
recommended assuming that the following conditions are met:

o fans are clean, well maintained and in good working order;

o fan details are recorded including fan diameter, number of blades, blade pitch, blade material,
motor manufacturer, motor power, voltage, pulley sizes, grills, shutter description, presence of a
cone. A tachometer should be used to check rotational speed:;

e static pressure is recorded at the time of ventilation measurement (changes to fan activity and
fluctuating wind conditions will affect the reading);

o all active fan activity, including duty fans, is recorded,;

e on-farm airspeed measurement inside the shed or across each fan face should ideally be made as a
cross reference to the manufacturer’s published fan performance data.

e Estimating ventilation rate using manufacturer’s performance data is recommended because:

e ventilation rate can be consistently estimated regardless of duty and tunnel fan activity as well as
tunnel ventilation status (internal shed airspeed measurement is unsuitable when mini-vents are
open or when duty fans are active);

e manufacturer’s fan performance data is usually obtained using standardised methods and certified
laboratories (but you need to check which standard was used);

e airspeed measurements across each active fan are time consuming and prone to errors due to
fluctuating winds as well as non-uniform and turbulent air flow;

o airspeed measurements across each fan face will be affected by the presence of grills and back-
draft shutters; and

o within the poultry shed environment, it is difficult to achieve the conditions required by
AS4323.1:1995 when measuring airspeed inside the shed or across each fan face.

e When airspeed measurements are to be taken inside the shed or across each fan face, measurements
must be made according to AS4323.1:1995.

e External fan measurements should be undertaken with caution because of turbulent fan air flow.
o External fan measurements should be avoided during gusty wind conditions.

o If measuring air velocity across the fan face, measurements need to be made at each active fan.
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Internal shed velocity measurements should not be undertaken while mini-vents or duty fans are
active.

Internal shed velocity measurements should be avoided during low levels of ventilation (when
airspeed is minimal).

Be aware that errors of 10-20% are likely regardless of the method used.

14.3.3 Measuring litter moisture content

Litter moisture content can be highly variable across the shed floor area. To adequately survey and
quantify the range and distribution profile of moisture content, numerous samples of litter need to be
collected across the entire floor area. It is recommended that the profile of litter moisture content be
reported rather than the shed-average value, as this will enable identification of wet/dry spots, which may
significantly contribute to the total odour emission.

14.4Using the odour emission rate data

Odour emission rates vary diurnally, seasonally, throughout the batch and will be different at different
farms depending on management and infrastructure. Calculation of daily average, batch average or
constant odour emission rate is not appropriate—unless for a specific purpose.

Odour emission rates should be presented in terms of total OER (ou/s), OER per 1000 birds placed
(ou/s/1000 birds placed) or OER per kg total live weight (ou/s/kg).

14.5Using the dust emission rate data

Dust emission rates vary diurnally, seasonally, throughout the batch and will be different at different
farms depending on management and infrastructure. Selection of a daily average, batch average or
constant dust emission rate should be made with extreme care: considerable variation is likely to
occur around the chosen average.

If possible, dust emission rates should be presented in terms of total emission rate (ER) (e.g. mg or
particles/s), ER per 1000 birds placed (e.g. mg or particles/s/1000 birds placed) and ER per kg total
live weight (e.g. mg or particles/s/kg). This will enable easier comparison between different studies.

14.6Instrumental measurement of air quality in poultry sheds

14.6.1 Application of sensing stations in poultry sheds

Representative sampling locations need to be determined to enable meaningful and useful
measurement of air quality and in-shed environmental conditions. Such sampling locations need to be
applicable during both tunnel and mini-vent modes of ventilation.

The position of sensors, and required mobility, need to be determined to enable selection of power
supply (battery or mains power)—can the sensor station be built into the shed (e.g. suspended from
the ceiling) or does it need to be mobile?

Sensor measurements need to be integrated with ventilation rate (e.g. using fan activity) to enable the
estimation of emissions.

Whilst sensor based measurements could not be correlated against conventional measures of dust and
odour concentration, they did provide relative measures of dust, ammonia, VOC (surrogate for odour)
and airspeed (surrogate for ventilation rate) within the shed.

Potential users of sensing stations need to identify what really needs to be monitored in order to
reduce the number of sensors, which will improve power usage, mobility, price and size/handling.

Use of the AOS should be considered for future assessments of odour in poultry sheds because it
produces a more comprehensive record of the highly variable emissions than is possible with
olfactometry alone.
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AOS must be calibrated using poultry odour samples, ideally collected from the farm/source of
interest.

Additional research should be directed toward combining AOS with weather data to improve
understanding of when odour emissions combine with poor dispersion conditions.
14.6.2 Sensor and network selection

Select sensors that are robust and suited to the environment within poultry sheds, especially in terms
of dust accumulation, high humidity, variable air flow and cleaning requirements.

Sensor networks should be evaluated for suitability of operation in enclosed spaces, and intermittent
interruption in operation to ensure robust transmission of data, and prompt recovery from
interruptions.

Utilise ‘off-the-shelf” sensors (in un-modified form) to simplify construction and replacement of
faulty/exhausted sensors.

The design of AOS should include sensors that target NMVOCs identified as being primary odorants;
including 2,3-butanedione and dimethyl disulphide.

14.7 Future research

Additional studies to quantify ‘typical’ odour emission rates from broiler farms measurements need to
be made at multiple farms and on multiple days (especially leading up to the first pickup and after
pickups); however, significant variability, unexpected and unexplainable odour emission rates—as
seen in this project—would be likely. Odour measurements must represent the full spread of ‘normal’
daily odour emissions, which will require odour samples to be collected at night.

An artificial olfaction system (AOS) should be used in future odour measuring research activities

because the degree of variability and full range of odour emission rates cannot possibly be quantified
using olfactometry alone. Research should be directed toward refining the useability, robustness and
accuracy of the AOS in detecting the chemicals determined as being the principal nuisance odorants.

Future research should be directed at quantifying the specific biological, physical and chemical
mechanisms that regulate the formation, release and transport of odour and dust within the shed and
in the exhaust airstream.

The effect of litter moisture content on odour formation is still largely unknown—including the delay
between wetting and increased emission; changes to microbial community composition and activity;
and changes to the litter physical odour release properties due to caking. Further research must
investigate these relationships between litter moisture content and odour generation. Techniques to
accurately measure the full moisture profile of the litter and to quantify the amount of caking will be
required to achieve this.

Development of robust odour and dust emission models should still be pursued, despite the inability
to produce a robust model during this project. The model will need to incorporate the fundamental
factors influencing odour emission, and should be formulated from first principles rather than
attempting to fit modelling parameters to collected data.

Future research should be directed at quantifying the conservation/degradation of odorants following
emission from the shed (and before reaching receptors). Changes in odorant composition beyond the
farm boundary may change the perception of odour by receptors.

Investigation of the composition and NMVOC emissions from the litter material from the broiler
houses would provide useful information relating to the principal odorant emissions from the broiler
house.

Moreover, the investigation of the microbial communities within the litter material and their
corresponding NMVOC emissions would enable the elucidation of the species responsible for the key
nuisance odorant formation.
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15Glossary

15.1 Abbreviations

AlC
ANOVA
AOS

APS

AS
AS/NZS
AWS
AWSN
CEN
CMD
DC
DEEDI

DMDS
ER
ETC
EtSH
GC
GC-MS-O
HEPA filter
IR
LAN
LED
Lpm
NMVOC
MOS
MS
MSD
Nzo
NER
NH;
oC
ODP
OEM
OER
OID
ou
PCA
PLS
PM
PM,
PMyo
PM2s
PN
PPB
PPM
PTFE
PVC
QUT
r2

Akaike’s Information Criterion
Analysis of Variance

Artificial Olfaction System (electronic nose; non-specific electronic sensor

array)

Aerodynamic Particle Sizer

Australian Standard

Australian/New Zealand Standard

Automatic Weather Station

Ad hoc Wireless Sensor Networks

European Committee for Standardisation

Count Median Diameter

Direct Current

Department of Employment, Economic Development and Innovation
(Queensland)

Dimethyl Disulphide (CH3),S,

Emission Rate

Emission Testing Consultants

Ethane thiol, ethyl mercaptan CH3;CH,SH

Gas Chromatograph

Gas Chromatograph-Mass Spectrometer-Olfactometer
High Efficiency Particulate Air filter

Infra-Red

Local Area Network

Light Emitting Diode

Litres per minute (sampling rate measurement)
Non-Methane Volatile Organic Compound
Metal Oxide Sensor

Mass spectrometer

Mass selective detector

Nitrous Oxide

Number Emission Rate

Ammonia

Odour Concentration

Odour Detection Port

Original Equipment Manufacturer

Odour Emission Rate

Olfactory input device

Odour Concentration in Odour Units per m3
Principal Component Analysis

Partial Least Squares

Particulate Matter

Particulate Matter less than or equal to 1 micron
Particulate Matter less than or equal to 10 microns
Particulate Matter less than or equal to 2.5 microns
Particle Number

parts per billion (pg/l)

parts per million ( mg/l')
Polytetrafluoroethylene (Teflon®)

Polyvinyl Chloride

Queensland University of Technology
Correlation Coefficient Value
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REML
RH
RMSEC
RMSECV
SCD

TD

TIC
TSP
UNSW
VOC
VR
WSN

Restricted Maximum Likelihood
Relative Humidity

Root-Mean-Square Error of Calibration
Root-Mean-Square Error of Cross-Validation
sulphur chemiluminescence detector
Thermal desorption/Thermal desorber
Total lon Chromatogram

Total Suspended Particulates
University of New South Wales
Volatile Organic Compound
Ventilation Rate

Wireless Sensor Networks

15.2 Definitions

Broiler

Count Median
Diameter

Dry bulb
temperature
Dynamic
Olfactometer
Fogger

Live weight
density
Pickup

Stocking density

VOC and
NMVOC

Wet Basis

Meat chicken
The mid-point of the size distribution of measured particles

Air temperature measured by a thermometer

Dilution system used to calculate odour concentration with the use of human
panellists

High pressure fogging nozzle designed to atomise water droplets and create a
fine mist

Unit weight of birds housed in a prescribed area, normally kg per m?

