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Abstract. Glyphosate resistance will have a major impact on current cropping practices in glyphosate-resistant cotton
systems. A framework for a risk assessment for weed species and management practices used in cropping systems with
glyphosate-resistant cotton will aid decision making for resistance management. We developed this framework and then
assessed the biological characteristics of 65 species and management practices from 50 cotton growers. This enabled us to
predict the species most likely to evolve resistance, and the situations in which resistance is most likely to occur. Species with
the highest resistance risk were Brachiaria eruciformis, Conyza bonariensis, Urochloa panicoides, Chloris virgata, Sonchus
oleraceus and Echinochloa colona. The summer fallow and non-irrigated glyphosate-resistant cotton were the highest risk
phases in the cropping system. When weed species and management practices were combined, C. bonariensis in summer
fallow and other winter crops were at very high risk. S. oleraceus had very high risk in summer and winter fallow, as did
C. virgata and E. colona in summer fallow. This study enables growers to identify potential resistance risks in the species
present and management practices used on their farm, which will to facilitate a more targeted weed management approach to

prevent development of glyphosate resistance.
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Introduction

Glyphosate-resistant (GR) cotton was introduced in the
Australian cotton industry in the 2000-01 season. Since then it
has been widely adopted with 95% of cotton planted being
GR in 2009-10. In-crop applications of glyphosate allowed
improved control of some difficult-to-control weeds. The
ability to substitute glyphosate for some conventional inputs,
such as pre-emergence residual herbicides helped to reduce the
risk of early-season damage and poor growth of cotton seedlings
due to heavy rainfall concentrating the residuals in the seed
zone (Charles et al. 1995). Both these factors have contributed
to its rapid adoption. Even before the introduction of GR
varieties, glyphosate was becoming commonly used for pre-
plant knockdown applications, and shielded applications
within the crop. Glyphosate use in fallow has largely replaced
tillage, particularly in non-irrigated systems.

Glyphosate resistance has evolved in five weed species in
the sub-tropical cropping region of north-east Australia — Lolium
rigidum Gaud., Echinochloa colona (L.) Link, Urochloa
panicoides P. Beauv., Conyza bonariensis (L.) Cronquist and
Chloris truncata R.Br. (Heap 2011; Preston 2011). Effective
management of these species to ensure their control is vitally
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important. However, as many cropping fields contain a diverse
range of weed species, other species may also be at risk to
evolving glyphosate resistance. Over 100 weed species have
been identified in fields in this grain and cotton cropping
region (Charles er al. 2004; Rew et al. 2005; Walker et al.
2005).

Clearly, however, not all weed species exposed to selection
with glyphosate have so far developed glyphosate resistance.
Several factors influence the evolution of herbicide resistance in
weed populations. These are derived from genetic and biological
characteristics of the weed species, and the management practices
applied to the population (Powles and Yu 2010).

The species characteristics in particular that contribute to the
evolution of herbicide resistance are gene mutation rate, initial
frequency of resistance genes, inheritance, mating systems
and gene flow (Jasieniuk et al. 1996). Although mutation rates
and initial frequencies differ between herbicide modes of action
(Maxwell and Mortimer 1994; Preston and Powles 2002; Neve
et al. 2003), these frequencies are assumed to be similar between
species, particularly in the construction of resistance models
(Jasieniuk et al. 1996; Werth et al. 2008; Thornby and Walker
2009).
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Herbicide resistance will spread more rapidly in cross-
pollinated populations when associated with a single dominant
allele (Maxwell and Mortimer 1994). However, selfing in a plant
can increase the probability of the rate of evolution of resistance
conferred by recessive alleles (Jasieniuk er al. 1996). The
influence of mating behaviour (cross-pollinated or self-
pollinated) on the evolution of resistance will depend on the
nature of inheritance of resistance alleles (Jasieniuk ez al. 1996).

