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Abstract

In-field management of Bactrocera tryoni (Froggatt) and Zeugodacus cucumis (French) (Diptera: Tephritidae) in

fruiting vegetable crops has relied almost exclusively on organophosphate cover sprays. Laboratory and semi-

field trials were performed to compare a number of alternative insecticides for efficacy against these species. A

novel semifield method was used whereby the insecticides were applied to crops as cover sprays under field

conditions, and treated plants bearing fruit were transferred to large cages and exposed to fruit flies. Efficacy

was assessed in terms of numbers of pupae developing from treated fruit. A laboratory cage method was also

used to assess effects on adult mortality and comparative effects of 1- and 3-d-aged residues. The neonicoti-

noids clothianidin and thiacloprid were very effective against B. tryoni and Z. cucumis. Clothianidin was the

only insecticide other than dimethoate to affect adult mortality. The synthetic pyrethroid alpha-cypermethrin

was also very effective, particularly in semifield trials, although higher incidence of aphid and whitefly infest-

ation was observed in this treatment compared to others. Cyantraniliprole was effective against B. tryoni, but

less effective against Z. cucumis. Imidacloprid, bifenthrin, spinetoram, and abamectin were all relatively less ef-

fective, although all demonstrated a suppressive effect.
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Tephritid fruit flies are serious pests of horticultural crops in

Australia. Bactrocera tryoni (Froggatt) attacks a wide range of fruit

and vegetable crops in eastern Australia (Drew et al. 1982, Hancock

et al. 2000), causing crop loss and threatening market access. There

have been increasingly frequent incursions of this pest into the Fruit

Fly Exclusion Zone in the southern states of Australia (Dominiak

et al. 2015). Zeugodacus cucumis (French) causes damage to cucur-

bit crops and tomatoes in Queensland, northern New South Wales,

the Northern Territory, and Torres Strait Islands (Drew et al. 1982,

Hancock et al. 2000).

In Australia, in-field management of fruit flies in fruiting vege-

table crops has relied almost exclusively on organophosphate cover

sprays. However, recent restrictions in the use of dimethoate

(Australian Pesticides and Veterinary Medicines Authority

[APVMA] 2011, APVMA 2017) and fenthion (APVMA 2015) have

greatly limited the available control options. While the use of di-

methoate for control of fruit fly in certain fruiting vegetable crops

has been retained (e.g. capsicum, melons, zucchini), for others it has

been suspended from use, or the withholding period extended ren-

dering it largely ineffective. Alternative approaches for managing

fruit fly in host crops have been explored, such as the use of toxic

baits and male annihilation technique (Clarke et al. 2011, Vargas

et al. 2015). However, development of these management methods

has primarily been focused on tree crops, or exotic tephritid species

in vegetable crops. For instance, perimeter baiting, in which a pro-

tein bait plus insecticide is applied to a nonhost plant adjacent to the

crop, is a commonly used technique for management of melon fly,

Zeugodacus cucurbitae (Coquillett) in Hawaii (McQuate 2011). It

exploits the observation that Z. cucurbitae females roost and forage

for protein in certain favoured nonhost plants (Nishida and Bess 1957,

Prokopy et al. 2003). The efficacy of toxic baits for control of B. tryoni

and Z. cucumis in fruiting vegetable crops is currently unproven.

Moreover, vegetable crops are often subject to intensive insecticide re-

gimes for management of other pest species, and it is important to

understand the potential impact of these insecticides on fruit flies.

A number of studies have examined the toxicity of pesticides to

tephritid fruit flies in the laboratory using a range of methods such

as direct application to adult flies (Wang et al. 2013), exposure to

residues on artificial substrates (Mosleh et al. 2011), exposure to

residues on fruit applied and aged in the laboratory (Maklakov et al.
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2001, Yee 2008, Yee and Alston 2012) or the field (Yee et al. 2007,

Rahman and Broughton 2016), or application of insecticide sprays

to infested fruit (Wise et al. 2009). Small plot field trials have been

employed to assess efficacy of insecticides for management of

cucurbit-specific fruit flies such as Z. cucurbitae in cucurbits (Oke

2008, Khursheed and Raj 2012, Oke and Sinon 2013), and field tri-

als conducted in tree crops for management of Rhagoletis spp.

(Reissig 2003, Yee and Alston 2006). However, the literature on in-

secticide efficacy for B. tryoni and Z. cucumis is scarce. Reynolds

et al. (2014) compared insecticides for efficacy against B. tryoni in

the laboratory and in semifield trials in stonefruit, in which fruit flies

were introduced into mesh sleeves enclosing treated fruit on peach

trees. Subramaniam (2013) evaluated insecticide cover sprays for

management of B. tryoni in eggplant; however, efficacy formed part

of a systems approach and was not compared with a control. Kay

(2004) assessed efficacy of insecticides against B. tryoni in a small

plot field trial in capsicum, but failed to find significant differences

amongst treatments due to high variability of infestation across rep-

licate plots. Atuahene and Hooper (1971) investigated the suscepti-

bility of B. tryoni and Z. cucumis to DDT, with no recent literature

relating to the efficacy of insecticides against the latter species.