An event when some or all of the meat chickens will be harvested for
processing

Number of birds housed in a prescribed area, normally birds per m2

The term volatile organic compound (VOC) refers to any organic compound
that under normal conditions will be of sufficient volatility to enter the
atmosphere; where normal conditions are typical atmospheric pressure
(101.325kPa) and temperature (~300K). Correspondingly non-methane
volatile organic compounds (NMVOC) are all volatile organic compounds
with the specific exclusion of methane (CH4).

For the purpose of this document the terms NMVOC and VOC have
been used interchangeably, however it should be expressly noted that
where VOC is written it is implied that it is the non-methane volatile
organic compounds.

Volume of moisture present in a sample compared to the total sample weight
(can be compared to Dry Basis, which is the volume of dry matter present in
the total sample weight)
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Appendix 1 — Summary of reported dust

concentrations and emission rates
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Appendix 2 — Summary of the NMVOC laboratory
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Appendix 3 — Odour samples discarded due to excess

variability within the duplicate, or below detection

t or not analysed to standard
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Appendix 3 continued - Odour samples discarded due to

excess variability within the duplicate, or below detection

t or not analysed to standard

limi
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Appendix 4 — Odour decay study

Collection Sample Age Odour
Sample Test Litter Reuse Date Time at Analysis concentration
Number Number Status Season | (ddmmyy) (hh:mm) (hh:mm) (ou/m3)
1A 1 Single Use Autumn 120505 10:33 2:57 927
1B 1 Single Use Autumn 120505 10:33 3:31 1188
1C 1 Single Use Autumn 120505 10:33 3:55 1130
2A 1 Single Use Autumn 120505 9:22 6:43 912
2B 1 Single Use Autumn 120505 9:22 7:28 1625
2C 1 Single Use Autumn 120505 9:22 8:00 1680
3A 1 Single Use Autumn 120505 9:22 11:00 1097
3B 1 Single Use Autumn 120505 9:22 11:47 1218
3C 1 Single Use Autumn 120505 9:22 12:40 1149
1A 1 Single Use Autumn 120505 10:33 21:16 1248
1B 1 Single Use Autumn 120505 10:33 21:54 1378
1C 1 Single Use Autumn 120505 10:33 22:46 1097
2A 1 Single Use Autumn 120505 9:22 26:21 2261
2B 1 Single Use Autumn 120505 9:22 26:57 1579
2C 1 Single Use Autumn 120505 9:22 27:50 2048
3B 2 Single Use Winter 210705 10:27 2:29 1085
1A 2 Single Use Winter 210705 10:52 2:40 1290
2C 2 Single Use Winter 210705 10:27 3:49 1290
3C 2 Single Use Winter 210705 10:27 5:11 1218
2A 2 Single Use Winter 210705 10:52 5:35 912
1B 2 Single Use Winter 210705 10:27 6:56 966
2B 2 Single Use Winter 210705 10:52 8:55 656
1C 2 Single Use Winter 210705 10:27 10:08 799
3A 2 Single Use Winter 210705 10:27 10:47 1076
2B 2 Single Use Winter 210705 10:52 21:05 724
3C 2 Single Use Winter 210705 10:27 22:18 676
1A 2 Single Use Winter 210705 10:27 22:54 676
3B 2 Single Use Winter 210705 10:27 25:26 813
2A 2 Single Use Winter 210705 10:52 25:49 689
1C 2 Single Use Winter 210705 10:27 27:00 624
3B 3 Single Use Winter 120706 10:55 1:23 1512
1A 3 Single Use Winter 120706 11:21 1:37 1069
2C 3 Single Use Winter 120706 11:13 2:30 912
3C 3 Single Use Winter 120706 10:55 4:10 980
2A 3 Single Use Winter 120706 11:13 4:29 824
1B 3 Single Use Winter 120706 11:21 5:09 724
2B 3 Single Use Winter 120706 11:13 7:52 799
1C 3 Single Use Winter 120706 11:21 8:24 761
3A 3 Single Use Winter 120706 10:55 9:30 761
2B 3 Single Use Winter 120706 11:13 19:47 362
3C 3 Single Use Winter 120706 10:55 20:50 388
1A 3 Single Use Winter 120706 11:21 21:09 1024
3B 3 Single Use Winter 120706 10:55 24:09 1218
2A 3 Single Use Winter 120706 11:13 24:47 1166
1C 3 Single Use Winter 120706 11:21 25:09 1218
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Appendix 5 —-Farm A, summer batch odour and dust

Ventilation Average litter In-shed Total
Collection status (%o of Ambient Ambient Bird weight moisture In-shed relative Live Ne
Sample Litter Reuse Date time max fan Ventilation Temperature Relative distribution content % (wet | temperature | humidity | weight Birds
Number Property Status Season (ddmmyy) Batch Age (days) (hh:mm) activity) rate (m?¥/s) (°C) Humidity (%) (kg/m?) basis) °C % (kg) Present
1 A Single Use Summer 231105 Single Use Litter No Birds 13:40 12.5% 11.9 27.0 60.00 - 10.30 - - - -
2 A Single Use Summer 231105 Single Use Litter No Birds 9:20 50.0% 46.0 27.0 61.50 - 10.30 26.1 66.2 - -
3 A Single Use Summer 231105 Single Use Litter No Birds 10:14 75.0% 69.0 27.1 60.80 - 10.30 26 65.7 - -
4 A Single Use Summer 231105 Single Use Litter No Birds 11:36 100.0% 91.2 31.0 44.30 - 10.30 27.6 53.9 - -
7 A Single Use Summer 131205 18 11:10 75.0% 69.0 33.8 53.20 10.25 27.80 28.8 58 18200 26000
8 A Single Use Summer 131205 18 12:12 100.0% 91.2 33.0 50.70 10.25 27.80 317 51 18200 26000
9 A Single Use Summer 221205 27 8:44 75.0% 69.0 275 70.50 20.50 26.30 26.2 70.5 36400 26000
10 A Single Use Summer 221205 27 9:55 87.5% 80.5 28.0 64.50 20.50 26.30 26.4 73.8 36400 26000
11 A Single Use Summer 221205 27 10:22 87.5% 80.5 29.0 61.80 20.50 26.30 26.55 72.15 36400 26000
12 A Single Use Summer 221205 27 10:50 100.0% 91.2 30.0 59.10 20.50 26.30 26.7 70.5 36400 26000
13 A Single Use Summer 110106 Birds Removed Litter Present 8:54 12.5% 11.8 27.5 73.00 - 29.60 25.3 81.5 - -
14 A Single Use Summer 110106 Birds Removed Litter Present 9:40 50.0% 46.0 27.5 77.00 - 29.60 26.6 82.6 - -
15 A Single Use Summer 110106 Birds Removed Litter Present 10:34 100.0% 91.2 30.5 65.00 - 29.60 27.6 76.7 - -
18 A Single Use Summer 130106 Post Litter Removal Prior Shed Cleaning 8:37 12.5% 11.8 31.0 51.50 - - 30.4 57.5 - -
21 A Single Use Summer 130106 Post Litter Removal Prior Shed Cleaning 11:01 100.0% 91.2 34.9 41.00 - - 31.6 51.2 - -
22 A Single Use Summer 200106 Post Shed Cleaning and Fumigation 11:58 12.5% 11.8 28.3 62.50 - - 275 70.5 - -
23 A Single Use Summer 200106 Post Shed Cleaning and Fumigation 10:50 50.0% 46.0 28.1 67.00 - - 26 74.7 - -
24 A Single Use Summer 200106 Post Shed Cleaning and Fumigation 9:46 75.0% 69.0 26.6 71.50 - - 254 775 - -
25 A Single Use Summer 200106 Post Shed Cleaning and Fumigation 8:54 100.0% 91.2 25.3 74.80 - - 23.6 81.6 - -
Sample Odour Odour Emission OER* OER* OER* OER* NER™ PM, 5 ER¥ PMy, ER*
P concentration* ou Min* ou Max* Rate OER* - (ou/s/1000 (ou/s/1000 birds | OER* (ou/s/kg) (particles/s/1000 (mg/s/1000 birds (mg/s/1000 birds
Number (ou/s/bird) - (ou/s/kg/m?) -
(ou/m3) (ou/s) birds) placed) birds placed) placed) placed)
1 60 57 63 716 - - - - - - - -
2 119 101 137 5477 - - - - - - - -
3 121 90 152 8354 - - - - - B - -
4 52 49 54 4698 - - - - - 3 - -
7 704 683 724 48571 1.87 1868 1861 2.67 4740 B 0.09 0.35
8 1086 724 1448 99062 3.81 3810 3795 5.44 9667 - 0.09 0.30
9 765 689 840 52783 2.03 2030 2022 1.45 2575 - 0.00 0.17
10 1487 1024 1949 119667 4.60 4603 4585 3.29 5839 3 0.01 0.83
11 1755 1248 2261 147928 5.69 5690 5668 4.06 7218 - - -
12 1496 1311 1680 136416 5.25 5247 5227 3.75 6656 - - -
13 1073 980 1166 12697 - - - - - - - -
14 843 824 861 38779 - - - - - - - -
15 814 767 861 74251 - - - - - - - -
18 114 80 148 1349 - - - - - B - -
21 71 64 78 6476 - - - - - - - -
22 41 33 49 485 - - - - - B - -
23 41 39 42 1864 - - - - - - N N
24 38 34 42 2624 - - - - - - - -
25 42 39 45 3831 - - - - - - - -