Generation turnover is also a highly important factor in the rate
of resistance evolution (Stanton et al. 2008). Eleusine indica (L.)
Gaertner is a prolific seed producer and has four generations
per year in Malaysia (Powles and Preston 2006), as a result
glyphosate resistance evolved under persistent glyphosate
usage in 3 years (Lee and Ngim 2000). This compares with
L. rigidum in Australia, which evolved resistance after 15 years
with one generation per year (Powles ez al. 1998). The number of
generations in each case was similar, 12 and 15, respectively.
Although glyphosate was applied substantially more times
per year on E. indica than L. rigidum, the frequent generation
turnover also played a major role in the rate of resistance
evolution.

Dense weed populations have a higher probability of
developing resistance, even when the rate of mutation is low
(Jasieniuk er al. 1996; Diggle et al. 2003). Species with
high fecundity (either vegetatively, by seed or both) that have
minimal seed dormancy tend to result in dense weed populations
(Benech-Arnold et al. 2000).

Seed production of L. rigidum, E. colona, U. panicoides, and
C. bonariensis can reach totals of over 30000, 12 000, 2000
and 100000 seeds/plant, respectively (Mercado and Talata
1977; Pannell et al. 2004; Wu et al. 2007; Werth et al. 2008).
C. bonariensis has virtually no dormancy (Green et al. 2008),
and although E. colona, U. panicoides, and L. rigidum have
moderate levels of dormancy (Steadman et al. 2003; Kovach et al.
2010), they germinate at relatively specific times of the year,
which often results in dense populations (Pannell et al. 2004;
Werth 2007; Thornby and Walker 2009). This combined with
persistent glyphosate use has resulted in them being selected for
glyphosate resistance.

The other major determinant for resistance evolution is
selection pressure. Species characteristics combined with
continuous use of one or a few herbicides contributes to
selection of resistance alleles (Maxwell and Mortimer 1994;
Jasieniuk et al. 1996). Herbicide resistance appears where one
or a few herbicides were used persistently to manage weeds
(Preston and Rieger 2000; Stanton et al. 2008). Modelling has
shown that using other herbicides as substituted for and in
addition to glyphosate can delay resistance evolution (Diggle
et al. 2003; Werth et al. 2008). Selection pressure for glyphosate
resistance is a function of the frequency of glyphosate application
and the frequency and effectiveness of other chemical and non-
chemical kill methods such as tillage and crop competition
(Thornby et al. 2010).

It is impractical for growers to monitor all weed species
present in their fields. This has resulted in growers targeting a
smaller number of key species and assuming that acceptable
control will be achieved on the others. Determining which
species are important often depends on several factors such as
competitiveness with the crop, contamination of grain and lint,
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noxious weeds and aesthetics. Glyphosate resistance will increase
the cost of weed control in addition to these factors. If we can
identify species that are more prone to resistance evolution than
others, growers can then concentrate their monitoring on those
species to reduce the risk of glyphosate resistance evolving in
their fields.

In this paper we describe the construction of a risk assessment
framework for weeds likely to develop glyphosate resistance in
farming systems with GR cotton. This assessment combined
biological characteristics of 65 weed species with management
practices used by 50 surveyed growers. The identified potential
resistance risks derived from the species present in combination
with the management practices used on their farm will enable
growers to facilitate a more targeted and preventive weed
management approach.

Materials and methods

The assessment framework consisted of two components: the
biological characteristics of weed species and the management/
control practices applied to those species in farming systems with
GR cotton grown in southern Queensland and northern New
South Wales, Australia.

The risk assessment framework uses an expert systems
approach, which is a method commonly used in basic decision
support systems and management tools in a variety of fields. The
approach has been used in many fields to provide tools for risk
assessment and management, including pest (Potter et al. 2000)
and weed management (Stigliani and Resina 1993; Monks et al.
1995; Wilkerson et al. 2002). Expert systems typically use a
questioning or survey approach to gather information about an
individual case, such as herbicide usage on weeds at a paddock
level, from a non-expert user, and interpret the results using
a series of statements or steps designed to reproduce the way a
human expert would analyse them. The assessments used in
expert systems may be based on interpreted data where
available or, similarly to Bayesian belief networks, the
consensus opinion of experts (Spiegelhalter ez al. 1993). In our
case we analysed a combination of real data, assumptions from
existing resistance cases, and modelling (Werth et al. 2008;
Thornby and Walker 2009) to produce a weighted scoring
system. The framework uses our expertise-derived weightings
to assess resistance risk for each weed or management scenario.

