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Abstract

The within-plant, vertical (internodal) distribution of the silverleaf whitefly (SLW), Bemisia tabaci (Gennadius)
MEAMI (biotype B) adult, large nymph (3rd and 4th instar) and egg stages was quantified in relation to four major
Australian field crops, viz., cotton, mungbean, soybean and sunflower in 2003. The objective was to identify
suitable sampling locations within the crop canopy. Ovipositional preference of SLW among the four crops under
field conditions was also determined to gauge potential susceptibility and support crop choice and configuration de-
cisions in multi-crop systems. SLW abundance at main stem leaf nodes within each crop was characterised in a two-
stage analysis of the proportion of infested nodes and the number of SLW at the node if infested. The vertical dis-
tribution profiles of adults and nymphs from the experimental plots were validated for cotton using scouting data
collected in the 2002-2003 growing season and for mungbean from an agronomic comparison of commercial germ-
plasm conducted in 2003. Vertical distributions of adults and juvenile stages differed among the four crops. Based
on their distribution profiles, the optimal sampling locations in cotton, mungbean, soybean and sunflower are leaf
nodes 3-5, 2-3, 3—4 and 5-7 for adult SLW and 7-10, 4-5, 5-6 and 17-21 for large nymphs, respectively. A com-
parison of egg density per unit area of green leaf among the four host plant species indicated that soybean is the most
attractive to ovipositing females, mungbean the least, and cotton and sunflower intermediate. The potential of each
crop as a source for SLW on the basis of nymph abundance is discussed. Low preference combined with a low

source potential makes mungbean the crop of choice in broad acre cropping areas in which SLW is endemic.

Key words  distribution, field crops, sampling, whitefly.

INTRODUCTION

An outbreak of Bemisia tabaci MEAMI1 (B-biotype), the silverleaf
whitefly (SLW), in late 2001 marked the entry of a globally feared
and highly destructive insect (Gerling & Mayer 1996; Oliveira
et al. 2001; Inbar & Gerling 2008; De Barro ef al. 2011) into the
pest spectrum of field crops in central Queensland, Australia (Gun-
ning et al. 1995; Moore et al. 2004; De Barro & Coombs 2009).
Widespread damage or, in severe cases, complete crop loss was re-
ported in grain legume, oilseed, fibre and melon crops. Irrigated
cotton was deemed to be at the highest risk of long-term economic
damage resulting from fibre contamination and the potential loss
of overseas markets, as evident from precedents in Arizona
(USA) in the 1990s (Ellsworth & Martinez-Carrillo 2001).

The development of management strategies, including
sampling plans, for invasive crop pests such as SLW entering a
new country requires a thorough understanding of their agroecol-
ogy in the new environment (De Barro 1995; Naranjo 1996). The
agroecology of SLW has been well studied in crops and cropping
systems outside Australia. Within-plant distributions of B. tabaci
have been quantified in crops including cotton (Rao et al. 1991;
Naranjo & Flint 1994, 1995), cucumber (Hou et al. 2007), melons
(Tonhasca et al. 1994), peanut (Lynch & Simmons 1993) and
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tomato (Schuster 1998; Muniz et al. 2002; Amé et al. 2006). Host
plant preferences of B. tabaci and host quality for juvenile devel-
opment have been the subjects of several comprehensive reviews
(De Barro 1995; Gerling & Mayer 1996; Inbar & Gerling 2008).

The agroecology of SLW in Australian cropping systems was
a crucial knowledge gap at the time of the outbreak in central
Queensland. The SLW outbreak provided the impetus for the de-
velopment of a comprehensive SLW management R&D pro-
gram for the cotton and grains industries in central Queensland
from 2002 to 2006. A key component of the R&D program in-
volved characterisation of agro-ecological parameters, including
temporal, spatial and within-plant distributions, host plant prefer-
ences and plant-mediated mortality factors.

In this paper, we report on activities conducted during the
2002-2003 cotton season (September—April) within the SLW
R&D program to quantify host plant relationships in four
major Australian field crops, viz., cotton, mungbean, soybean
and sunflower. We report firstly on experimental assessments
of within-plant vertical distributions of adult and juvenile
SLW in each of the four crops at two times. The objective
of this study was to generate base-line distributional data
and identify potential sampling planes and locations (nodes)
within the crop canopy to support future development of
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crop-specific sampling plans. Next, we test the validity of
recommended sampling locations inferred from the experimental
assessment using scouting data collected in two commercial
cotton crops and an agronomic comparison of commercial
mungbean germplasm. Finally, we report on asymmetries in
egg and nymph abundance among the four crops as a measure
of host plant preference and population recruitment potential,
respectively. We discuss the results in the context of SLW host
plant preferences, crop choice and the potential for population
recruitment in mixed cropping systems.