* Average of duplicate olfactometry measurements
* Maximum or minimum olfactometry values

Number of birds placed 26,100
* Average values from corresponding odour collection times. Averaging time ~10 minutes.
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Appendix 6 — Farm A, winter batch odour and dust

Ventilation Average litter In-shed
Collection status (% of Ambient Ambient Bird weight moisture In-shed relative
Sample Litter Reuse Date time max fan Ventilation Temperature Relative distribution content % (wet | temperature | humidity Total Live Ne Birds
Number Property Status Season (ddmmyy) Batch Age (days) (hh:mm) activity) rate (m3/s) (°C) Humidity (%) (kg/m?) basis) °C % weight (kg) Present

54 A Single Use Winter 160606 10 11:07 12.5% 11.8 21.0 27.00 5.45 31.37 23 42 9685 32282
55 A Single Use Winter 160606 10 12:26 12.5% 11.8 26.0 30.00 5.45 31.37 22.6 21 9685 32282
56 A Single Use Winter 160606 10 13:11 12.5% 11.8 23.0 18.50 5.45 31.37 26.3 30.2 9685 32282
57 A Single Use Winter 210606 15 9:40 12.5% 118 18.3 66.00 9.57 37.08 23 71 16991 32179
58 A Single Use Winter 210606 15 11:00 25.0% 22.8 18.8 64.30 9.57 37.08 24 62 16991 32179
59 A Single Use Winter 210606 15 11:55 37.5% 33.7 20.2 64.50 9.57 37.08 23.6 70.9 16991 32179
60 A Single Use Winter 270606 21 9:40 12.5% 11.8 15.9 58.60 15.97 38.32 24.3 61.3 28370 32056
61 A Single Use Winter 270606 21 11:07 25.0% 22.8 20.5 48.00 15.97 38.32 22.7 58 28370 32056
62 A Single Use Winter 270606 21 11:45 37.5% 33.7 21.2 43.40 15.97 38.32 21.9 49.5 28370 32056
63 A Single Use Winter 270606 21 12:40 25.0% 22.8 21.7 38.00 15.97 38.32 23.9 47 28370 32056
64 A Single Use Winter 290606 23 8:50 12.5% 11.8 12.4 74.30 18.42 33.83 23.7 65.3 32719 32015
65 A Single Use Winter 290606 23 9:45 25.0% 22.8 18.0 61.50 18.42 33.83 218 62.1 32719 32015
66 A Single Use Winter 290606 23 11:35 25.0% 22.8 21.2 51.30 18.42 33.83 24.6 56.2 32719 32015
67 A Single Use Winter 290606 23 12:37 25.0% 22.8 19.6 50.00 18.42 33.83 24.6 56.2 32719 32015
68 A Single Use Winter 040706 28 8:53 12.5% 11.8 13.4 59.00 25.05 31.73 25.8 56.5 44487 31913
69 A Single Use Winter 040706 28 9:54 25.0% 22.8 18.5 47.00 25.05 31.73 25.3 48.8 44487 31913
70 A Single Use Winter 040706 28 10:50 25.0% 22.8 19.0 39.50 25.05 31.73 25.8 49.5 44487 31913
71 A Single Use Winter 040706 28 11:41 37.5% 33.7 19.8 40.30 25.05 31.73 24.6 44.5 44487 31913
72 A Single Use Winter 070706 31 9:05 12.5% 11.8 14.5 46.50 29.29 33.14 27.2 - 52014 31852
73 A Single Use Winter 070706 31 9:50 25.0% 22.8 16.5 42.60 29.29 33.14 24.7 51 52014 31852
74 A Single Use Winter 070706 31 10:35 37.5% 33.7 21.6 40.60 29.29 33.14 24.5 46 52014 31852
75 A Single Use Winter 070706 31 11:15 50.0% 46.0 23.0 40.00 29.29 33.14 25 46.1 52014 31852
76 A Single Use Winter 100706 34 16:18 50.0% 46.0 24.7 31.00 25.62 - 24 35.8 45503 24178
77 A Single Use Winter 100706 34 18:20 37.5% 27.4 16.7 49.00 25.62 - 20.3 55 45503 24178
78 A Single Use Winter 100706 34 23:15 37.5% 20.5 12.4 56.80 25.62 - 16.2 59.8 45503 24178
79 A Single Use Winter 110706 35 6:40 12.5% 15.9 6.9 68.70 26.76 - 154 70.7 47534 24178
80 A Single Use Winter 110706 35 9:50 37.5% 33.7 18.5 45.50 26.76 - 19.5 54.6 47534 24178
82 A Single Use Winter 180706 42 8:33 12.5% 11.8 13.9 62.00 24.59 30.80 25.6 63.5 43674 17067
83 A Single Use Winter 180706 42 9:37 25.0% 22.8 17.0 60.00 24.59 30.80 225 60.5 43674 17067
84 A Single Use Winter 180706 42 10:33 37.5% 33.7 18.8 51.00 24.59 30.80 21.6 52.4 43674 17067
85 A Single Use Winter 180706 42 11:20 50.0% 46.0 20.3 44.90 24.59 30.80 214 48.5 43674 17067
86 A Single Use Winter 240706 48 8:35 37.5% 337 14.9 90.10 20.65 30.60 16.9 81 36679 12018
87 A Single Use Winter 240706 48 9:30 25.0% 228 16.8 67.60 20.65 30.60 19.9 67.8 36679 12018
88 A Single Use Winter 240706 48 10:25 37.5% 33.7 18.8 69.50 20.65 30.60 20 69 36679 12018
89 A Single Use Winter 240706 48 11:10 50.0% 46.0 20.8 58.40 20.65 30.60 21.2 61 36679 12018
90 A Single Use Winter 280706 Birds Removed Litter Present 8:20 50.0% 46.0 16.9 92.00 - - 16.7 91.4 - -

91 A Single Use Winter 280706 During Litter Removal 9:25 50.0% 46.0 17.6 99.0 - - 16.7 91.4 - -

92 A Single Use Winter 280706 During Litter Removal 10:30 50.0% 46.0 - - - - 16.7 91.4 - -
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Appendix 6 continued — Farm A, winter batch odour and dust

Sample Odour Odour Emission OER* OER* NER™ PM,s ER™ PMy ER™
Number concentration* L, , Rate OER* OER* (ou/_s/lOOO (ou/s/1000 birds OER* (pa_rtlcles/s/lOOO (mg/s/1000 birds (mg/s/1000 birds
(ou/m?3) ou Min ou Max (oufs) (ou/s/bird) birds) placed) OER* (ou/s’kg) (ou/s/kg/m?) birds placed) placed) placed)
54 861 761 974 10188 0.32 316 309 1.05 1868 - - -
55 1155 883 1512 13673 0.42 424 415 141 2507 - - -
56 1649 1649 1649 19513 0.60 604 592 201 3578 - - -
57 1448 1024 2048 17136 0.53 533 520 1.01 1791 5,588,277 - 0.08
58 1130 1130 1130 25795 0.80 802 783 1.52 2696 7,344,066 - 0.08
59 1024 966 1085 34531 1.07 1073 1047 2.03 3609 - - -
60 1159 1024 1311 13710 0.43 428 416 0.48 858 1,662,198 - 0.07
61 1272 1024 1579 29027 0.91 906 881 1.02 1817 - - 0.09
62 1103 1024 1188 37202 1.16 1161 1129 131 2329 - - -
63 1159 1130 1188 26449 0.83 825 802 0.93 1656 - - -
64 950 927 974 11244 0.35 351 341 0.34 610 - - -
65 819 724 927 18701 0.58 584 567 0.57 1015 - - -
66 905 689 1188 20653 0.65 645 627 0.63 1121 - - -
67 1183 1024 1367 27008 0.84 844 819 0.83 1466 - - -
68 1328 1024 1722 15713 0.49 492 477 0.35 627 - - 0.17
69 1387 1117 1722 31660 0.99 992 960 0.71 1264 3,716,473 - 0.18
70 912 813 1024 20828 0.65 653 632 0.47 832 - - 0.29
71 609 575 645 20541 0.64 644 623 0.46 820 - - -
72 2825 2376 3360 33434 1.05 1050 1014 0.64 1142 - - 0.18
73 3619 3197 4096 82606 2.59 2593 2506 1.59 2821 - - 0.34
74 1673 1448 1933 56429 177 1772 1712 1.08 1927 9,285,616 - 0.34
75 2521 2048 3104 116051 3.64 3643 3520 2.23 3962 - - 0.36
76 1484 1130 1949 68307 2.83 2825 2072 1.50 2666 16,762,422 - -
77 2320 2156 2496 63546 2.63 2628 1928 1.40 2480 12,038,332 - 0.99
78 993 883 1117 20358 0.84 842 618 0.45 795 - - 0.67
79 1760 1649 1878 28038 1.16 1160 851 0.59 1048 312,674 - 0.12
80 1178 912 1521 39725 1.64 1643 1205 0.84 1484 3,951,810 - 0.33
82 999 974 1024 11818 0.69 692 358 0.27 481 1,985,457 - 0.56
83 1103 1076 1130 25171 1.47 1475 764 0.58 1024 - - 0.70
84 1024 790 1328 34547 2.02 2024 1048 0.79 1405 - - -
85 768 656 899 35347 2.07 2071 1072 0.81 1437 - - -
86 1099 883 1367 37057 3.08 3083 1124 1.01 1794 32,364,456 0.21 0.73
87 882 799 974 20138 1.68 1676 611 0.55 975 13,332,347 0.08 0.34
88 520 430 630 17555 1.46 1461 533 0.48 850 17,816,960 - -
89 394 383 406 18150 151 1510 551 0.49 879 16,418,143 0.09 0.45
90 279 238 328 12860 - - - - - - - R
91 328 269 400 15098 - - - - - - - -
92 530 512 549 24403 - - - - - - - -