Species risk

Sixty-five species were included in the risk assessment as they
were either named on glyphosate labels in Australia, known to
have glyphosate resistance internationally, or found in various
field surveys conducted in the northern grain region of Australia
(Charles et al. 2004; Walker et al. 2005).

Species resistance potential was assessed using five main
characteristics (Jasieniuk et al. 1996; Powles and Yu 2010).
These were fecundity (F7), proportion of the viable seed bank
that generally emerges (P;), ability to outcross (M), method of
reproduction (S;), and generation period (7;). The importance of
these biological characteristics was determined by weighting
categories using the expert systems approach (Table 1). For
the purposes of this assessment it was assumed that resistance
is nuclear, dominant and conferred by a single gene. This
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Table 1.

J. Werth et al.

Weed species characteristics and corresponding weightings used for the species risk assessment for evolution of glyphosate resistance

Characteristic Category

Weighting

1. Fecundity

>100 000 seeds/plant

10

10000100 000 seeds/plant 6

100010 000 seeds/plant

<1000 seeds/plant
2. Proportion of viable seed bank emerging

Small

3. Mating Mostly selfing

Both selfing and outcrossing
Mostly outcrossing

Sexual
Vegetative
Both

4. Reproduction method

5. Generation period

Perennial

Large with a single cohort
Large with multiple cohorts
Medium with a single cohort
Medium with multiple cohorts

Annual species with multiple generations per year on most seed produced
Annual species with multiple generations per year on some seed produced
Annual with one generation per year

v

—_
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assumption was based on the fact that, in previous cases studied, a
single gene confers glyphosate resistance (Lorraine-Colwill ef al.
2001; Zelaya et al. 2004).

For each species (i), categories were weighted, and added to
form a score Rg, which is calculated as:

Rsi:Fi+Pi+M,'+S,'+T[ (1)

The scoring system for E. colona is demonstrated in
Table 2. The theoretical maximum score achievable was 27,
the species results were indexed against this maximum to
produce a score out of 10 (as demonstrated in Table 2).

Management risk

The management risk associated with different parts of the crop
rotation, R, (where j is the phase or unit of the rotation i.e.
summer fallow, or cotton crop etc.) is calculated as:

Ry, = Gj = (Cix E¢,) — (4 Ey) — K, (2)

where G;is the number of glyphosate applications per phase j, C;is
the number of times the grower attempts to control glyphosate
survivors in phase j, Ec, is the average effectiveness of methods
used to control survivors in phase j; 4; is the number of non-
glyphosate kill methods used in phase j and E 4 is for the average

effectiveness of those alternatives. The values for Ec, and E 4,
range from zero to 0.95, this value was chosen as a maximum
as it was considered quite difficult to achieve 100% control,
particularly on a large scale.

K; is a crop rating, allowing for a reduction in weed seed set
due to competitiveness of the crop use in phase j, K is determined
as:

Kj:KFj*KRj*KDj (3)

where K-is a factor for the type of crop. For the range of rotational
phases we studied, K ranged from zero for fallow, (which has
no competitive effect) to 0.6 for barley, (which has a high
competitive effect) (Keeley and Thullen 1991; Lemerle et al.
1995; McGillon and Storrie 2006; Werth 2007; Wu et al. 2010).
Kp is areducing factor for crop row spacing, and K, is a reducing
factor for crop density. Total values for K;range between zero and
0.6 (Table 3).