MATERIALS AND METHODS

Experimental assessment

The study was conducted at the Queensland Department of
Agriculture and Fisheries research facility at Emerald
(23°34'S, 148°10'E). The experimental design compared
SLW distribution and oviposition responses to four ‘monocul-
ture’ and one ‘interplant’ crop layouts (treatments) in field
plots of dimension § m wide x 5 m long in a randomised
block design with three replicates. Each monoculture treat-
ment consisted of eight rows (1 m spacing) of either cotton
(Gossypium hirsutum L cv ‘Delta Topaz’), mungbean (Vigna
radiata (L.) R Wilczek cv ‘Emerald’), soybean (Glyrcine
max (L.) Merr cv ‘Jabiru’) or sunflower (Helianthus annuus
L cv ‘Advantage’). The interplant treatment consisted of three
rows of soybean planted in the furrow between eight rows
(1 m spacing) of cotton such that a row of soybean was
interspersed between cotton rows 2 and 3, 4 and 5, and 6
and 7. In the interplant treatment, the rows of soybean and
rows of cotton were treated as subplots. Plots within blocks
were separated by 2 m bare earth buffers.

The inclusion of monoculture and interplant treatments
within the experimental layout was designed to test whether or
not innate oviposition preference for host plant species, i.e. rank
order of host plant preference, as indexed by the asymmetry in
SLW egg distribution among crops, was influenced by differ-
ences in the availability of green leaf area for oviposition and
physical proximity under field conditions.

The four crops were planted using standard commercial sowing
rates on 22 January 2003. A common planting date for all crops
was justified by the overriding need to facilitate equal availability
of all species for colonisation by SLW so as to enable valid com-
parisons among them. For mungbean, soybean and sunflower, the
planting date was well within the optimal planting window (De-
cember—January) for commercial crops in central Queensland.
For cotton, the planting date was outside the preferred window
for commercial cropping (August—October) but well within the
window in which the diurnal temperature regime and light inten-
sity were sufficient to produce vegetative growth and biomass that
was similar to earlier planted crops (R Sequeira, unpublished data).

The monoculture plots were sampled at 36 days (Time 1) and
63 days (Time 2) after planting; the interplant plots were
sampled only at Time 2. The potential for further sampling was
limited by the short time-to-maturity of mungbean (70-90 days)
and sunflower (70-80 days).
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Sampling

Time 1. The distribution of SLW adults and nymphs (3rd and
4th instars, including the red-eye stage) on whole leaves along
the main stem of each crop was quantified using the leaf turn
method and visual counts (Naranjo & Flint 1994; Amno et al.
2006). Beginning at the first fully unfurled leaf at the growing
terminal (node 1), adults were counted on a single leaf (the
middle leaflet of a trifoliate leaf on the legume species) per plant
so as to minimise disturbance. In this manner, a total of 20 leaves
(10 in replicate 1 and five in each of replicates 2 and 3) were
sampled at each leaf node position across all plots within plant
species. Foliage on all branches coming off the main stem was
ignored. Sampling was restricted to the monoculture plots so as
to exclude any potential impacts of cotton/soybean interplanting
on insect abundance and distribution in the interplant plots.
Preliminary attempts to estimate nymph abundance under
field conditions based on visual counting using the leaf turn
method proved impractical, particularly given the difficulty in
distinguishing with the naked eye between nymphs that were
healthy and those that had been parasitised or predated upon.
For this reason, healthy nymphs were counted on the abaxial side
of excised whole main stem leaves (all leaflets of trifoliate le-
gume leaves) at every node on a total of 20 randomly selected
whole plants (10 from replicate 1 and five from each of replicates
2 and 3) within plant species using a hand lens in the laboratory.

Time 2. A modified sampling protocol was necessary due to in-
creased plant size, number of nodes and SLW abundance in all
crops relative to Time 1. For logistical reasons, sampling at every
alternate node was deemed a reasonable alternative to sampling
at every node on every plant. Estimation of adult densities using
the leaf turn method was impractical due to their propensity for
flight when disturbed. Therefore, the distribution of SLW eggs
(white + brown) at nodes along the main stem was used as proxy
for the distribution of adults. Furthermore, population growth
made counting of juvenile stages on whole leaves impractical.
Therefore, egg and nymph densities were enumerated within a
3.88 cm? disk area (Naranjo & Flint 1994, 1995) on the abaxial
surface of the node leaf (the middle leaflet of trifoliate legume
leaves) at alternate nodes of 10 plants per plot (or subplot for in-
terplant treatment).

