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ABSTRACT: Developing accurate genomic eval-
uations of fertility for tropical beef cattle must deal 
with at least two major challenges (i) recording cow 
fertility traits in extensive production systems on 
large numbers of cows and (ii) the genomic evalua-
tions should work across the breeds, crossbreds, and 
composites used in tropical beef production. Here, 
we assess accuracy of genomic evaluations for a trait 
which can be collected on a large scale in extensive 
conditions, corpus luteum score (CLscore), which is 
1 if ovarian scanning indicates a heifer has cycled 
by 600 d and 0 if not, in a multi-breed population. 
A total of 3,696 heifers, including 979 Brahmans, 914 
Droughtmasters, and 1,803 Santa Gertrudis in seven 
herds across 3-yr cohorts with CLscores, were geno-
typed for 24,211 SNPs. Genotypes were imputed to 
728,785 SNPs. GBLUP and BayesR were used to pre-
dict GEBV. Accuracy of GEBV was evaluated with 
two validation strategies. In the first strategy, the last 
year cohort of heifers from each herd was used for 
validation, such that every herd had heifers in both 
reference and validation populations. In the second 
validation strategy, each herd in turn was removed in 
its entirety from the reference population, and was 

used for validation. For both validation strategies, 
accuracy of GEBV for single breed and multi-breed 
reference populations was assessed. For the first val-
idation strategy, accuracy of GEBV ranged from 0.2 
for Brahmans to 0.4 for Droughtmasters. Increasing 
marker density from 24K SNPs to 728K SNPs 
resulted in a small increase in accuracy, and including 
multiple-breeds in the reference did not help improve 
accuracy. These results suggest that provided a herd 
has animals in the reference population, the accuracy 
of the GEBV is largely determined by within herd 
(linkage) information. The situation was very differ-
ent when entire herds were predicted in the second 
validation. In this case accuracy of GEBV using 
only 24K SNPs and only a within breed reference 
was close to zero for all breeds. Accuracy increased 
substantially when 728K SNPs, BayesR, and a mul-
ti-breed reference were used, from 0.15 for Brahmans 
to 0.35 for Santa Gertrudis. Given the second valida-
tion strategy is more likely to reflect the situation for 
many herds in tropical beef production (no animals 
in the reference), genomic evaluations for fertility in 
tropical beef cattle should be based on high-density 
markers (728K SNPs) and should be multi-breed.
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INTRODUCTION

Cow fertility is a major driver of profita-
bility of beef production in northern Australia 
(Taylor and Rudder, 1986; Fordyce, 2012). There 
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is considerable genetic variation for this trait, for 
example Johnston et al (2013) reported differences 
between sires of up to 15 d in the average days to 
calving for their daughters (where days to calving 
is the days from bull in to calving). However, cow 
fertility has been a difficult trait to select and make 
genetic gains for, as it is measured on females only 
and late in life. Accurate genomic evaluations for 
female fertility would allow selection of young bulls 
with superior genetic merit for these traits, acceler-
ating genetic gain.

Accurate genomic evaluations for low herita-
bility traits such as fertility require large reference 
populations (e.g., Goddard and Hayes, 2009), with 
thousands of cows measured for the trait and gen-
otyped for genome-wide markers. Assembling such 
large reference populations within a single cattle 
breed is likely to be challenging, particularly where 
the cattle population consists of many breeds, cross-
breds and composites. This is a feature of tropical 
beef production, including in Australia, where 
cattle include high proportion Bos indicus breeds 
(e.g., Brahman), stabilized composites with 50% 
to 30% Bos indicus (e.g., Droughtmaster and Santa 
Gertrudis), as well as adapted Bos taurus breeds.