Overall risk

The overall risk is determined by the species risk Ry, and the level
of selection pressure (management risk) exerted by the cropping
system Ry, . Species were matched to relevant crops i.e. summer
and winter except where growers indicated otherwise. A total risk

Table 2. Risk assessment scoring for Echinochloa colona using criteria in Table 1

Characteristic Category Weighting
1. Fecundity 10000100 000 seeds/plant 6
2. Proportion of viable seed bank emerging Large with multiple cohorts 9
3. Mating Mostly selfing 0.5
4. Reproduction method Sexual 1
5. Generation period Annual species with multiple generations per year on some seed produced 2
Total 18.5
Indexed out of 10 (18.5/27)*10 6.9
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Table 3. Crop competition scoring factors used to determine impact of crop competition on management risk scores

Crop Competition factor Row configuration” Row configuration factor Crop density® Density factor
Irrigated cotton 0.2 Solid 1 High 1
Dryland cotton 0.1 Single skip 0.9 Medium 0.9
Sorghum 0.2 Double skip 0.8 Low 0.8
Sunflowers 0.1 Super singles 0.7 - -
Maize 0.2 - - - -
Wheat 0.4 - - - -
Barley 0.6 - - - -
Oats 0.4 - - - -
Fallow 0 - - - -
Other summer 0.2 - - - -
Other winter 0.1 - - - -

ARow configuration for cotton, sorghum, maize and sunflowers is as follows: solid = 1-m row spacing; single skip =2 rows planted (1 m apart), I row missing;
double skip =2 rows planted, 2 rows missing; super singles =1 row planted, 3 rows missing.

BCrop density relative to accepted industry average.

score Rr, for weed species i can then be calculated by multiplying
the weed’s species score by the average for phase ;.

RT,./ = RS, * RM/ (4)

Grower information

In a case study, 50 growers were surveyed to gain information of
species present and management practices. Information gained
was:

(1) Weed species present in crop and fallow;

(2) Crops grown, row configuration and planting density;

(3) Number of glyphosate applications in crop and fallow;

(4) Number ofalternatives to glyphosate used in crop and fallow;
and

(5) Number of times survivors of glyphosate application were
controlled, and the effectiveness of those applications.

This information was used to form the management risk
component of the assessment.

Results

Species risk

The indexed species risk scores ranged from 8.2 for Bracharia
eruciformis (Sm.) Griseb. to 0.2 for Cyperus spp. The 20
highest scoring species are listed in Table 4. Four of the top
10 species currently have glyphosate-resistant populations in
the sub-tropical cropping region of north-east Australia
(C. bonariensis, 7.6; U. panicoides, 7.2; E. colona, 6.9;
L. rigidum 6.3). The other glyphosate-resistant species in this
region, C. truncata, scored 5.9. Eleusine indica (L.) Gaertn. and
Sorghum halepense L. Pers., which have glyphosate-resistant
populations worldwide, were ranked equal 7th and 17th with
scores of 6.3 and 3.7, respectively. The lower 45 species not listed
in Table 4 had scores less than 3, and as a result are considered to
have a low risk of evolving glyphosate resistance.

Other species in the top 20 that have evolved resistance to other
herbicide groups include Avena spp. (ACCase inhibitors, ALS
inhibitors), Hordeum spp. (ACCase inhibitors, Bipyridiliums),

Table 4. Species risk scores for the top 20 species identified as being at risk of evolving glyphosate resistance

Species Common name Score References for biological characteristics
Brachiaria eruciformis Sweet summer grass 8.2 -

Conyza bonariensis Flaxleaf fleabane 7.6 Wu et al. (2007)

Urochloa panicoides Liverseed grass 7.2 Werth et al. (2008)

Chloris virgata Feathertop Rhodes grass 7.0 Osten (2008)

Sonchus oleraceus Sowthistle 6.9 Hutchinson et al. (1984); Widderick ef al. (2010)
Echinochloa colona Awnless barnyard grass 6.9 Mercado and Talata (1977)

Eleusine indica Crowsfoot grass 6.3 Chin and Raja Harun (1980)

Phalaris paradoxa Paradoxa grass 6.3 Walker et al. (2001)