Commercial cotton

The scouting data originated from two approximately 25 ha
blocks (Blocks 1 and 2, hereafter) of commercial cotton from
the eastern and western part of the Emerald irrigation area,
respectively. Block 1 was planted to variety ‘Sicot 71" on 5
October 2002 and sampled for SLW on 6 December 2002,
(62 days after planting). Block 2 was planted to variety ‘Nu-Pearl
Roundup Ready’ on 13 September 2002 and sampled for SLW
on 5 December 2002 (83 days after planting). Both blocks were
planted on a 1 m row spacing with recommended inputs and
planting parameters for commercial cotton.

Within each block, the number of adults and nymphs on main
stem leaves at nodal positions 3—10 within a randomly selected



plant were counted. This procedure was repeated for four groups
of 10 plants. Adults were counted using the leaf turn method;
nymphs were counted on excised whole leaves using a hand
lens.

Mungbean validation plots

Five mungbean cultivars (‘White Gold’, ‘Emerald’, ‘Delta’,
‘Green Diamond’ and ‘Berken’) were planted on 30 January
2003 in field plots of dimension 10 m long x 8 m wide with a
1 m row spacing in a randomised block design with three repli-
cates as part of an agronomic comparison of commercial germ-
plasm conducted at the Queensland Department of Agriculture
and Fisheries research facility at Emerald. Within each field plot,
three plants were selected at random and the number of SLW
adults, and nymphs on main stem leaves at nodal positions 1-6
were counted on 10 March 2003, 39 days after planting. Adults
were counted using the leaf turn method; nymphs were counted
on excised whole leaves using a magnifying glass. A total of nine
plants were sampled for each cultivar.

Data analysis

SLW within-plant distributions

The vertical distribution of SLW among main stem leaf nodes
within each crop was characterised by a two-stage analysis: the
proportion of infested nodes and the density (counts) of SLW
if infested. The leaf at each node was classified as either
‘infested’” and given a score of 1 or ‘not infested’ and given a
score of 0, based on whether or not the density on that leaf was
equal to or exceeded a tally threshold: >1 per leaf (TT1) or >2
per leaf (TT2). The rationale for using different tally thresholds
was to compare the level of resolution provided by the two
methods with respect to differences in density among leaf nodes.
Time 1 data from the experimental assessment were restricted to
nodes above (and including) 8, 6, 7 and 16 for cotton, mungbean,
soybean and sunflower, respectively, thereby excluding the low-
ermost nodes with mostly zero counts. Similarly, Time 2 data
were restricted to nodes above (and including) 11, 11, 11 and
27 for cotton, mungbean, soybean and sunflower, respectively.

The infestation level at each node location for each SLW
stage, defined as the proportion of leaves infested with that stage,
for both tally thresholds, was modelled as a generalised linear
mixed model with a binomial error structure and logit link func-
tion. The density of each SLW stage on infested leaves, for TT1
and TT2, was then modelled as a generalised linear mixed model
with either a Poisson or negative binomial error distribution and
corresponding log or log-ratio link function. Models included the
random effects of blocks and plants and the fixed effect of node
number.

Preliminary analyses including a covariance structure on
nodes to account for possible correlation among nodes were per-
formed on Time 1 data with a tally threshold of 1. The appropri-
ateness of the covariance structure was assessed by the Akaike
and Bayesian information coefficients. There was no evidence
of correlation among nodes for infestation level of adults for all
four crops while there was evidence of correlation among nodes
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for nymphs in cotton and soybean, but not for mungbean, while
models for nymphs in sunflower did not converge. Given the
lack of strong and consistent evidence of correlation among
nodes and that results were similar regardless of the inclusion
of the correlation structure, we decided to use the simpler model
without the correlation structure for all analyses. From these
models, estimates of the level of infestation (p) and the number
if infested (72) were obtained. Pairwise differences in p and 7
among node locations were tested using a protected LSD proce-
dure at P = 0.05. All analyses were performed using GENSTAT
13th Edition (VSN International 2010).

Host plant species preference

The rank order of crops with respect to ovipositional preference
was determined by comparing the density of eggs and nymphs
among plant species in monoculture and interplant treatments
from the experimental assessment data collected at Time 2. To
facilitate meaningful comparisons of unit abundance among
crops differing in growth habit, architecture and other phenolog-
ical characteristics, the leaf area index (LAI), defined as the
amount of green leaf per unit area of cultivation (Ross 1981;
Chen & Black 1991), was estimated using the Agricultural Pro-
duction Systems Simulator (APSIM model; Keating et al. 2003).
Standard (commercial) agronomic parameter inputs for each
crop and a planting date of 22 January 2003 were used. Densities
of eggs and nymphs (number.cm 2plant™") for a given crop
were then multiplied by its LAIL The LAI-weighted egg densities
were log-transformed, and nymph densities were 4th root
transformed prior to analysis with restricted maximum
likelihood (REML) with random effects of plots, sub-plots and
plants and the fixed effect of crop. The component crops within
the intercropped treatment were assigned unique crop identifica-
tion codes.