* Geometric mean of duplicate olfactometry measurements

* Maximum or minimum olfactometry values
* Average values from corresponding odour collection times. Averaging time ~10 minutes.
Number of birds placed 32,965
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Appendix 7 —Farm B, summer batch odour and dust

Ventilation Average litter In-shed
Collection status (% of Ambient Ambient Bird weight moisture In-shed relative Total Live
Sample Litter Reuse Date time max fan Ventilation Temperature Relative distribution content % (wet | temperature | humidity weight Ne Birds
Number Property Status Season (ddmmyy) Batch Age (days) (hh:mm) activity) rate (m3/s) (°C) Humidity (%0) (kg/m?) basis) °C % (kg) Present
27 B Single Use Summer 080206 Single Use Litter No Birds 10:08 80.0% 41.6 22.8 36.00 - 44.53 21.5 50.6
30 B Single Use Summer 230206 13 9:01 56.0% 29.3 24.5 50.10 7.33 18.60 27.1 62.6 10590 24000
31 B Single Use Summer 230206 13 10:09 79.5% 41.6 27.0 44.50 7.33 18.60 27.0 53.3 10590 24000
32 B Single Use Summer 230206 13 11:23 88.3% 46.1 30.7 35.20 7.33 18.60 30.0 48.7 10590 24000
33 B Single Use Summer 230206 13 12:22 100.0% 52.3 33.3 30.10 7.33 18.60 31.3 40.0 10590 24000
34 B Single Use Summer 140306 32 9:05 56.0% 29.3 134 68.20 22.84 26.96 25.2 735 33000 22000
35 B Single Use Summer 140306 32 9:43 79.5% 41.6 15.2 63.20 22.84 26.96 22.1 175 33000 22000
36 B Single Use Summer 140306 32 11:01 88.3% 46.1 19.3 47.00 22.84 26.96 22.8 16.6 33000 22000
37 B Single Use Summer 140306 32 11:55 100.0% 52.3 20.4 34.40 22.84 26.96 24.1 15.1 33000 22000
38 B Single Use Summer 280306 46 9:39 68.7% 35.9 19.6 62.50 26.90 26.50 23.2 66.0 38863 13636
39 B Single Use Summer 280306 46 10:37 79.5% 41.6 26.5 41.90 26.90 26.50 25.2 50.1 38863 13636
40 B Single Use Summer 280306 46 11:19 88.3% 46.1 25.5 37.25 26.90 26.50 25.4 42.8 38863 13636
41 B Single Use Summer 280306 46 11:59 100.0% 52.3 31.9 32.10 26.90 26.50 28.2 37.7 38863 13636
42 B Single Use Summer 060406 Birds Removed Litter Present 7:49 56.0% 29.3 9.1 76.00 - 24.18 9.9 9.1 - -
43 B Single Use Summer 060406 Birds Removed Litter Present 8:37 79.5% 41.6 10.9 76.40 - 24.18 9.9 10.9 - -
44 B Single Use Summer 060406 Birds Removed Litter Present 9:13 88.3% 46.1 13.0 68.00 - 24.18 12.2 13.0 - -
45 B Single Use Summer 060406 Birds Removed Litter Present 9:43 100.0% 52.3 13.7 62.80 - 24.18 13.8 13.7 - -
50 B Single Use Summer 120406 Post Shed Cleaning and Fumigation 8:13 56.0% 29.3 14.9 58.30 - - 14.2 62.3 - -
51 B Single Use Summer 120406 Post Shed Cleaning and Fumigation 9:03 79.5% 41.6 14.5 50.80 - - 15.0 52.3 - -
52 B Single Use Summer 120406 Post Shed Cleaning and Fumigation 9:49 88.3% 46.1 16.1 45.10 - - 16.7 45.3 - -
53 B Single Use Summer 120406 Post Shed Cleaning and Fumigation 10:35 100.0% 52.3 17.5 40.75 - - 17.4 41.5 - -
Sample Odour Odour OER* OER* NER™ PM.s ER™ PMy ER™
Number concentration* ., , Emission Rate OER_* (0u/_s/1000 (ou/s/1000 birds OER* (pa_rtlcles/sllooo (mg/s/1000 birds | (mg/s/1000 birds
(ou/m3) ou Min ou Max OER* (ou/s) (ou/s/bird) birds) placed) OER* (ou/s’kg) (ou/s/kg/m?) birds placed) placed) placed)

27 35 35 35 1454 - - - - - - - -

30 183 160 210 5363 0.22 223 176 0.51 732 - 0.02 0.04

31 54 51 58 2260 0.09 94 74 0.21 308 - 0.02 0.04

32 45 42 48 2071 0.09 86 68 0.20 283 - 0.03 0.06

33 66 48 90 3436 0.14 143 113 0.32 469 - - -

34 1949 1900 2000 57032 2.59 2592 1870 1.73 2497 23,912,865 0.09 0.51

35 2946 2800 3100 122431 5.57 5565 4014 371 5360 18,974,259 0.18 0.43

36 1749 1700 1800 80679 3.67 3667 2645 244 3532 - - -

37 2291 2100 2500 119767 5.44 5444 3927 3.63 5243 - - -

38 1597 1500 1700 57283 4.20 4201 1878 147 2130 28,543,317 - 0.51

39 2078 1800 2400 86372 6.33 6334 2832 2.22 3211 - - 0.40

40 846 730 980 39010 2.86 2861 1279 1.00 1450 - - 0.31

41 1177 990 1400 61537 451 4513 2018 1.58 2288 - - -

42 140 130 150 4085 - - - - - - - -

43 45 42 48 1866 - - - - - - - -

44 96 7 120 4433 - - - - - - - -

45 164 150 180 8589 - - - - - - - -

50 605 590 620 17695 - - - - - - - -

51 38 36 40 1577 - - - - - - - -

52 42 40 45 1957 - - - - - - - -

53 43 42 44 2247 - - - - - - - -

* Geometric mean of duplicate olfactometry measurements
* Maximum or minimum olfactometry values
* Average values from corresponding odour collection times. Averaging time ~10 minutes.
Number of birds placed 30,500
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Appendix 8 — Farm B, winter batch odour and dust