Another challenge is to identify a female fertil-
ity phenotype that is feasible to measure on large 
numbers of cattle, in the extensive conditions that 
characterize tropical beef production. While life-
time productivity (number and weight of calves 
weaned over a cow’s lifetime) is perhaps the ulti-
mate fertility trait, this trait is difficult and very 
time-consuming to measure. Alternatives have been 
proposed which can be measured earlier in the cow’s 
life, are correlated to lifetime productivity, and have 
moderate-to-high heritability. These include age at 
puberty and postpartum anoestrus interval (Barwick 
et al., 2009; Johnston et al., 2009). For example, age 
at puberty, as measured by the first appearance of 
a corpus luteum (CL), has a heritability of ~0.5 for 
tropically adapted breeds (Johnston et  al., 2009), 
which is much higher than the heritability reported 
for most other fertility traits (e.g., Berry et al., 2014). 
Another trait proposed is age at first calving (Forni 
and Albuquerque, 2005); however, this trait has a 
low heritability of ~0.1. Although age at puberty 
is an attractive indicator trait for cow fertility, it 
also has challenges with recording as heifers must 
be scanned approximately every 3 wk to determine 
when the first CL appears. This approach was suc-
cessfully used to record age at puberty for ~2,000 
Brahman and Tropical composite cattle (Johnston 
et al., 2009). However, collecting data for this trait 
on the many thousand heifers that are likely to be 

required for accurate genomic evaluations may 
not be feasible. Corbet et  al. (2017) proposed a 
proxy trait, the presence or absence of CL at 600 
d assessed using ovarian scanning (corpus luteum 
score, CLscore), which is more feasible to collect on 
a large scale. This trait does, however, have a some-
what lower heritability than age at puberty, of 0.21 
to 0.33, depending on breed (Corbet et al. 2017).

The accuracy of genomic predictions for age 
at first CL in tropical beef cattle was evaluated by 
Zhang et al. (2014) and Farah et al. (2016). Both 
studies used the same population, of Brahman 
(996) and Tropical Composite (1,097), with gen-
otypes (real or imputed) for 729K markers. These 
studies used different genomic prediction methods, 
but both concluded the accuracy of genomic pre-
diction was ~0.35 for Brahmans and lower at 0.23 
in the tropical composite cattle.

Clearly what is needed to improve these accu-
racies is larger reference populations of genotyped 
cows with fertility phenotypes. Here, we inves-
tigate the accuracies of genomic prediction that 
can be achieved with a population of 3,969 heifers 
recorded for CLscore as recommended by Corbet 
et al. (2017). The population included three tropical 
beef breeds widely used in northern Australia. The 
potential to combine reference populations across 
breeds and the use of imputed high-density SNP 
genotypes to improve accuracies of genomic pre-
diction were evaluated.

MATERIALS AND METHODS

Phenotypes and Genotypes

Fertility records were from heifers in 
seven herds in central, north, or south-eastern 
Queensland, Australia. Across the herds, there 
were 979 Brahman, 914 Droughtmaster, and 1,803 
Santa Gertrudis heifers, in cohorts across 3 yr 
(2012–2014) (Table  1). The heifers were the off-
spring of  180 Brahman, 69 Droughtmaster, and 
116 Santa Gertrudis sires, with on average 9, 15, 
and 16 daughters, with a range of  2 to 68 daughters 
per sire (Corbet et al., 2017). Ovarian activity was 
assessed in the heifers at ~600 d of  age by real-time 
ultrasound scanning. This was a proxy trait for age 
at puberty, a moderately heritable trait correlated 
to lifetime fertility of  cows. Heifers were given a 
CLscore based on the presence or absence of  a CL 
(indicating cycled, or not). For more details on the 
trait and cattle, see Corbet et al. (2017).

All heifers were genotyped with 24,121 genome-
wide SNP using the Geneseek GGP-LD array. 
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57Multi-breed genomic evaluations for fertility

SNPs were evaluated for average genotype call 
(GC) score (measure of genotyping quality), and 
SNPs with >10% of animals with GC score <0.6 
were excluded from further analysis. Monomorphic 
SNPs were also excluded (where the SNPs were 
monomorphic across the entire population) and 
20,414 SNPs remained. Of the remaining SNP, if  
individual genotype calls had GC score <0.6, they 
were set to missing, and genotypes were recovered 
with imputation.

The heifer genotypes were imputed up to 
728,785 SNPs (Bovine HD array), using 3,456 
Brahman, Droughtmaster, Santa Gertrudis, 
Tropical Composites, and other relevant breeds 
genotyped for the Bovine HD array. The 728,785 
SNPs remained from 777K after a similar QC pro-
cess as described above, with the addition that miss 
mapped SNPs were also excluded as described in 
Erbe et al. (2012). The Fimpute software was used 
for imputation (Sargelozei, 2014).