RESULTS
Within-plant distributions

Experimental cotton

Estimates of infestation level for adult SLW at Time 1 for
TT1 were generally low; p apurrss) was less than 25%
(Fig. la) and not significantly different (P > 0.05) among
main stem leaf nodes. Corresponding estimates for TT2 were
too low to be computed accurately. Estimates of adult density
on infested leaves (71 apyrrsi)) were generally less than 2.
leaf ' for TT1 (Fig. la) confirming the low abundance of
adults on cotton.

The infestation level for nymphs on whole leaves at Time
L (Pnympusy) based on TT1 varied significantly (P < 0.05)
among nodes, being higher in the lower half of the plant
canopy (Fig. 1b), while estimates based on TT2 did not differ
(P > 0.05) among nodes. 7 yymppusq) at Time 1 varied
significantly (P < 0.05) among leaf nodes for both tally
thresholds.
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Fig. 1.

Predicted infestation level of silverleaf whitefly adults, nymphs and eggs on cotton expressed as the percentage of infested main

stem leaves (% infested) and the corresponding density on infested leaves for: (a) adults at Time 1, (b) nymphs at Time 1, (c) eggs at Time
2 and (d) nymphs at Time 2. Infestation level was calculated using tally thresholds of >1 (TT1, open bars) and >2 (TT2, hatched bars) indi-
viduals per sampling unit. Density is represented by open circles (TT1) and filled circles (TT2). Estimated standard error (SE) of the mean
(transformed scale) is represented by open triangles (TT1) and filled triangles (TT2).

At Time 2, infestation levels for SLW eggs within the leaf
disk area based on TT1 were generally high (>75%); prcosez)
and 715G6s2) were not significantly different (P > 0.05) among
leaf nodes (Fig. 1c). By comparison, for TT2, p gggsz) was
highest (P < 0.05) on nodes 1, 7 and 9 and 7 gGgs(2) highest
(P < 0.05) on nodes 7 and 9.

© State of Queensland (Department of Agriculture and Fisheries) 2017

Estimates of the infestation level of nymphs at Time 2
(D nymprs2)) varied significantly (P < 0.01) among nodes for
both tally thresholds, increasing as node number increased,
whereas the corresponding density estimates (7 yyaprse2)
were not significantly different (P > 0.05) among leaf nodes
for either tally threshold (Fig. 1d).



Commercial cotton

Estimates of infestation level for adult SLW on commercial
cotton (Papurrsiee) for TT1 ranged from 5 to 30% in Block 1
(Fig. 2a), and 17 to 35% in Block 2 (Fig. 2¢) but did not differ
significantly (P > 0.05) among main stem leaf nodes for either
block. Corresponding estimates for TT2 could not be computed
for Block 1 due to low abundance or zero counts; infestation
level was not significantly different (P > 0.05) among main stem
leaf nodes for Block 2.

Host plant relationships of B. tabaci 5

The estimated density of adults on infested leaves
(Mapurts(ee) differed (P < 0.05) among leaf nodes for TT1 in
both blocks, being greatest for nodes 6 (1.5 adults.leaf ') and
5 (2.1 adults.leaf ") for Blocks 1 (Fig. 2a) and 2 (Fig. 2c),
respectively. Estimates for TT2 in Block 2 ranged from 1.8 to
2.8 adults.leaf ! and did not differ (P > 0.05) among leaf nodes.

The infestation level for nymphs (pyyaprsec) for both tally
thresholds in Block 1 was skewed to the left increasing
(P < 0.01) with node number, being greatest for nodes 9 and
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Fig. 2.

Predicted infestation level of silverleaf whitefly adults and nymphs in two blocks of commercial cotton expressed as the percentage

of infested main stem leaves (% infested) and the corresponding density on infested leaves for: (a) adults - Block 1, (b) nymphs - Block 1, (c)
adults - Block 2 and (d) nymphs - Block 2. Infestation level was calculated using tally thresholds of >1 (TT1, open bars) and >2 (TT2, hatched
bars) individuals per sampling unit. Density is represented by open circles (TT1) and filled circles (TT2). Estimated standard error (SE) of the
mean (transformed scale) is represented by open triangles (TT1) and filled triangles (TT2).
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10 for TT1 and for nodes 7-10 for TT2 (Fig. 2b). By compari-
son, Pyyamprsee in Block 2 was highest (P < 0.05) on nodes 4
and 5 for TT1 and not different (P > 0.05) among main stem
nodes for TT2 (Fig. 2d).