* Geometric mean of duplicate olfactometry measurements
* Maximum or minimum olfactometry values
* Average values from corresponding odour collection times. Averaging time ~10 minutes.
Number of birds placed 31,000
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Ventilation Average litter In-shed
Collection status (% Ambient Ambient Bird weight moisture In-shed relative Total Live
Sample Litter Reuse Date time of max fan Ventilation Temperature Relative distribution content % (wet | temperature | humidity weight Ne Birds
Number Property Status Season (ddmmyy) Batch Age (days) (hh:mm) activity) rate (m3/s) (°C) Humidity (%) (kg/m?) basis) °C % (kg) Present
93 B Single Use Winter 060906 14 11:06 56.0% 29.3 125 66.9 8.43 26.2 22.3 70.1 12177 30215
94 B Single Use Winter 140906 22 9:35 69.0% 35.9 15.5 49.4 16.25 29.1 19.4 55.6 23470 30013
95 B Single Use Winter 140906 22 10:51 80.0% 41.6 17.9 42.0 16.25 29.1 20.8 40.8 23470 30013
96 B Single Use Winter 210906 29 9:24 69.0% 35.9 14.0 47.2 27.07 36.7 22.1 58.8 39108 29876
97 B Single Use Winter 210906 29 10:45 80.0% 41.6 16.5 44.7 27.07 36.7 21.4 51.8 39108 29876
98 B Single Use Winter 270906 35 9:09 69.0% 35.9 18.0 315 39.00 39.7 24.6 49.5 60421 29764
99 B Single Use Winter 270906 35 10:06 80.0% 41.6 215 29.6 39.00 39.7 24.9 39.8 60421 29764
100 B Single Use Winter 290906 37 8:38 69.0% 35.9 12.8 43.0 34.30 38.7 27 52 49555 22525
101 B Single Use Winter 290906 37 9:27 80.0% 41.6 14.2 57.0 34.30 38.7 20.3 64 49555 22525
102 B Single Use Winter 290906 37 10:48 88.0% 46.1 16.0 50.6 34.30 38.7 20.9 53 49555 22525
103 B Single Use Winter 051006 43 8:44 69.0% 35.9 16.0 40.0 38.88 34.3 22.2 46.1 56172 19504
104 B Single Use Winter 051006 43 9:36 80.0% 41.6 16.1 39.2 38.88 34.3 19.9 45.5 56172 19504
105 B Single Use Winter 111006 49 8:27 69.0% 35.9 20.4 24.0 17.22 29.6 21.1 28.6 24874 7773
106 B Single Use Winter 111006 49 9:17 88.0% 46.1 22.6 20.0 17.22 29.6 235 26 24874 7773
107 B Single Use Winter 131006 Birds Removed Litter Present 8:02 56.0% 29.3 20.2 27.6 - - 20.7 29 - -
108 B Single Use Winter 131006 During Litter Removal 8:52 80.0% 41.6 23.7 28.2 - - 25 335 - -
109 B Single Use Winter 131006 During Litter Removal 9:39 80.0% 41.6 26.1 24.8 - - 26.1 28.2 - -
Sample Odour Odour OER* OER* NER" PM.s ER" PMy ER™
Number concentration* ., , Emission Rate OER_* (0u/_s/1000 (ou/s/1000 birds OER* (pa_rtlcles/s/lOOO (mg/s/1000 birds | (mg/s/1000 birds
(ou/m3) ou Min ou Max OER* (ou/s) (ou/s/bird) birds) placed) OER* (ou/s/kg) (ou/s/kg/m?) birds placed) placed) placed)
93 1140 1000 1300 33358 1.10 1104 1076 2.74 3958 - - -
94 759 730 790 27241 0.91 908 879 1.16 1677 - - -
95 485 480 490 20153 0.67 671 650 0.86 1241 - - 0.16
96 1449 1400 1500 51983 1.74 1740 1677 1.33 1920 - - -
97 1149 1100 1200 47744 1.60 1598 1540 1.22 1764 - - -
98 1612 1300 2000 57842 1.94 1943 1866 0.96 1483 - - 1.38
99 1196 1100 1300 49693 1.67 1670 1603 0.82 1274 - - 0.74
100 2400 2400 2400 86093 3.82 3822 2777 1.74 2510 - - 1.35
101 1300 1300 1300 54022 2.40 2398 1743 1.09 1575 - - 0.54
102 1149 1100 1200 52989 2.35 2352 1709 1.07 1545 - - 0.54
103 961 840 1100 34482 1.77 1768 1112 0.61 887 - - -
104 355 350 360 14751 0.76 756 476 0.26 379 - - -
105 205 200 210 7352 0.95 946 237 0.30 427 - - -
106 140 130 150 6440 0.83 829 208 0.26 374 - - -
107 175 170 180 5118 - - - - - - - -
108 553 510 600 22987 - - - - - - - -
109 369 310 440 15347 - - - - - - - -




Appendix 9 — Farm C, Single Use litter batch odour and dust

* Geometric mean of duplicate olfactometry measurements
* Maximum or minimum olfactometry values
* Average values from corresponding odour collection times. Averaging time ~10 minutes.
Number of birds placed 40,457
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Ventilation Average litter In-shed
Collection status (% Ambient Ambient Bird weight moisture In-shed relative Total Live
Sample Litter Reuse Date time of max fan Ventilation Temperature Relative distribution content % (wet | temperature | humidity weight Ne Birds
Number Property Status Season (ddmmyy) Batch Age (days) (hh:mm) activity) rate (m?¥s) (°C) Humidity (%0) (kg/m?) basis) °C % (kg) Present
110 Cc Single Use Summer 130207 14 10:58 28.2% 323 26.0 60.0 7.12 20.6 275 60 16564 39913
111 C Single Use Summer 130207 14 12:28 28.2% 32.3 26.0 59.5 7.12 20.6 27 64 16564 39913
112 C Single Use Summer 200207 21 8:59 71.4% 76.0 28.9 50.0 14.52 26.3 29 53 33770 39823
113 C Single Use Summer 200207 21 10:11 78.6% 82.0 29.3 47.7 14.52 26.3 29.2 54 33770 39823
114 C Single Use Summer 200207 21 11:13 71.4% 76.0 29.3 42.7 14.52 26.3 30 - 33770 39823
115 C Single Use Summer 270207 28 8:58 85.7% 89.4 28.9 53.3 25.64 30.9 27.6 62.5 59621 39747
116 C Single Use Summer 270207 28 9:53 78.6% 82.0 29.0 50.5 25.64 30.9 27.1 68.5 59621 39747
117 C Single Use Summer 270207 28 10:43 85.7% 89.4 27.6 48.5 25.64 30.9 27.8 65.3 59621 39747
118 Cc Single Use Summer 060307 35 8:12 92.9% 90.7 28.0 76.0 33.18 34.6 26.7 77 77136 39638
119 C Single Use Summer 060307 35 9:23 100.0% 97.6 26.3 68.8 33.18 34.6 28.1 - 77136 39638
120 Cc Single Use Summer 060307 35 10:07 100.0% 97.6 29.3 64.0 33.18 34.6 28 60.8 77136 39638
121 C Single Use Summer 080307 37 8:04 85.7% 89.4 26.2 66.5 23.37 - 25.5 74 54327 26631
122 C Single Use Summer 080307 37 9:01 85.7% 89.4 27.1 63.8 23.37 - 28 62 54327 26631
123 Cc Single Use Summer 080307 37 9:47 100.0% 97.6 295 59.0 23.37 - 275 74.9 54327 26631
124 C Single Use Summer 130307 42 8:09 85.7% 89.4 28.3 62.4 28.84 34.3 25.7 - 67046 26396
125 C Single Use Summer 130307 42 9:05 85.7% 89.4 26.3 66.9 28.84 34.3 26 77 67046 26396
126 C Single Use Summer 130307 42 9:55 100.0% 97.6 275 62.8 28.84 34.3 274 - 67046 26396
127 C Single Use Summer 200307 49 8:34 85.7% 89.4 26.4 66.6 27.86 30.2 22 75 64771 21083
128 Cc Single Use Summer 200307 49 10:11 100.0% 97.6 27.9 63.7 27.86 30.2 26.7 70.1 64771 21083
129 C Single Use Summer 280307 57 8:31 78.6% 82.0 27.1 55.4 34.04 28.7 25.3 55.4 79143 20609
130 C Single Use Summer 280307 57 9:42 78.6% 82.0 25.0 52.0 34.04 28.7 24.5 64.5 79143 20609
Sample Odour Odour OER* OER* NER™ PM.s ER™ PMy ER™
Number concentration* ., , Emission Rate OER_* (0u/_s/1000 (ou/s/1000 birds OER* (pa_rtlcles/sllooo (mg/s/1000 birds | (mg/s/1000 birds
(ou/m3) ou Min ou Max OER* (ou/s) (ou/s/bird) birds) placed) OER* (ou/s’kg) (ou/s/kg/m?) birds placed) placed) placed)
110 431 362 512 13919 0.35 349 344 0.84 1954 - - -
111 421 395 449 13616 0.34 341 337 0.82 1911 - 0.03 0.18
112 693 636 756 52720 1.32 1324 1303 1.56 3630 - - -
113 664 664 664 54443 1.37 1367 1346 1.61 3748 2,464,002 0.08 0.28
114 740 664 824 56238 141 1412 1390 1.67 3872 5,209,584 0.16 0.52
115 706 624 799 63159 1.59 1589 1561 1.06 2463 - - -
116 840 799 883 68870 1.73 1733 1702 1.16 2686 18,753,662 0.13 0.51
117 905 840 974 80907 2.04 2036 2000 1.36 3155 24,764,353 0.15 0.53
118 664 575 767 60206 152 1519 1488 0.78 1815 - - -
119 1024 966 1085 99968 2.52 2522 2471 1.30 3013 214,628,064 1.37 3.41
120 912 813 1024 89095 2.25 2248 2202 1.16 2685 13,478,155 117 4.41
121 703 542 912 62887 2.36 2361 1554 1.16 2691 - - -
122 1066 966 1176 95336 3.58 3580 2356 1.75 4080 27,319,445 0.10 0.56
123 1024 861 1218 99996 3.75 3755 2472 1.84 4279 22,569,029 0.18 0.70
124 656 624 689 58650 2.22 2222 1450 0.87 2034 8,754,337 0.08 0.37
125 905 799 1024 80908 3.07 3065 2000 121 2806 9,037,891 - -
126 1218 1076 1378 118901 4.50 4505 2939 1.77 4123 - - -
127 790 724 861 70622 3.35 3350 1746 1.09 2535 - 0.13 0.51
128 939 899 980 91654 4.35 4347 2265 142 3290 - - -
129 512 487 538 41969 2.04 2036 1037 0.53 1233 - - -
130 689 594 799 56486 2.74 2741 1396 0.71 1659 - - -