Model for Genomic Predictions and Validation

Two genomic prediction methods were eval-
uated, GBLUP and BayesR. The model for 
GBLUP was

CLscore

1 2

= + +
+ + + +
1nµµ age herdyear

pc pc animal e

where CLscore is a n (number of phenotypes) × 1 
vector of CLscores, µ was the overall mean, 1n is 
a vector of 1s, age was a vector of ages fitted as 

covariate, heardyear is vector of contemporary 
groups (fitted as a fixed effect), pc1 and pc2 were 
the individual animal loadings for principal com-
ponents 1 and 2, respectively (where the pcs were 
derived from the genomic relationship matrix 
among animals), and animal was a vector of ran-
dom effects distributed N g( , ),0 2Gσ  where G is the 
genomic relationship matrix among the heifers con-
structed from the SNP genotypes (either 24K or 
728K) as described by VanRaden (2008), σg

2  is the 
genetic variation captured by the SNP, and e is vec-
tor of random error terms, distributed N e( , ),0 2Iσ  
where σe

2 is the error variance. Genomic heritability 
of CLscore was estimated with ASREML (Gilmour 
et al., 2009).

BayesR (Erbe et al., 2012) predicts SNP effects 
directly and assumes that SNP effects are drawn 
from the mixture of four normal distributions. The 
BayesR model was:

CLscore age heardyear

pc pc Zg

= + +
+ + + +
1n

e

µµ
1 2

where models terms are as described above, 
and g  =  vector of m SNP effects (m  =  20,414 or 
728,785), and g i~ ,N 0 2σσ( ) with four possibilities 

for σσ i
2 2 2 20 0 0001 0 001 0 01= { }, . * . * . ,g g gσ σ σ  where 

σg
2  is the genetic variance of the trait. So each 

SNPs is from one of four possible normal distri-
butions: ( , ),N g0 0 2σ ) N g( , . ),0 0 0001 2σ  N g( , . ),0 0 001 2σ  
and N g( , . ).0 0 01 2σ  Z  is the standardized n m×  

Table 1. Number of heifers with corpus luteum score (CLscore) phenotypes by breed, herd and year

Breed Herd Birth year Number Average CLscore Average age day

Brahman BRA1 2012 110 0.42 489

BRA1 2013 159 0.71 613

BRA1 2014 130 0.63 633

BRA2 2011 82 0.73 723

BRA2 2012 126 0.30 718

BRA2 2014 165 0.39 607

BRA3 2013 115 0.86 615

BRA3 2014 92 0.70 623

Droughtmaster DM1 2012 65 0.35 605

DM1 2013 85 0.22 653

DM1 2014 74 0.38 552

DM2 2012 188 0.53 575

DM2 2013 253 0.54 595

DM2 2014 249 0.29 601

Santa Gertrudis SG1 2012 298 0.94 525

SG1 2013 363 0.52 499

SG1 2014 365 0.70 526

SG2 2012 279 0.70 535

SG2 2013 243 0.79 524

SG2 2014 255 0.75 517
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genotype matrix. As described by Erbe et al. (2012), 
there are two latent parameters in the BayesR 
model, b i k,( ) and Pr.

b i k,( ) defines whether or not SNP i follows nor-
mal distribution k ( , , , ),k =1 2 3 4  with
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Parameter Pr defines the proportion of all the 
SNPs in each of four normal distributions. The prior 
of Pr is a Dirichlet distribution Pr ~ ,Dirichlet α( )  
with αα == [1,1,1,1]. The conditional distribution 
of SNP effect on the proportion parameter Pr is: 
p g N N

N

i g g

g

| ( , ( , .

( , .

Pr( ) = × ×

×

+ +

+

Pr Pr Pr

P

1 0 0 0 0 0001

0 0 001

2
2

2
3

2

σ σ

σ rr4
20 0 01× N g( , . )σ

BayesR was implemented with Gibbs sam-
pling to construct posterior distributions for the 
parameters including SNP effects as described by 
Moser et  al. (2015). There were 50,000 iterations 
of the Gibbs chain with the first 20,000 iterations 
discarded as burn in. GEBV for validation animals 
were calculated as GEBV = Z ĝ

Validation

To investigate the accuracy of genomic evalua-
tions, two validation strategies were used. Either the 
entire last year of data (2014) were predicted, using all 
the other data as a reference (with phenotypes from 
2014 born heifers excluded). That is, genomic breed-
ing values for heifers in 2014 were predicted with 
2011, 2012, and 2013 data. The genomic breeding 
values for these heifers were then correlated with their 
actual CLscores, corrected for fixed effects described 
above. The correlation was calculated within herds 
then averaged across herds within a breed.