Nymph density (inyrprisiec) on infested leaves in Block 1 in-
creased (P < 0.05) in line with the corresponding infestation
levels for both tally thresholds (Fig. 2b) being greatest for nodes
9-10 for TT1 and nodes 8-10 for TT2. In Block 2, #1yyamprsice)
did not differ significantly (P > 0.05) among leaf nodes for

TT1 but did for TT2 (P < 0.05) being greatest for leaf node 4
(5.9 nymphs.leaf'; Fig. 2d).

Experimental mungbean

Infestation levels for adults at Time 1 based on TT1 and TT2
were right skewed, favouring the upper section of the plant
(Fig. 3a). Values ofp spyrrs) based on TT1 were not signifi-
cantly different (P > 0.05) among main stem leaf nodes, while
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Fig. 3.

Predicted infestation level of silverleaf whitefly adults, nymphs and eggs on mungbean expressed as the percentage of infested

main stem leaves (% infested) and the corresponding density on infested leaves for: (a) adults at Time 1, (b) nymphs at Time 1, (c) eggs at
Time 2 and (d) nymphs at Time 2. Infestation level was calculated using tally thresholds of >1 (TT1, open bars) and >2 (TT2, hatched bars)
individuals per sampling unit. Density is represented by open circles (TT1) and filled circles (TT?2). Estimated standard error (SE) of the mean
(transformed scale) is represented by open triangles (TT1) and filled triangles (TT2).
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values of p apurrs) based on TT2 were significantly higher
(P < 0.05) at nodes 1-3 than at lower nodal positions. The dis-
tribution of 714 py7ss) based on TT1 was clearly unimodal with
the highest density (P < 0.05) at node 2 followed by node 3
(Fig. 3a); internodal differences were not significant for TT2.

Nymphs at Time 1 were concentrated in the middle section of
the plant, with pyyaspus(s) highest (P < 0.05) on nodes 2—4 for
TT1 and TT2 (Fig. 3b). 7 yyapuse) for both tally thresholds
was highest (P < 0.05) on node 4.

DPEGase) at Time 2 was highest a node 1 (P < 0.001) then
decreased to a common level for nodes 3, 5 and 7 before further
decreasing for lower nodes (Fig. 3¢). figggs did not differ signif-
icantly (P > 0.05) among leaf nodes for either tally threshold.

The infestation level and density of nymphs at Time 2 did not
differ (P > 0.05) among leaf nodes for both tally thresholds and
were extremely low as evidenced by pyyaprsiz) mostly below
15% and 7inyprprsez) low relative to Time 1 estimates (Fig. 3d).

Mungbean validation plots

The infestation level of adult SLW (P apurzsmsy) varied signifi-
cantly (P < 0.001) among leaf nodes for both tally thresholds
(Fig. 4). P apurtsomsy Was similar among nodes 1-4 for TT1
and nodes 1-3 for TT2 but higher than lower nodes. The density
on infested leaves (74 pyzrsimsy) differed (P < 0.01) among leaf
nodes for both tally thresholds being highest at node 2 for TT1
and TT2.

Experimental soybean

There were no significant differences (P > 0.05) in infestation
level and density estimates for adults among main stem leaf
nodes for both tally thresholds at Time 1 (Fig. 5a).

The internode profile of pyyrprse) for both tally thresholds
was sharply skewed to the left; infestation level increased
(P < 0.01) as node number increased reaching 100% infestation
at nodes 5 and 6 (Fig. 5b). Values of 7 yyppus) followed a
similar profile for both tally thresholds, but there was only weak
evidence (P = 0.052 and P = 0.077 for TT1 and TT2,
respectively) of differences among nodes.
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The profile of prGes(2) for both tally thresholds showed close
to 100% infestation at nodes 1-5 followed by a steady decline
(P < 0.001) in infestation level with increasing node number
(Fig. 5¢). The profile for 715G¢s2) was similar with density being
highest for nodes 1-5 and least for nodes in the lower half of the
plant, although this was only tested for TT2 as the model did not
converge for TT1.

The infestation level for nymphs differed (P < 0.01) among
nodes for both tally thresholds, with p yyypusz) being high
(>75%) for the top 7 nodes before dropping substantially by
node 11 (Fig. 5d). Estimates of 7iyyyprs2) were relatively high
(7-10 per node) and were not significantly different (P > 0.05)
among leaf nodes.

Experimental sunflower

The distribution of adults at Time 1 was characterised by higher
infestation levels and densities in the top half of the plant; p
apurrscry Was similar for leaf nodes 2-10, mostly above 90%,
dropping to around 50% on lower leaf nodes for both TT1 and
TT2 (P < 0.05; Fig. 6a). Density estimates differed
(P < 0.001) with leaf node, 714 py7s.1) being greatest for nodes
4-8 for both TT1 and TT2.