Hordeum spp. Barley grass 6.3 -

Lolium rigidum Annual ryegrass 6.3 Pannell ez al. (2004)

Dactyloctenium radulans Button grass 5.9 -

Digitaria ciliaris Summer grass 5.9 Kobayashi and Oyanagi (2005)

Chloris truncata Windmill grass 5.9 -

Amaranthus hybridus Redshank 4.8 -

Cirsium vulgare Spear thistle 4.8 Sindel (1991); Suwa et al. (2010)
Silybum marianum Variegated thistle 4.8 Sindel (1991)

Sorghum halepense Johnson grass 3.7 Scopel et al. (1988); Vila-Aiub et al. (2007)
Eragrostis cilianensis Stink grass 3.7 -

Avena spp. Wild oats 3.5 Walker et al. (2001)

Lactuca serriola Prickly lettuce 3.5 -
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Phalaris paradoxa L. (ACCase inhibitors), Sonchus oleraceus
L. (ALS inhibitors), and Lactuca serriola L. (ALS inhibitors,
Phenoxys) (Heap 2011). Species with herbicide-resistant
populations that ranked lower than the highest 20 were
Fallopia convolvulus (L.) A. Love, Raphanus raphanistrum
L. and Sisymbrium thellungii O. Schultz all with scores of 1.9.

Management risk

Management risk scores averaged across all respondents ranged
from 1.5 for non-irrigated GR cotton and summer fallow to 0.2 for
irrigated non-GR cotton (Table 5), with the highest individual
scores of 5 recorded for summer and winter fallows (one grower
in each). Some growers reported applying up to 6 glyphosate
applications per phase. These were recorded in GR cotton and
winter fallows. Irrigated and non-irrigated GR cotton had the
highest number of glyphosate applications with means of 3.2

J. Werth et al.

and 3.0, respectively, and this was followed by the summer fallow
which averaged 2.8 glyphosate applications. Irrigated GR cotton
had the highest average number of applications to control
glyphosate survivors (1.2) although some growers used five
options to control glyphosate survivors in summer and winter
fallows.

Overall risk

The combined total risk scores for each phase (R7,) are listed in
Table 6. The weed species and phase with the highest risk was
B. eruciformis in non-irrigated GR cotton (12.3) and summer
fallow (12.0). This was followed by C. bonariensis also in non-
irrigated GR cotton (11.5) and summer fallow (11.2). When
species present and management practices were combined for
individual responses, C. bonariensis in summer fallow and other
winter crops had very high risk situations (0-30). S. oleraceus had

Table 5. Management risk scores by phase for number of glyphosate applications, control of survivors of glyphosate
applications, use of alternatives to glyphosate and the total management risk score (Ry)
Scores are means followed by range in parentheses

Phase No. of Glyphosate Survivor Number of Total (Ry)
responses applications (G;) control (C;) alternatives (4))

Summer fallow 31 2.8 (0-5) 0.7 (0-5) 1.1 (0-3) 1.5 (0-5)
Non-irrigated GR cotton 11 3.0 2-6) 1.0 (0-3) 1.3 (0-7) 1.5 (0-4)
Non-irrigated non-GR cotton 1 2 1 0.5 (0-1) 1.4

Winter fallow 30 2.1 (0-6) 0.6 (0-5) 0.5 (0-3) 1.2 (0-5)
Trrigated GR cotton 22 3.2 (2-6) 1.2 (0-4) 1.1 (04) 1.1 (04)
Other winter crop 22 1.6 (0-4) 0.5 (0-3) 1.1 (0-3) 0.8 (04)
Sorghum 22 2.0 (0-5) 0.5 (0-2) 1.6 (0-4) 0.6 (0-4)
Wheat 32 1.3 (04) 0.5 (0-3) 0.9 (0-3) 0.5 (04)
Barley 14 1.0 (0-3) 0.3 (0-1) 0.9 (0-3) 0.5 (0-3)
Other summer crop 11 1.2 (0-3) 0.6 (0-2) 0.7 (0-3) 0.4 (0-1)
Irrigated non-GR cotton 7 1.3 (0-2) 0.6 (0-2) 1.6 (0-6) 0.2 (0-2)