In the second validation approach, each herd’s 
data was entirely omitted in turn, genomic breeding 
values were estimated for the omitted herd using all 
the other herds, then the genomic breeding values 
were correlated with CLscore (corrected for fixed 
effects) for the omitted herd.

For each type of validation, reference popula-
tions were either of a single breed (the same as the 
validation set being predicted), or included all three 
breeds. For example, for within breed prediction, 
for a 2014 heifer validation cohort from a Brahman 
herd, only Brahman data were used as reference data. 
For multi-breed predictions, all other data regardless 
of breed were used. Note that for BayesR with 24K 
SNPs, results were almost identical to those from 
GBLUP with 24K SNPs, so are not presented here.

RESULTS

Based on the SNP genotypes, Droughtmasters 
were the most diverse breed, followed by Brahmans 
and Santa Gertrudis—in a principal component 
plot, Droughtmasters were clearly the most dispersed 
(Figure 1a). This is reflected in effective population 
size estimates derived from linkage disequilibrium 
(using the methods of Hayes et  al. (2003) among 
SNP markers). The estimates of effective popu-
lation size were 484, 576, and 373 for Brahman, 
Droughtmaster, and Santa Gertrudis, respectively. 
For comparison, the estimate of effective popula-
tion size in Angus cattle using the same method 
was 101 (Bovine HapMap Consortium, 2009).  

Figure 1. (a) Principal component analysis of SNP genotypes for 
Brahman, Droughtmaster, and Santa Gertrudis heifers. The first axis 
(PC1) separates animals on Bos indicus content. The second axis (PC2) 
separates animals on Bos taurus breed that contributed to the com-
posite, for Santa Gertrudis and Droughtmasters. (b) Extent of linkage 
disequilibrium for each breed. The 728K SNPs array has a density of 
approximately an SNP every 7 kb, while the 24K array has a density of 
an SNP every ~125 kb. The 24K array genotypes were used to generate 
these plots.
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The extent of linkage disequilibrium for each breed 
shows that linkage disequilibrium for the three 
tropical breeds was considerably lower, particu-
larly at short distances between markers, than for 
Angus cattle, a representative Bos taurus breed. 
Droughtmasters had the lowest level of linkage dis-
equilibrium at most distances (Figure 1b).

The genomic heritability of CLscore estimated 
with GBLUP was 0.22 ± 0.03 with 24K SNP, and 
0.24  ±  0.03 with 728K SNPs, indicating that the 
higher density SNP captured slightly more of the 
genetic variance for the trait, although the difference 
was not significant. With BayesR, the estimate of 
heritability was 0.26 ± 0.03, indicating that BayesR 
with the high-density SNP may capture slightly more 
of the genetic variance, though again the difference 
was not significant between GBLUP and BayesR.

The accuracy of genomic breeding values, from 
the validation studies, was higher when predicting 
the last year of data (all herds included), than when 
entire herds were left out of the reference set and pre-
dicted, Figure 2a. When predicting the last year of 
data (2014), accuracy for Santa Gertrudis was higher 
than the other breeds for the within breed genomic 
evaluations for a number of the comparisons, likely 
reflecting the larger number of animals in the refer-
ence set for this breed (Table 1). We tested this by 
reducing the number of animals with phenotypes 
in the Santa Gertrudis reference by half, such that 
the number in the reference was similar to that for 
Droughtmasters. The accuracy of genomic breed-
ing values was then reduced to a similar level to that 
achieved for Droughtmasters, suggesting the greater 
accuracy achieved for Santa Gertrudis when all data 
are used does indeed reflect the fact that there are 
more Santa Gertrudis heifers in the reference set.