The infestation level for nymphs at Time 1 differed
(P < 0.001) with leaf node, with nymphs clearly confined to
the bottom half of the plant, as evidenced by the distribution of
Pnymrrsc) being skewed sharply to the left, with >70% infesta-
tion of leaf nodes 9-16 for TT1 and TT2 (Fig. 6b). fiyyarpps ) did
not differ (P > 0.05) among leaf nodes with TT1 but differed
(P < 0.05) among nodes with TT2 with nodes 12 and 13 having
higher densities than the other nodes.

The internode profile of pzgs ) for both tally thresholds at
Time 2 differed (P < 0.001) among leaf nodes, being high across
leaf nodes 3—19 and less for nodes lower down the main stem
(Fig. 6¢). The corresponding values of 71z;5s were significantly
higher (P < 0.001) at nodes 5-11 than those above or below.

Nymphs at Time 2 were confined to below node 5. pyyaprisez)
was significantly different (P < 0.001) among leaf nodes; the in-
festation level for both tally thresholds was generally highest

100 r12
° 2z
2 > O lg @
o o ° o 5
QL 504 ° o
= o o o |4 5
ES 5 g
0 T T T 0
1 . 2 i 3 4 ; 5 i 6 0.0
A A A A A A A A & A ’
L
A 4 o
=1.0

Mainstem node number

Fig. 4.

Predicted infestation level of silverleaf whitefly adults in mungbean plots from an agronomic comparison of commercial germplasm

in Emerald, expressed as the percentage of infested main stem leaves (% infested) and the corresponding density on infested leaves using tally
thresholds of >1 (TT1, open bars) and >2 (TT2, hatched bars) individuals per sampling unit. Density is represented by open circles (TT1) and
filled circles (TT2). Estimated standard error (SE) of the mean (transformed scale) is represented by open triangles (TT1) and filled triangles

(TT2).
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Fig. 5.

Predicted infestation level of silverleaf whitefly adults, nymphs and eggs on soybean expressed as the percentage of infested main

stem leaves (% infested) and the corresponding density on infested leaves for: (a) adults at Time 1, (b) nymphs at Time 1, (c) eggs at Time 2
and (d) nymphs at Time 2. Infestation level was calculated using tally thresholds of >1 (TT1, open bars) and >2 (TT2, hatched bars) individ-
uals per sampling unit. Density is represented by open circles (TT1) and filled circles (TT2). Estimated standard error (SE) of the mean (trans-
formed scale) is represented by open triangles (TT1) and filled triangles (TT2).

among nodes 11-25, and 7 yyapusz) Was highest for nodes
19-23 for TT1 and 19-25 for TT2 (Fig. 6d).

Host plant species preference

Although the area (plot size) in the monoculture plots was the
same for all crops, sunflower had twice as much green leaf area
as cotton while mungbean and soybean had 3—4 times as much
as cotton (Table 1). By comparison, in the interplant treatment,

© State of Queensland (Department of Agriculture and Fisheries) 2017

soybean had 1.4 times more green leaf area than cotton. Egg den-
sities weighted by LAI estimates (Table 1) were significantly dif-
ferent (P < 0.001) among crop treatments (Fig. 7a). Among the
monoculture treatments, soybean had 11 times more eggs.cm™>
of green leaf area than the average egg density across the cotton,
mungbean and sunflower plots. Within the interplanted plots,
soybean in the furrow had 26 times more eggs.cm > of green
leaf area than cotton. The egg density on cotton in the interplant

plots was 68% less than that in the monoculture plots. The



100

50 4

% infested

Host plant relationships of B. tabaci 9

(a) Adults(1) 1 180
120

I 60

Mean density

100 4

50 1

% infested

SE

0.1

(b) Nymphs(1) 1200
+ 800

+ 400

Mean density

L
2 & o 0
fay
J - Lo
100 (c) Eggs(2) r30
. z
Qo Fr20 c©
] 50 4 3
£ 5
- L 10 8
0 0
1, .3, ,8, ,7, .8, W, ,13 .18 17, ,19, .21, ,23, ,25, ,27 0.0
'y A vy AA ;i
S s M e o
L
e 7]
] Lo.2
10079 (d) Nymphs(2) r14
=
- =
o to 2
@ 50 g
‘€ c
= - I
= 2 3
O |1] e a1 13 A5 7. 9. 21, 23 25 27 0
A A A A A A a4
A A A A a a a A %
4 L 0.05

Mainstem node number

Fig. 6.