Table 6. Mean total risk scores (Ry,) for highest risk weeds and phases
Maximum individual risk scores are indicated in parentheses (all individual risk scores had minimum values of zero). Single dashes in predicted total risk scores
indicate an unlikely combination for which no estimate is made

Species Summer Non- Non- Winter  Irrigated Other  Sorghum Wheat  Barley Other  Irrigated
fallow irrigated irrigated fallow  GR cotton  winter summer non-GR
GR cotton non-GR cotton crop crop cotton
Predicted total risk (mean management risk per phase x species risk)
Brachiaria eruciformis 12 123 11.4 9.8 9.2 - 52 - - 3 1.7
Conyza bonariensis 11.2 (30) 11.5(22) 10.6 (14) 9.2 (23) 8.6(21) 64(30) 49(17) 3.7 38(16) 28(6) 1.6(14)
Urochloa panicoides 10.7 (22) 109 (21) 10.1 8.7(1D* 8121 6122 4.6(16) - - 27(7) 15(2)
Chloris virgata 10.4 (28) 10.6 (7) 9.9 8.5 (15)* 7.9 - 4.5 (6) - - 2.6 1.5
Sonchus oleraceus 10.1 (28) 10.4 (7) 9.6 8.3 (28) 7.7(14) 58(Q27) 44(6) 3414 3417 26(]) 1.4
Echinochloa colona 10.1 (27) 10.4 (27) 9.6 832D 77027 582D 44(15) - 3417 26(7) 14(Q)
Eleusine indica 9.3 9.5 8.8 - 7.1 - 4 - - 2.3 1.3
Phalaris paradoxa 9.3 - - 7.6 - 53 - 3.1 3.1 - -
Hordeum sp. 9.3 - - 7.6 - 53 - 3.1 3.1 - -
Lolium rigidum 9.3 (7) - - 7.6 - 53 (12) - 3.1 3.1 - -
Dactyloctenium radulans 8.7 (24) 9 8.3 7.1 6.7 5 3.8 2.9 2.9 2.2 1.2
Digitaria ciliaris 8.7 (24) 9 8.3 7.1(12) 6.7 5 3.8(13) 2.9 2.9 22 1.2
Chloris truncata 8.7(24) 9.0(6) 8.3 7.1 9) 6.7 (12) 5 3.8(5) 29 2.9 22 1.2(1)

AU. panicoides, E. colona and C. virgata are not generally considered to be winter weeds; however, some growers indicated they were present in some winter crops
and fallow.
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very high risk situations in summer and winter fallow (0-28), as
did C. virgata and E. colona in summer fallow (0-28). The range
of grower individual scores varied. For example, the industry
mean for C. bonariensis in other winter crops was only 6.4
compared with an individual response of 30. This highlights
the wide range of management practices adopted by growers
throughout the industry. The summer fallow in general had higher
risks for all species when compared with other phases. The use of
alternatives and survivor control in the summer fallow was
generally less than both irrigated and non-irrigated GR cotton.

Discussion
Species at risk

All species with confirmed glyphosate resistance in the
sub-tropical cropping region of Australia, C. bonarensis,
E. colona, U. panicooides, L. rigidum and C. truncata, were
present within the top 10 species and had species risk scores 5.9 or
above. This is a good indication of the usefulness of our risk
assessment process.

There are five species in the top 10 that are currently
not confirmed with glyphosate resistance in this region —
B. eruciformis, S. oleraceus, C. virgata, E. indica and
Hordeum species. B. eruciformis is common in central
Queensland and is a high risk species for that region (Osten
etal.2007), but not found in the cotton-growing areas of southern
Queensland and northern New South Wales. Our survey did not
include central Queensland and thus no overall risk scores were
calculated for that species.