The accuracy of across herd prediction was 
substantially higher when these predictions were 
based on 728K SNPs rather than 24K SNPs, 
Figure 2b, provided predictions were multi-breed. 
These results likely reflect the low levels of link-
age disequilibrium (LD) in the three breeds—large 
numbers of SNP are required before the effects of 
all mutations affecting CLscore across the genome 
are captured. That is, large numbers of SNP are 
required to ensure all mutations are in high linkage 
disequilibrium with at least one SNP. Consistent 
with this hypothesis, the breed that gained the most 
(in accuracy of prediction) from the high-density 
markers was Droughtmaster, the breed with the 
highest effective population size and lowest levels 
of LD. In addition, Droughtmaster is a graded 
up composite “breed” of Brahman and initially 
shorthorn, but other Bos taurus breeds have been 
used in more recent times. Santa Gertrudis is a 

stabilized cross of Beef shorthorn and Brahman. 
Hence Droughtmaster could be expected to get 
some benefit from including Santa Gertrudis and 
Brahman data in the genomic analysis. Within 
breeds, shifting from 24K to 728K SNPs did not 
improve accuracies, this is likely a reflection of the 
relatively small numbers of animals available within 
each breed that were used to estimate SNP effects.

DISCUSSION

This study demonstrates that multi-breed 
genomic evaluations for fertility are possible in 
northern beef cattle, and genomic breeding values 
with moderate accuracies for a trait such as CLscore 
for heifers, an indicator trait for age at puberty, can 
be produced. CLscore is a one-off  assessment of 
whether females have reached puberty or not based 
on the presence or absence of a CL or CA (corpus 
albicans). The CL experiences luteolysis at about 
day 17 of the cycle and regresses as a CA to usually 
become invisible beyond about 10 mm in diameter 
at ovulation. One limitation of this trait that should 
be pointed out is that in cycling females, a corpus 
hemorrhagica (CH) may not be visible, so that pos-
sibly 14% of cycling animals may be mis-diagnosed 
as acyclic using this method (Bicalho et al., 2008). 
The effect of this will be to lower the heritability 
of the trait, as it will be the same for all herds if  
assessed in a similar way. Despite this potential 
source of error, we observed moderate heritability 
for this trait (0.26), and it is feasible to measure this 
trait for large numbers of herds in extensive trop-
ical environments. Heritability will be highest for 
CLscore when heifer cohorts are assessed as close 
as possible to the time when ~50% reach puberty 
(as was achieved for the herds in this study). This 
will be between one and 2 yr of age in most situa-
tions in Northern Australia, and for most tropical 
environments, but later for cohorts that have expe-
rienced the most difficult nutritional circumstances.

The accuracies of genomic predictions for 
CLscore were highest when all herds had some 
information in the reference population (e.g., from 
previous heifer cohorts), that is when 2014 heifers 
were used as a validation. In this case, using either 
higher density markers or BayesR only gave mod-
est improvements in genomic prediction accuracy. 
Additionally, the advantage of multi-breed vs. 
single-breed evaluations for this validation strat-
egy was small. These results suggest that if  a herd 
is in the reference population, most of the infor-
mation to predict future cohorts of the herd come 
from within herd information, i.e., linkage (par-
ticularly there is limited use of sires across herds, 
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as was the case here), and 24K SNPs are sufficient 
to capture this.

The results were quite different when the valida-
tion involved predicting entire herds that were omit-
ted from the reference population. In this situation, 
accuracies of predicting CLscore were very low with 
24K SNPs or single breed evaluations. The accuracy 
of prediction increased considerably when predictions 
were made using a multi-breed reference, BayesR and 
728K SNPs. Taken together, these results indicate 
that the accuracy of genomic predictions for herds 
not represented in the reference population depends 
on LD between the SNP and causal mutations affect-
ing the trait (such that 728K SNPs are required for 
accurate predictions), and this LD persists across 
breed (at least for the three breeds considered here).