Predicted infestation level of silverleaf whitefly adults, nymphs and eggs on sunflower expressed as the percentage of infested

main stem leaves (% infested) and the corresponding density on infested leaves for: (a) adults at Time 1, (b) nymphs at Time 1, (c)
eggs at Time 2 and (d) nymphs at Time 2. Infestation level was calculated using tally thresholds of >1 (TT1, open bars) and >2
(TT2, hatched bars) individuals per sampling unit. Density is represented by open circles (TT1) and filled circles (TT2). Estimated
standard error (SE) of the mean (transformed scale) is represented by open triangles (TT1) and filled triangles (TT2).

distribution of nymphs among crop treatments closely matched
that of eggs, with density on soybean greater than on sunflower
which was greater than on cotton or mungbean (Fig. 7b).

DISCUSSION

The flat profiles of infestation level and mean counts for SLW
adults in the experimental cotton plots are validated by similarly

flat profiles in both blocks of commercial cotton (cf. Figs la,c
and 2a,c). By comparison, congruence in the profiles of nymphs
from the experimental plots and Block 1 but not Block 2
(cf. Figs 1b,d and 2b,d) can be explained on the basis of chrono-
logical age at sampling (days after planting). Cotton in the exper-
imental plots at Time 2 was of the same chronological age
(~63 days) and stage (flowering) as that in Block 1 whereas the
cotton in Block 2 was at or close to the cut-out stage when
maximum vegetative growth was achieved. The relatively flat
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Table 1  Predicted leaf area index (LAI) and mean number of
nodes for four crops at two sampling dates using the Agricultural
Production Systems Simulator simulation model

Sampling date Crop Nodes (max,min) LAI (mz.m_z)

25/02/2003 Cotton 8.7 (11,7) 0.27
Mungbean 6.2 (8,4) 0.30
Soybean 7.3 (10,5) 0.55
Sunflower 16.4 (21,8) 0.72

24/03/2003 Cotton 12.4 (15,7) 0.51
Mungbean 11.7 (13,7) 1.41
Soybean 12.2 (15,7) 1.86
Sunflower 30.1 (35,25) 0.99

profiles of nymphs in Block 2 reflect re-distribution from the
lower to the upper leaf nodes in older cotton crops, a commonly
observed distributional response to cessation of plant growth
(Ohnesorge & Rapp 1986; Naranjo & Flint 1994).

Based on the distributional data for cotton, sampling for
adults at nodes 3-5 and nymphs at nodes 7-10 from squaring
to boll opening stages would meet the requirements of efficiency
and practicality from a commercial sampling perspective. In
cotton, this is at or past the stage where maximum vegetative
growth has been achieved (cut-out), the older main stem leaves
in the lower section of the crop canopy are harder to access in
the field due to canopy closure and are generally of lower quality
in terms of sustaining SLW activity. Thus, the lower section of
the crop canopy, below node 10, can effectively be ignored from
a SLW sampling perspective.

Our proposed sampling approach for cotton was used by
Sequeira and Naranjo (2008) to develop a fixed sample size,
binomial sampling plan for SLW in Australian cotton and
underpins the current industry recommendation (Cotton Pest

154

Management Guide 2017-2018) which specifies sampling
SLW adults at nodes 3, 4 or 5 from squaring to boll opening
stages. Validation studies conducted by the Commonwealth
Scientific and Industrial Research Organisation on within-plant
distributions of SLW in cotton crops grown in southern
Queensland and northern New South Wales from 2015 to 2017
confirm the validity and applicability of the sampling approach
presented here (Wilson LJ, unpublished data). Research is
currently underway to expand the scope of the SLW sampling
scheme for cotton developed by Sequeira and Naranjo (2008)
to include a nymph sampling plan based on densities at nodes
7-10, as proposed in this study.

The distributions of SLW adults and nymphs in experimental
and validation mungbean plots (cf. Figs 3, 4) support the selec-
tion of nodes 2-3 as the optimal sampling location for adults
and nodes 4-5 for nympbhs, regardless of crop stage. In soybean
(Fig. 5), adult sampling would be most effective at nodes 3—4
and nymph sampling at nodes 5-6 in all stages of soybean. By
comparison, based on the vertical segregation of SLW adults
and nymphs in sunflower (Fig. 6), the optimal sampling location
for adults is in the middle of the upper canopy (nodes 5-7) and in
the middle of the lower canopy (nodes 17-21) for nymphs.

The use of efficient and cost-effective methodology such as
binomial sampling for estimating population abundance is
another important consideration in the IPM decision-making
process (Binns & Bostanian 1990; Naranjo & Flint 1995). The
analysis of infestation level in this study serves to demonstrate
the applicability of binomial sampling methodology to situations
where the primary objective of the sampling is to classify field
populations for the purpose of making pest management
decisions (Binns & Nyrop 1992).

Binomial sampling is underpinned by the relationship
between the proportion infested, as determined by the use of an
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Fig. 7.