Appendix 10 — Farm C, partially reused litter batch odour and dust

Ventilation Average litter In-shed
Collection status (% Ambient Ambient Bird weight moisture In-shed relative Total Live
Sample Litter Reuse Date time of max fan Ventilation Temperature Relative distribution content % (wet | temperature | humidity weight Ne Birds
Number Property Status Season (ddmmyy) Batch Age (days) (hh:mm) activity) rate (m3/s) (°C) Humidity (%0) (kg/m?) basis) °C % (kg) Present
131 Cc Reused Autumn 240407 14 9:17 39.3% 45.4 26.8 50.7 9.64 22.2 26.9 53.8 22418 36993
132 C Reused Autumn 240407 14 10:22 30.2% 35.2 26.9 52.9 9.64 22.2 29.6 47.1 22418 36993
133 C Reused Autumn 010507 21 8:46 50.1% 54.8 25.6 49.2 15.71 225 27 - 36535 36893
134 C Reused Autumn 010507 21 9:36 63.6% 68.7 25.0 41.8 15.71 225 26.8 39.2 36535 36893
135 C Reused Autumn 010507 21 10:38 63.6% 68.7 26.7 35.4 15.71 22.5 30.5 - 36535 36893
136 C Reused Autumn 090507 29 8:49 77.8% 78.3 26.9 46.7 23.94 27.2 29.1 - 55665 36779
137 C Reused Autumn 090507 29 9:40 57.1% 64.5 26.8 55.0 23.94 27.2 29 56 55665 36779
138 C Reused Autumn 090507 29 10:31 64.3% 67.1 27.4 52.0 23.94 27.2 28.5 53 55665 36779
139 Cc Reused Autumn 140507 34 8:39 71.7% 78.9 26.3 57.5 29.78 27.1 24.5 59 69231 36708
140 C Reused Autumn 140507 34 9:33 77.8% 78.3 26.0 59.3 29.78 27.1 25.7 64.5 69231 36708
141 Cc Reused Autumn 140507 34 10:30 64.3% 67.1 27.0 57.1 29.78 27.1 28 - 69231 36708
142 C Reused Autumn 170507 37 8:45 77.8% 78.3 26.0 63.8 21.20 29.9 24.5 - 49298 23185
143 C Reused Autumn 170507 37 9:36 71.4% 76.0 25.5 67.9 21.20 29.9 25.7 - 49298 23185
145 C Reused Autumn 220507 42 8:42 42.4% 48.1 26.0 63.4 17.26 28.4 21.9 - 40141 15712
146 C Reused Autumn 220507 42 9:21 77.8% 78.3 22.3 52.9 17.26 28.4 24.2 - 40141 15712
147 Cc Reused Autumn 220507 42 10:13 57.1% 64.5 24.4 42.0 17.26 28.4 25.3 - 40141 15712
148 C Reused Autumn 290507 49 8:43 70.7% 74.8 233 55.2 21.66 27.4 22.7 70.5 50356 15670
149 C Reused Autumn 290507 49 9:42 78.6% 82.0 23.8 64.9 21.66 274 23.6 68.5 50356 15670
150 Cc Reused Autumn 290507 49 11:08 71.4% 81.1 26.0 56.8 21.66 27.4 23.6 71.6 50356 15670
151 C Reused Autumn 040607 55 8:34 44.5% 49.8 21.8 71.6 25.77 26.9 214 - 59917 15633
152 Cc Reused Autumn 040607 55 9:21 70.7% 74.8 19.0 81.7 25.77 26.9 22 - 59917 15633
153 C Reused Autumn 040607 55 10:16 64.3% 67.1 218 68.9 25.77 26.9 23.7 68 59917 15633
Sample Odour Odour Emission OER* OER* NER™ PM,s ER* PM,, ER™
Numger concentration* Rate OER* OER* (ou/s/1000 (ou/s/1000 birds OER* (particles/s/1000 (mg/s/1000 birds (mg/s/1000 birds
(ou/m?3) ou Min* ou Max* (ou/s) (ou/s/bird) birds) placed) OER* (ou/s/kg) (ou/s/kg/m?) birds placed) placed) placed)
131 558 512 609 25338 0.68 685 681 1.13 2628 80,698,687 0.17 -
132 706 565 883 24877 0.67 672 669 111 2580 21,780,447 0.04 -
133 679 636 724 37177 1.01 1008 1000 1.02 2366 - - -
134 622 609 636 42737 1.16 1158 1149 1.17 2720 53,455,937 0.15 1.01
135 825 790 861 56634 154 1535 1523 1.55 3604 - - -
136 684 575 813 53512 1.45 1455 1439 0.96 2235 - - -
137 1218 1085 1367 78524 214 2135 2111 141 3280 - 0.11 0.46
138 1150 1085 1218 77120 2.10 2097 2074 1.39 3221 31,470,067 - -
139 660 656 664 52079 1.42 1419 1400 0.75 1749 - - -
140 719 558 927 56290 1.53 1533 1513 0.81 1890 66,005,245 0.27 1.25
141 1107 883 1387 74241 2.02 2022 1996 1.07 2493 46,359,457 0.23 1.02
142 645 609 683 50477 2.18 2177 1357 1.02 2381 - - -
143 1372 1367 1378 104350 4.50 4501 2806 212 4921 49,628,305 0.34 2.08
145 543 512 575 26086 1.66 1660 701 0.65 1511 - - -
146 704 575 861 55069 3.50 3505 1481 1.37 3190 40,348,009 0.15 -
147 575 456 724 37047 2.36 2358 996 0.92 2146 - - -
148 650 512 824 48597 3.10 3101 1307 0.97 2244 - - -
149 724 693 756 59348 3.79 3787 1596 1.18 2740 - - -
150 789 756 824 63979 4.08 4083 1720 1.27 2954 39,270,548 0.20 0.55
151 919 861 980 45789 2.93 2929 1231 0.76 1777 56,786,613 0.22 0.95
152 1069 939 1218 80014 5.12 5118 2151 1.34 3105 43,843,320 0.21 0.76
153 1030 939 1130 69103 4.42 4420 1858 1.15 2681 34,836,813 0.15 0.63

* Geometric mean of duplicate olfactometry measurements

* Maximum or minimum olfactometry values
* Average values from corresponding odour collection times. Averaging time ~10 minutes.

Number of birds placed 37,193
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Appendix 11 — Farms F-M, multiple Queensland farm comparison odour

* Geometric mean of duplicate olfactometry measurements

* Maximum or minimum olfactometry values

Number of birds placed F — 31,120, G — 38,808, H — 43,350, | — 43,333, J — 45,120, K — 44,000, L — 43,500, M — 35,786
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Ventilation Average litter In-shed
Collection status (% Ambient Ambient Bird weight moisture In-shed relative Total Live
Sample Litter Reuse Date time of max fan Ventilation Temperature Relative distribution content % (wet | temperature | humidity weight Ne Birds
Number Property Status Season (ddmmyy) Batch Age (days) (hh:mm) activity) rate (m3/s) (°C) Humidity (%0) (kg/m?) basis) °C % (kg) Present
210 F Reused Autumn 040408 36 8:22 100.0% 95.7 22.0 58.5 32.76 475 - - 56095 29680
211 F Reused Autumn 040408 36 9:01 100.0% 95.7 23.2 56.2 32.76 47.5 26.3 57.1 56095 29680
212 F Reused Autumn 040408 36 10:27 100.0% 95.7 27.6 48.9 32.76 475 - - 56095 29680
213 G Reused Autumn 070408 35 8:21 31.0% 53.3 24.0 66.0 33.60 43.5 - - 70439 36687
214 G Reused Autumn 070408 35 9:44 31.0% 53.3 27.0 53.0 33.60 43.5 - - 70439 36687
215 G Reused Autumn 070408 35 11:30 44.0% 57.6 - - 33.60 43.5 - - 70439 36687
216 H Single Use Autumn 080408 35 8:19 64.0% 81.5 19.8 71.2 32.32 44.5 - - 75652 42029
217 H Single Use Autumn 080408 35 9:28 86.0% 109.0 22.0 65.0 32.32 44.5 24.4 64 75652 42029
218 H Single Use Autumn 080408 35 11:20 100.0% 126.4 24.0 60.0 32.32 44.5 - - 75652 42029
219 | Reused Autumn 090408 34 8:17 54.0% 76.6 19.7 81.4 32.65 39.3 - - 76433 42463
220 | Reused Autumn 090408 34 9:30 77.0% 109.5 204 77.9 32.65 39.3 235 70.8 76433 42463
221 | Reused Autumn 090408 34 11:45 77.0% 109.5 22.6 66.0 32.65 39.3 - - 76433 42463
222 J Single Use Autumn 170408 35 8:10 35.7% 41.1 17.0 72.0 30.84 43.1 25 - 72518 42910
223 J Single Use Autumn 170408 35 12:49 74.1% 85.3 - - 30.84 43.1 - - 72518 42910
224 K Single Use Autumn 120508 31 8:29 42.9% 49.4 18.4 79.0 33.44 30.3 - - 75250 43000
225 K Single Use Autumn 120508 31 11:13 57.1% 65.8 - - 33.44 30.3 - - 75250 43000
226 L Single Use Autumn 210508 34 8:21 25.5% 35.1 - - 38.30 35.7 - - 78522 42675
227 L Single Use Autumn 210508 34 11:06 42.1% 58.1 - - 38.30 35.7 - - 78522 42675
228 M Single Use Autumn 260508 32 9:05 25.0% 23.0 - - 30.35 333 - - 53894 33684
229 M Single Use Autumn 260508 32 11:41 62.5% 57.5 - - 30.35 33.3 - - 53894 33684
sample Odour_ Odour Emission OER* OER*
Number concentration* ) Rate OER* OER_* (ou/_s/lOOO (ou/s/1000 birds OER*
(ou/m3) ou Min* ou Max* (ou/s) (ou/s/bird) birds) placed) OER* (ou/s/kg) (ou/s/kg/m?)
210 583 535 636 55820 1.88 1881 1794 1.00 1704
211 449 430 469 42974 1.45 1448 1381 0.77 1312
212 558 558 558 53397 1.80 1799 1716 0.95 1630
213 679 636 724 36165 0.99 986 932 0.51 1076
214 773 756 790 41188 112 1123 1061 0.58 1226
215 664 583 756 38228 1.04 1042 985 0.54 1138
216 650 636 664 52980 1.26 1261 1222 0.70 1639
217 611 538 693 66564 1.58 1584 1535 0.88 2060
218 583 583 583 73713 1.75 1754 1700 0.97 2281
219 452 441 464 34645 0.82 816 800 0.45 1061
220 244 232 256 26681 0.63 628 616 0.35 817
221 214 200 228 23378 0.55 551 540 0.31 716
222 656 624 689 26942 0.63 628 597 0.37 874
223 440 400 483 37514 0.87 874 831 0.52 1216
224 311 291 332 15349 0.36 357 349 0.20 459
225 210 173 256 13843 0.32 322 315 0.18 414
226 761 689 840 26723 0.63 626 614 0.34 698
227 312 243 400 18126 0.42 425 417 0.23 473
228 1188 1024 1378 27338 0.81 812 764 0.51 901
229 1103 1024 1188 63407 1.88 1882 1772 1.18 2089