Laboratory trials can provide useful information on relative effi-

cacy of insecticides but are limited by their artificial nature (Macfadyen

et al. 2014). When insecticides are applied directly or insects are con-

fined in close contact with residues, repellent effects cannot be meas-

ured. Laboratory trials often provide no information on the

insecticide’s performance in the field, such as resistance to weathering,

movement within the plant, or the effect of nonuniform application.

Small plot field trials are the conventional method used for many

horticultural pests to assess comparative efficacy of insecticides under

field conditions. However, there is evidence that because B. tryoni in-

vades low growing crops from the field margins, this results in a typic-

ally uneven infestation in such crops. Balagawi et al. (2014) recorded

higher numbers of male B. tryoni in traps placed in vegetation border-

ing a strawberry crop than traps within the crop, and from the same

study Gu (2010) found rates of infestation were correspondingly higher

in fruit near the border than within the crop. This makes it difficult to

compare treatments within a trial area due to large variability between

treatments and replicates, as observed in the small plot field trial per-

formed by Kay (2004) to compare cover sprays for control of B. tryoni

in capsicum. Kay (2004) speculated that the higher infestation in cer-

tain plots was due to proximity to bordering trees and a citrus block.

Steiner and Hinman (1952) encountered similar difficulties in small

plot tests in tree crops, noting that populations of oriental fruit fly,

Bactrocera dorsalis (Hendel), in control plots were depressed by nearby

treated plots, and that greater movement of fruit flies into the wind-

ward side of the trial area resulted in larger infestations in these plots.

Trials were carried out to compare insecticides as cover sprays

for efficacy against B. tryoni and Z. cucumis under semifield condi-

tions. The aims were twofold: first, to obtain information on the

comparative efficacy of a series of insecticides, and second, to assess

a novel semifield methodology. The insecticides were applied to

crops in the ground, and therefore subject to actual use conditions.

An artificial infestation method was then used to ensure all fruits

from all treatments were subjected to a similar fruit fly pressure.

Materials and Methods

Small Plot Trial Layout
Semifield trials were conducted over two years to evaluate the effi-

cacy of a range of insecticides against B. tryoni in capsicum,

Capsicum annuum (commercial variety Warlock), and Z. cucumis

in zucchini, Cucurbita pepo (commercial variety Congo F1). Trials

were conducted from January to April 2014 (season one) and

January to April 2015 (season two) at Gatton Research Facility

(Lockyer Valley, QLD, Australia; 27� 320 S, 152� 190 E, elevation

98 m). Crops were planted in January into plastic mulch and irrigated

using trickle tape. The trial layout was a randomized complete block

design with seven treatments, replicated four times. Treatments were

arranged lengthwise, with 2 m no-crop buffers between plots in the

lengthwise direction, and 2 m no-crop buffers between replicate blocks.

Between-plant spacings were 0.5 m for capsicum and 0.75 m for zuc-

chinis. Each plot was on a 1.5-m-wide bed and plot length varied ac-

cording to season and crop: season one 9 m (14 capsicum plants) or

9.5 m (11 zucchini plants); season two 10 m (17 capsicum plants) or

10.5 m (12 zucchini plants). Rows of forage sorghum on either side of

the trial block provided protection from wind and potential spray drift.

Fungicides were applied for disease control: Polyram DF (BASF

Australia Ltd, Southbank, VIC), Kocide Blue Xtra (Du Pont (Australia)

Pty Ltd, Macquarie Park, NSW), and Dithane Rainshield Neo Tec

Fungicide (Dow AgroSciences (Australia) Ltd, Frenchs Forest, NSW).

In season one, the insecticides Transform (Dow AgroSciences

(Australia) Ltd; active ingredient sulfoxaflor) and Talstar 250 EC

(FMC Australasia Pty Ltd, Murarrie, QLD; active ingredient bifen-

thrin) were applied for control of whitefly and aphids. Application of

these insecticides to young plants was made prior to the application of

the trial treatments, and was not expected to affect the fruit flies.

Treatments
In each trial, five insecticide treatments were assessed and compared

with dimethoate (the industry standard) applied at the rate of 75 ml/

100 liter and with an untreated control. In season one (2014) the

five insecticide treatments were Sumitomo Samurai Systemic

Insecticide (Sumitomo Chemical Australia Pty Ltd, Epping, NSW;