Density of silverleaf whitefly (a) eggs and (b) nymphs on four crops in either monoculture (open bars) or interplant (ip, hatched bars)

experimental layouts assessed at 66 days after planting, averaged across all main stem nodes and weighted by predicted values of the leaf area
index. Bars with a common letter are not significantly different (P > 0.05).
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appropriate tally threshold, and the sample mean (Gerrard &
Chiang 1970; Wilson & Room 1983; Binns and Bostanian,
1990; Jones 1994). In situations where SLW population density
is low, simple presence/absence sampling (i.e. using a tally
threshold of >1) is sufficient whereas in moderate-high SLW
density situations, higher thresholds can provide more informa-
tion and greater accuracy (Jones 1994; Naranjo et al. 1996;
Sequeira & Naranjo 2008).

A limitation of the binomial method is that its accuracy in
predicting the sample mean decreases as the proportion infested
increases above 80% (Gerrard & Chiang 1970; Binns and
Bostanian, 1990; Sanchez et al. 2002). This limitation can be
overcome by increasing the tally threshold, i.e. the count above
which the sample is considered infested (Sanchez et al. 2002).
In the context of this study, the use of TT1 resulted in infestation
levels >90% for SLW eggs on cotton (Fig. 1¢), soybean (Fig. 5¢)
and sunflower (Fig. 6¢); the use of TT2 gave a somewhat better
result, with lower infestation levels, but one that could be further
improved by the use of higher thresholds to quantify infestation
level.

Our use of differences in SLW egg counts among leaf nodes
to infer the distribution of adults can be justified on the basis of
whitefly egg counts being typically higher on leaves with greater
numbers of adults (van Lenteren & Noldus 1990; Naik &
Lingappa 1992). More females choosing to lay eggs and/or
females choosing to lay eggs for longer on particular leaves will
result in higher egg densities on some leaves than on others.
Thus, the relative distribution of SLW eggs among leaves is
indicative of where the adults choose to spend a considerable
proportion of their time and therefore reflects the likelihood of
finding adults on a given leaf and nodal position.

LAI adjusted estimates of mean egg density indicate
overwhelming ovipositional preference for soybean followed
by sunflower, then cotton and least for mungbean (Fig. 7a).
The ovipositional response strongly favouring soybean over
cotton by a factor of 26 in the intercropped treatments where
the inferred biomass of the former available for ovipositional
activity was just 1.4 times that of the latter, is indicative of innate
preference based on host plant characteristics other than just
differences in green leaf area. Host plant preference hierarchies
of SLW identified in this study and in others (e.g. Costa et al.
1991; Simmons 1994; Chu et al. 1995; Schuster 2003; Abdel-
Baky et al. 2004; Moore et al. 2004; Lee et al. 2009) may be
of relevance in determining cropping options and sequences at
the farm level and in trap cropping and other cultural tactics for
pest population management in commercial cropping systems.

The density of nymphs is indicative of population growth
potential. The differences in standardised density of nymphs
among the four crops at Time 2 (Fig. 7b) reflect their relative
importance as sources of SLW from an area-wide or cropping
system perspective. A strong preference for soybean and suscep-
tibility of the plant in early vegetative stages to SLW feeding
injury (R. Sequeira, unpublished data) helps explain the decima-
tion of the commercial soybean industry in central Queensland
following the SLW outbreak of 2001 (Moore et al. 2004). In line
with this study, density data from commercial sunflower crops
(Sequeira et al. 2009) showed that sunflower can be a significant
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source of SLW although it does not exhibit visible signs of feed-
ing damage, except in the very early (cotyledon) stages of plant
establishment.

Surveys of SLW since 2004 have shown very low densities in
commercial mungbean crops (R Sequeira, unpublished data).
This finding is consistent with the low preference for, and densi-
ties of, SLW in mungbean shown in this study and others (e.g.
Abdel-Baky et al. 2004) and may explain the growth of the
mungbean industry in SLW-endemic areas of Queensland. We
attribute the oviposition activity on mungbean observed in this
study partly to the aftermath of the 2001 SLW outbreak in the
central Queensland region, centred in the Emerald irrigation
area, which resulted in highly elevated base population densities
on all crops and broadleaf vegetation in the following autumn—
winter of 2002 and spring—summer of 2003 (Sequeira et al.
2009).

Despite being a relatively low quality host plant, the rising
pest status of SLW on cotton in Australia (Sequeira & Naranjo
2008; Sequeira et al. 2009) is undoubtedly a function of the large
areas under cultivation in various parts of eastern Australia and
other factors such as crop management practices. Thus, crop
choice within cropping sequences or farm layouts will be an im-
portant determinant of SLW pest pressure at the individual
cropping enterprise level with broader ramifications for area-
wide and regional population dynamics.
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