Appendix 12 — Worked example for the odour

emission model for Farm C

(Based on the information provided in Section 0)

Scenario:

Estimate the odour emission rate (OU/s/1000 birds) at Farm C assuming:
Season = summer (assigned a value of 1)
Batch age = 35 days
Ventilation rate =100 md/s

Ambient Temperature =29.5°C
Live weight density = 34 kg/m?
Litter moisture =32%

OER per bird = Intercept
Season (summer)
Batch age
Ventilation rate
Ambient temperature
Live weight density
Litter moisture
Season x Live weight density
Batch age x Ambient temperature
Batch age x Live weight density
Ventilation rate x Live weight density
Ambient temperature x Live weight density
Ambient temperature x Litter moisture

X X X X X X X X X X X X

OER per bird =~ 17.0451417
1 X

35 x
100 x
29.5 X
34 x

32 x
1x34 x
35x 295 x
35x 34 x
100 x 34 x
29.5 x 34 X
29.5 x 32 X

OER per bird ~ 2.801 ou/s/bird
Assuming that 40,000 birds are in the shed,
OER ~ 2.801 x 40,000

OER % 112,030 oul/s

(Remember that the OER per bird is always multiplied by the number of birds placed in the shed at the start of

the batch, not the actual number of birds, which changes due to mortality and pickups.)
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0.8127175
-0.0569523
0.0377881
-0.7846743
-0.4675131
-0.4117151
-0.1023154
-0.0028754
0.0055347
-0.0009478
0.0162404
0.0234855

0.8127175
-0.0569523
0.0377881
-0.7846743
-0.4675131
-0.4117151
-0.1023154
-0.0028754
0.0055347
-0.0009478
0.0162404
0.0234855

+ + 4+ + + + + + + + + +

+ 4+ + + + + + + + + 4+ o+



Appendix 13 — Farm A Litter moisture contours
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Appendix 14 — Farm B Litter moisture contours
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Appendix 15 - Farm C Litter moisture contours
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Appendix 16 — Farms F-M Litter moisture contours
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Appendix 17 — Importance of particulates on odour

study
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Appendix 18 — Farm A, summer batch dust

Dust . Ventilation - Bird weight Avera_ge litter Total live .
sample | Property thtsiggiuse Season (dd?r?rf Batch Age (days) Status (% of Ventllatslon distribution m0|stU|:)e weight Ne Birds | CMD Numt_)er con;:. NER PM_s cosnc. PM,sER | PMy co?c. PMy ER
Number vy) max fan rate (m3/s) (kg/m?) content _A) (ko) Present (um) (particles/m3) (particles/s) (mg/m3) (mg/s) (mg/m3) (mg/s)
activity) (wet basis)

1 A Single Use Summer 231105 Single Use Litter No Birds 50.0% 46.03 - 10.30 - - - - - 0.022 1.026 0.023 1.073
2 A Single Use Summer 231105 Single Use Litter No Birds 75.0% 69.04 - 10.30 - - - - - 0.017 1.190 0.013 0.910
3 A Single Use Summer 231105 Single Use Litter No Birds 100.0% 91.22 - 10.30 - - - 0.012 1.122 0.007 0.628
4 A Single Use Summer 131205 18 25.0% 25.73 10.25 27.80 18200 26000 - - - 0.038 0.969 0.398 10.237
5 A Single Use Summer 131205 18 50.0% 44.10 10.25 27.80 18200 26000 - - - 0.026 1.138 0.266 11.723
6 A Single Use Summer 131205 18 75.0% 69.04 10.25 27.80 18200 26000 - - - 0.038 2.637 0.204 14.108
7 A Single Use Summer 131205 18 100.0% 91.22 10.25 27.80 18200 26000 - - - 0.030 2.693 0.097 8.834
8 A Single Use Summer 221205 27 75.0% 69.04 20.50 26.30 36400 26000 - - - 0.001 0.082 0.072 4.945
9 A Single Use Summer 221205 27 87.5% 80.50 20.50 26.30 36400 26000 - - - 0.004 0.298 0.222 17.851
10 A Single Use Summer 221205 27 100.0% 91.22 20.50 26.30 36400 26000 - - - 0.003 0.299 0.197 17.925
11 A Single Use Summer 110106 Birds Removed Litter Present 100.0% 91.22 - 29.60 - - - - - 0.036 3.245 0.110 10.041
12 A Single Use Summer 130106 Post Litter Removal Prior Shed Cleaning 12.5% 11.83 - - - - - - - - - 0.008 0.099
13 A Single Use Summer 130106 Post Litter Removal Prior Shed Cleaning 50.0% 45.25 - - - - - - - - - 0.008 0.349
14 A Single Use Summer 130106 Post Litter Removal Prior Shed Cleaning 75.0% 68.20 - - - - - - - - - 0.007 0.475
15 A Single Use Summer 130106 Post Litter Removal Prior Shed Cleaning 100.0% 91.22 - - - - - - - - - 0.008 0.702

Appendix 19 — Farm A, winter batch dust

S;ﬁ;e Property Litger Reuse | oo o Date Batch Age (days) s\:aetntgl?g/loogf Ventilation giisrt‘ii‘g’ﬁit?g; Avrenroigfulxater T\‘,’Vt:}g'r:‘t’e NeBirds | CMD | Number conc. NER PM,sconc. | PM;sER | PMyconc. | PMy ER

Number tatus (ddmmyy) max _fan rate (m?3/s) (kg/m?) content % (kg) Present (um) (particles/m3) (particles/s) (mg/m3) (mg/s) (mg/m3) (mg/s)

activity) (wet basis)

28 A Single Use Winter 210606 15 12.5% 11.83 9.57 37.08 16991 32179 1.99 15,381,828 182,014,799 - - 0.209 2.470
29 A Single Use Winter 210606 15 25.0% 22.83 9.57 37.08 16991 32179 1.76 11,381,061 259,802,827 - - 0.126 2.875
30 A Single Use Winter 210606 15 37.5% 33.73 9.57 37.08 16991 32179 - - - - - 0.140 4,713
31 A Single Use Winter 270606 21 12.5% 11.83 15.97 38.32 28370 32056 1.90 5,348,050 63,284,037 - - 0.215 2.545
32 A Single Use Winter 270606 21 25.0% 22.83 15.97 38.32 28370 32056 1.81 4,084,807 93,246,525 - - 0.162 3.692
33 A Single Use Winter 270606 21 37.5% 33.73 15.97 38.32 28370 32056 - - - - - 0.181 6.117
34 A Single Use Winter 040706 28 12.5% 11.83 25.05 31.73 44487 31913 2.01 8,014,857 94,840,646 - - 0.451 5.337
35 A Single Use Winter 040706 28 25.0% 22.83 25.05 31.73 44487 31913 2.14 4,652,155 106,197,751 - - 0.287 6.560
36 A Single Use Winter 070706 31 12.5% 11.83 29.29 33.14 52014 31852 1.87 15,564,574 184,177,247 - - 0.674 7.975
37 A Single Use Winter 070706 31 25.0% 22.83 29.29 33.14 52014 31852 - - - - - 0.486 11.090
38 A Single Use Winter 070706 31 37.5% 33.73 29.29 33.14 52014 31852 1.88 8,241,124 277,964,944 - - 0.364 12.262
39 A Single Use Winter 070706 31 50.0% 46.03 29.29 33.14 52014 31852 - - - - - 0.306 14.074
40 A Single Use Winter 100706 34 50.0% 46.03 25.62 - 45503 24178 1.77 8,366,542 385,095,088 - - 0.326 15.012
41 A Single Use Winter 100706 34 37.5% 33.73 25.62 - 45503 24178 1.64 12,331,619 415,933,300 - - 0.551 18.571
42 A Single Use Winter 100706 34 25.0% 22.83 25.62 - 45503 24178 1.55 12,975,358 296,196,862 - - 0.823 18.789
43 A Single Use Winter 110706 35 12.5% 11.83 26.76 - 47534 24178 2.01 1,254,689 14,846,870 - - 0.319 3.774
44 A Single Use Winter 110706 35 37.5% 33.73 26.76 - 47534 24178 1.39 4,335,673 146,237,959 - - 0.299 10.097
45 A Single Use Winter 110707 35 50.0% 46.03 26.76 - 47534 24178 - - - - - 0.334 15.390
46 A Single Use Winter 110708 35 62.5% 54.63 26.76 - 47534 24178 1.45 4,178,391 228,265,475 - - 0.237 12.961
47 A Single Use Winter 180706 42 12.5% 11.83 24.59 30.80 43674 17067 1.52 6,132,035 72,561,017 - - 1.231 14.564
48 A Single Use Winter 180706 42 25.0% 22.83 24.59 30.80 43674 17067 1.62 4,286,218 97,844,273 - - 0.731 16.694
49 A Single Use Winter 240706 48 25.0% 22.83 20.65 30.60 36679 12018 1.87 18,562,807 423,745,165 - - 0.498 11.371
50 A Single Use Winter 240706 48 37.5% 33.73 20.65 30.60 36679 12018 1.88 19,454,368 656,176,571 - - 0.505 17.046
51 A Single Use Winter 240706 48 50.0% 46.03 20.65 30.60 36679 12018 1.95 11,758,587 541,224,087 - - 0.431 19.846
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Appendix 20 — Farm