S. oleraceus is a common weed across the sub-tropical
cropping region and has the ability to germinate all year
round. Although S. oleraceus has virtually no dormancy
(Chauhan et al. 2006; Widderick et al. 2010), it is rarely
present in the field in dense populations. Fallows infested with
S. oleraceus are normally treated with mixtures of glyphosate
and 2.4-D (Walker et al. 2005). This combination with
different modes of action (Groups M and I) would be expected
to reduce the risk of glyphosate resistance evolution. Thus, it
is likely that the lower average population density and less
exposure to glyphosate alone are reasons why glyphosate
resistance has not yet been observed in this species.

C. virgata is a species that is a major problem in central
Queensland (Osten 2008) but is increasing in prevalence in
north-eastern Australian cropping systems. This species is not
particularly susceptible to glyphosate and current practices may
have led to a species shift rather than evolved resistance, though
in both cases the effectiveness of glyphosate is reduced.

E. indica and Dactyloctenium radulans (R.Br.) Beauv. are
both not widespread (Charles et al. 2004; Walker et al. 2005),
and as a result are not considered major resistance issues for the
industry as a whole. Even so, if present in the field, they require
particular attention, particularly as populations of E. indica are
glyphosate-resistant overseas.

The top 20 species are dominated by the annual grasses and
members of the Asteraceae family. This is predominately due to
their high seed production, which is a common characteristic of
current resistant species. Therefore, these are the species that
growers need to monitor closely.
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Risks in crops and fallows

Within the diverse cropping systems of the Australian sub-
tropical region, the high risk phases were non-irrigated GR
cotton, summer fallow, and to a lesser extent irrigated GR
cotton. This assessment confirmed previous perceived risks
and again indicates the usefulness of our risk assessment process.

However, the overall risk was highly dependent on the
weed species present in the different phases of the rotation. As
an example, the average risk for ‘other’ winter crops was
approximately half of that for summer fallow and non-irrigated
GR cotton. However, when C. bonariensis was present in the
‘other” winter crops phase, individual risks were the same as
for the summer fallow (both 30), and higher than non-irrigated
GR cotton (22).

Eleven of the 50 surveyed growers indicated that they
grew non-irrigated GR cotton. In this phase, the risks for
C. bonariensis, U. panicoides and E. colona were high.
Currently there is only one confirmed resistant E. colona
population in a non-irrigated GR cotton system (Werth et al.
2010), though the number of cases is likely to increase. It is
concerning that there were growers, who indicated they did not
control survivors of glyphosate application, despite the
requirements to do so (Werth et al. 2008). These growers are
likely to have thought that glyphosate provided sufficient control
negating the need for further action. The individual responses of
non-irrigated GR cotton growers did, however, indicate that they
all used an alternative to glyphosate at some stage, and thus no
grower in this survey relied on glyphosate only for weed control.

The risk scores for the summer fallow were consistently high.
Glyphosate has been relied upon for weed control in the summer
fallow phase for several years. It is unclear if the survivor control
in the fallows were separate applications specifically for
controlling glyphosate survivors, or if they were included in
other herbicide applications. Tank-mix partners such as 2,4-D,
picloram and MCPA do not act as alternatives for grass control.
Therefore, research now concentrates on strategic use of residual
herbicides and tillage to reduce the reliance on glyphosate. In
fallow situations, Group A herbicides (ACCase inhibitors) are
starting to be used. These herbicides have a high resistance risk,
and as aresult, the impact of their increased use in fallow needs to
be examined thoroughly before promotion to growers.

Conclusions

Opverall, the individual and average risks for glyphosate resistance
in cotton systems of sub-tropical Australia vary considerably.
This highlights the importance for growers to individually
assess their own situation in terms of species present and their
management practices. Our risk assessment framework will
enable growers to tailor their weed management to focus on
those species that are at a high risk of evolving resistance. They
will need to use effective alternatives to glyphosate, which when
targeted at their at-risk weed species will help to ensure the long-
term sustainability of glyphosate.
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