In most Bos taurus breeds of cattle, the advan-
tage of moving from low-density (e.g. 50K) to 
high-density (e.g. 777K) SNP in terms of accur-
acy of genomic predictions is zero to small within 
breed (VanRaden et  al., 2013, Gunia et  al., 2014). 
This likely reflects the small effective population 
size of these breeds. Macleod et al. (2016) demon-
strated that the increase in accuracy of prediction 
from higher density of markers, up to full genome 
sequence, was dependent on effective population size 
(Ne), with no advantage expected when Ne was 100, a 
reasonable advantage when Ne was 1,000, and a large 
advantage when Ne was 10,000. Our results demon-
strate that in Brahman, Droughtmaster, and Santa 
Gertrudis, which all have an Ne > 300, high-density 
SNP (728K) results in higher accuracy of genomic 

Figure 2. Accuracy of GEBV for corpus luteum score (CLscore) in heifers. (a) When the last year cohort (2014) of heifers with CLscores for 
each herd was dropped from the reference population and used for validation, such that every herd had heifers both in the reference population and 
the validation population. The accuracy of GEBV was then calculated as the correlation between the GEBV for the last year cohort of heifers and 
actual CLscore, divided by the square root of the heritability of CLscore (our estimate of h2 was 0.24 using 728,785 SNPs). (b) When each herd in 
turn was removed in its entirety from the reference population, GEBV for all heifers in the omitted herd were predicted. The accuracy of GEBV 
was then calculated as the correlation between CLscore and GEBV in the omitted herd, and this was averaged across herds. For both validation 
strategies, accuracy of GEBV for single breed and multi-breed evaluations were assessed.
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61Multi-breed genomic evaluations for fertility

prediction, and additionally results in multi-breed 
evaluations contribute additional accuracy.

We did not observe any individual SNP with 
large effects on CLscore. As a result of running 
BayesR, the posterior probability that each SNP 
explains 1% of the variance or more is derived 
Figure 3a. The highest posterior probability of an 
SNP explaining 1% of the variance or greater was 
0.24 for an SNP on chromosome 17 (36,395,706 bp). 
The fact that there were no SNP with higher poste-
rior probabilities of explaining 1% of the variance 
suggests a highly polygenic genetic architecture for 
CLscore. A mutation in Plag1, a gene on chromo-
some 14, has been reported to affect age at puberty 
in Brahman cattle (Fortes et al., 2013). We do find 
a group of SNP with elevated posterior probabili-
ties in this region (Figure 3a). In addition, we ran a 
traditional SNP by SNP genome-wide association 
study with the CLscore data and in this GWAS, 
the Plag1 SNP (chromosome 14, 25,015,640  bp) 
was the fourth most significant SNP (P = 0.00011). 
The minor allele frequency for the SNP was 38% in 
Brahman, 20% in Droughtmasters, and 7% in Santa 
Gertrudis. However, even the effect of this muta-
tion was modest for CLscore. There were a series 
of significant SNPs at the start of chromosome 21, 

and the same SNP had reasonably high posterior 
probabilities with BayesR (Figure 3b).

The second validation scenario considered 
here is probably more likely to reflect the applica-
tion of genomic prediction in tropical beef cattle in 
the future. That is, a small proportion of herds will 
make up the reference population, and the major-
ity of herds will not have animals in the reference. 
Our results suggest in this situation, genomic eval-
uations should be multi-breed and based on high 
density (e.g. 728K) SNP.

We have not actually demonstrated here that 
including information from a large number of ani-
mals on CLscore can increase accuracy of genomic 
predictions for age at puberty, where age at puberty is 
defined more precisely (e.g., in days, Johnston et al., 
2009). An accompanying paper (Engle et al., 2018) 
uses a multi-trait approach, with data both on age 
at puberty as defined by Johnston et al. (2009) and 
CLscore to show that the accuracy of genomic pre-
dictions for age at puberty does benefit from inclu-
sion of genotyped animals measured for CLscore.

It should also be pointed out that although 
we made use of multiple breed information here, 
the analysis produces genomic breeding values on 
a different and arbitrary base for each breed. To 

Figure 3. (A) Posterior probability of inclusion of an SNP in the BayesR model, for 728K genome-wide SNPs. The reference population was 
all 3,696 heifers with corpus luteum score (CLscore) phenotypes. Red denotes odd numbered chromosomes, blue denotes even numbered chromo-
somes. (B) Genome-wide association study, fitting each SNP in turn, using the same data.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/97/1/55/5146046 by Q

ld D
ept of Em

ploym
ent, Econom

ic D
evelopm

ent & Innovation user on 15 N
ovem

ber 2022



62 Hayes et al.

produce genomic breeding values on the same base 
for the breeds, contemporary groups consisting of 
animals of multiple breeds are required.
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