B, summer batch dust

Dust Ventilation Bird weight Average litter Total live
Litter Reuse Date Status (% of | Ventilation 1rd weig moisture . Ne Birds | CMD Number conc. NER PMysconc. | PMysER | PMyconc. | PMy ER
Sample | Property S Season Batch Age (days) distribution weight - -
tatus (ddmmyy) max fan rate (m3/s) content % Present (um) (particles/m3) (particles/s) (mg/m3) (mg/s) (mg/m3) (mg/s)
Number - (kg/m?) . (kg)
activity) (wet basis)
16 B Single Use Summer 230206 13 56.00 29.26 7.33 18.60 10590 24000 - - - 0.031 0.918 0.098 2.860
17 B Single Use Summer 230206 13 56.0% 29.26 7.33 18.60 10590 24000 - - - 0.019 0.569 0.042 1.231
18 B Single Use Summer 230206 13 79.5% 41.56 7.33 18.60 10590 24000 - - - 0.017 0.712 0.040 1.658
19 B Single Use Summer 230206 13 88.3% 46.12 7.33 18.60 10590 24000 - - - 0.019 0.879 0.039 1.784
20 B Single Use Summer 140306 32 56.0% 29.26 22.84 26.96 33000 22000 - 30,966,394 906,076,682 0.138 4.032 0.598 17.486
21 B Single Use Summer 140306 32 56.0% 29.26 22.84 26.96 33000 22000 - 19,175,871 561,021,835 0.069 2.021 0.380 11.113
22 B Single Use Summer 140306 32 79.5% 41.56 22.84 26.96 33000 22000 - 10,105,002 419,919,758 0.050 2.086 0.209 8.703
23 B Single Use Summer 140306 32 88.3% 46.12 22.84 26.96 33000 22000 - 8,976,881 414,024,164 0.029 1.333 0.204 9.431
24 B Single Use Summer 280306 46 68.7% 35.87 26.90 26.50 38863 13636 - 22,516,171 807,655,068 - - 0.573 20.561
25 B Single Use Summer 280306 46 68.7% 35.87 26.90 26.50 38863 13636 - 9,368,503 336,067,050 - - 0.218 7.814
26 B Single Use Summer 280306 46 79.5% 41.56 26.90 26.50 38863 13636 - 14,377,137 597,451,022 - - 0.198 8.240
27 B Single Use Summer 280306 46 88.3% 46.12 26.90 26.50 38863 13636 - - - - - 0.221 10.201
Appendix 21 — Farm B, winter batch dust
Dust Ventilation Bird weight Average litter Total live
Litter Reuse Date Status (% of | Ventilation 1ra weig moisture ] Ne Birds | CMD Number conc. . PMysconc. | PMysER | PMypconc. | PMyER
Sample | Property Season Batch Age (days) distribution weight - NER (particles/s)
Status (ddmmyy) max fan rate (m3/s) content % Present (um) (particles/m?) (mg/m3) (mg/s) (mg/m3) (mg/s)
Number . (kg/m?) : (kg)
activity) (wet basis)
52 B Single Use Winter 140906 22 80.0% 41.56 16.25 29.09 23470 30013 - - - - - 0.120 5.004
53 B Single Use Winter 270906 35 69.0% 35.87 41.82 39.70 60421 29764 - - - - - 1.190 42.701
54 B Single Use Winter 270906 35 80.0% 41.56 41.82 39.70 60421 29764 - - - - - 0.556 23.092
55 B Single Use Winter 290906 37 69.0% 35.87 34.30 38.67 49555 22525 - - - - - 1.164 41.744
56 B Single Use Winter 290906 37 80.0% 41.56 34.30 38.67 49555 22525 - - - - - 0.402 16.718
57 B Single Use Winter 290906 37 88.0% 46.12 34.30 38.67 49555 22525 - - - - - 0.362 16.677

286




Appendix 22 — Farm C, single use litter batch dust

Dust Ventilation Bird weight Average litter Total live
Litter Reuse Date Status (% of | Ventilation 1rd weig moisture . Ne Birds | CMD Number conc. . PM_,sconc. | PM,sER | PMyconc. | PMypER
Sample | Property Season Batch Age (days) distribution weight - NER (particles/s)
Status (ddmmyy) max fan rate (m3/s) content % Present (um) (particles/m3) (mg/m3) (mg/s) (mg/m3) (mg/s)
Number - (kg/m?) . (kg)
activity) (wet basis)
58 C Single Use Summer 130207 14 28.2% 32.33 7.12 20.55 16564 39913 3.39 5,060,218 163,603,940 0.038 1.224 0.224 7.240
59 C Single Use Summer 200207 21 78.6% 81.99 14.52 26.32 33770 39823 2.87 3,135,051 257,052,756 0.059 4.868 0.204 16.754
60 C Single Use Summer 270207 28 78.6% 81.99 25.64 30.94 59621 39747 1.89 11,421,564 936,490,246 0.066 5.424 0.233 19.092
61 C Single Use Summer 270207 28 85.7% 89.45 25.64 30.94 59621 39747 212 10,487,884 938,110,804 0.067 5.954 0.274 24.495
62 C Single Use Summer 060307 35 100.0% 97.65 33.18 34.64 77136 39638 1.90 40,500,000 3,954,679,863 0.515 50.288 1.623 158.480
63 C Single Use Summer 080307 37 85.7% 89.45 23.37 - 54327 26631 2.14 10,965,411 980,824,174 0.064 5.713 0.407 36.405
64 C Single Use Summer 080307 37 100.0% 97.65 23.37 -- 54327 26631 2.39 8,169,134 797,686,683 0.089 8.710 0.396 38.649
65 C Single Use Summer 130307 42 85.7% 89.45 28.84 34.28 67046 26396 3.01 3,661,430 327,504,263 0.034 3.014 0.152 13.625
66 C Single Use Summer 200307 49 85.7% 89.45 27.86 30.24 64771 21083 - - - 0.090 8.007 0.344 30.766
Appendix 23 — Farm C, partially reused litter batch dust
Dust Ventilation Bird weight Average litter Total live
sample | Property Litter Reuse Season Date Batch Age (days) Status (% of | Ventilation distribut?on moisture weiaht Ne Birds | CMD Number conc. NER (particles/s) PMysconc. | PMysER | PMyconc. | PMy ER
p P Status (ddmmyy) g 4 max fan rate (m3/s) content % g Present (um) (particles/m?) P (mg/m3) (mg/s) (mg/m3) (mg/s)
Number - (kg/m?) : (kg)
activity) (wet basis)
67 C Reused Autumn 240407 14 39.3% 45.38 9.64 22.24 22418 36993 2.22 36,828,732 1,671,131,989 0.055 2.487 0.354 16.069
68 C Reused Autumn 010507 21 63.6% 68.67 15.71 22.46 36535 36893 2.30 28,257,963 1,940,454,062 0.081 5.548 0.544 37.359
69 C Reused Autumn 090507 29 77.8% 78.27 23.94 27.19 55665 36779 - 12,760,835 998,742,192 - - - -
70 C Reused Autumn 090507 29 57.1% 64.48 23.94 27.19 55665 36779 - 15,729,064 1,014,154,193 0.071 4.546 0.303 19.530
71 C Reused Autumn 090507 29 64.3% 67.09 23.94 27.19 55665 36779 - 14,964,752 1,003,915,252 - - - -
72 C Reused Autumn 140507 34 71.7% 78.91 290.78 27.12 69231 36708 - 29,676,596 2,341,753,874 0.126 9.970 0.613 48.338
73 C Reused Autumn 170507 37 71.4% 76.03 21.20 29.88 49298 23185 1.88 19,447,908 1,478,625,086 0.119 9.061 0.573 43.565
74 C Reused Autumn 220507 42 77.8% 78.27 17.26 28.42 40141 15712 1.76 16,054,275 1,256,507,323 0.050 3.944
75 Cc Reused Autumn 290507 49 71.4% 81.06 21.66 27.42 50356 15670 1.74 18,425,042 1,493,560,329 0.085 6.879 0.276 22.371
76 C Reused Autumn 40607 55 35.7% 41.62 25.77 26.93 59917 15633 1.68 43,396,683 1,806,169,954 - - - -
77 C Reused Autumn 40607 55 44.5% 49.85 25.77 26.93 59917 15633 1.68 34,672,537 1,728,360,886 0.153 7.640 0.617 30.748
78 C Reused Autumn 40607 55 70.7% 74.82 25.77 26.93 59917 15633 171 21,470,663 1,606,408,597 0.118 8.815 0.462 34.568
79 C Reused Autumn 40607 55 64.3% 67.09 25.77 26.93 59917 15633 1.72 17,076,108 1,145,556,267 0.087 5.840 0.333 22.330
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