active ingredient clothianidin) applied at 40 g/100 liter; Confidor

200 SC (Bayer CropScience Pty Ltd, Hawthorn East, VIC; active in-

gredient imidacloprid) at 25 ml/100 liter; Talstar 250 EC Insecticide/

Miticide (FMC Australasia Pty Ltd, Murarrie, QLD; active ingredi-

ent bifenthrin) at 24 ml/100 liter; Fastac Duo Insecticide (BASF

Australia Ltd, Baulkham Hills, NSW; active ingredient alpha-

cypermethrin) at 55 ml/100 liter; and DuPont Benevia Insecticide

(Du Pont (Australia) Pty Ltd, Macquarie Park, NSW; active ingredi-

ent cyantraniliprole) at 100 ml/100 liter. In season two (2015) the

five insecticide treatments were Sumitomo Samurai Systemic

Insecticide (Sumitomo Chemical Australia Pty Ltd; active ingredient

clothianidin) applied at 40 g/100 liter and 30 g/100 liter; Calypso

480 SC Insecticide (Bayer CropScience Pty Ltd; active ingredient

thiacloprid) at 37.5 ml/100 liter; Vertimec Miticide/Insecticide

(Syngenta Australia Pty Ltd, Macquarie Park, NSW; active ingredi-

ent abamectin) at 60 ml/100 liter; and Success Neo Insecticide (Dow

AgroSciences (Australia) Ltd; active ingredient spinetoram) at 40 ml/

100 liter. Agral spray adjuvant (Syngenta Australia Pty Ltd) was

added to all treatments at the rate of 10 ml/100 liter, with the excep-

tion of the Samurai treatments, where Maxx Organosilicone

Surfactant (Sumitomo Chemical Australia Pty Ltd) was used at the

rate of 50 ml/100 liter.

Insecticides were applied using a gas pressurised sprayer, with a

1.2-m four-nozzle boom. The spray was applied at an operating

boom pressure of �230 kPa and a volume of 700–760 liter/ha (de-

pendent on crop and plot size), achieved through two passes of each

plot in order to ensure good coverage. Treatments were applied

weekly from first fruit set onwards, until all trials had been
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completed, hence the number of treatment applications varied de-

pendent on season and crop (Tables 1 and 2). In season one (2014)

four applications were made to the zucchinis and six to the capsi-

cums. In season two (2015) three applications were made to the zuc-

chinis and five to the capsicums. However, due to the rapid rate of

development of the zucchini fruit, it was necessary to remove large

fruit at regular intervals to ensure continuous production; hence zuc-

chini fruit used in trials had received a maximum of three

applications.

Treated plants were exposed to fruit flies using two methods.

First, fruit flies were exposed to intact fruit on plants removed from

the field and placed into large field cages. Second, fruit flies were

exposed to fruit in small laboratory cages, in order to assess adult

mortality and efficacy of aged residues.

Fruit Flies
All fruit flies were obtained from colonies maintained by the Market

Access research group at the Department of Agriculture and

Fisheries (DAF) (Brisbane, QLD, Australia). Bactrocera tryoni colo-

nies were established from collections of host fruit (Endiandra sp,

Barringtonia calyptrata, and Terminalia catappa) in the Cairns re-

gion in January 2012 and reared according to the method of

Heather and Corcoran (1985). Adults used in season one (2014)

were 10–16 d post emergence and 16–18 d post emergence in season

two (2015). Zeugodacus cucumis colonies were established from

collections of zucchini in the Ayr and Cairns regions in September

and October 2010. They were reared according to the method of

Heather and Corcoran (1985) using the pumpkin diet described by

Swaine et al. (1978). Zeugodacus cucumis were 13–15 d post emer-

gence. Prior to use in the tests all fruit flies were provided with

sugar, water, and protein (autolysed yeast) and allowed to mate,

hence were ready to oviposit.

Field Cage Infestation
Trials were performed in four metal frame, netted cages (3 m by 3 m

base, 2.5 m high), each cage representing one replicate. One day fol-

lowing treatment application, treated plants bearing fruit were

selected at random from each replicate of each treatment, dug up,

placed in large pots, watered and transferred to the field cages. Fruit

flies were therefore exposed to residues on the foliage as well as on

the fruit. Three zucchini plants or four capsicum plants were used

per treatment replicate, with plants from each treatment grouped to-

gether, meaning that all seven treatments were present in each repli-

cate cage. Approximately 600 mixed sex adult fruit flies, determined

by pupal weight, were released into each cage. In the first season

trial, all fruit flies were left for �4 h to oviposit. In the second season

trial, based on results from the first season, the exposure time was

decreased to 3 h for Z. cucumis, and due to adverse weather condi-

tions (cool with light rain), B. tryoni were left to oviposit overnight

(� 20–21 h). Fruit were then harvested and transported to the la-

boratory for subsequent assessment of infestation. The size and

number of fruit per treatment replicate varied between replicates

and treatments, due to variable fruit production of the plants.

Therefore, fruit in each treatment replicate were weighed (not

counted), and the weight range for each of the field cage trials pre-

sented in the results.

In the laboratory, the harvested fruit from each treatment repli-

cate were placed on shallow plastic containers covered with net,

within ventilated containers. A layer of vermiculite on the base of

the container was provided as a substrate for pupation. The fruit

were held in a controlled environment room (26 �C, 70% relative

humidity) for �2 wk to allow any eggs laid to develop to the pupal

stage. The vermiculite was then sieved and the number of pupae

counted. Additional fruit were harvested from untreated control

plants in the trial block to assess the level of infestation in the field,

prior to artificial infestation in the field cages. However, no pupae

developed from any of these fruit and therefore these results were

not included in the analyses.

Laboratory Cage Infestation
Fruit were removed from plants in the trial plots either 1 or 3 d after

treatment application (1 and 3 DAT). Two 1 DAT and one 3 DAT

laboratory cage trials were conducted for the first season; one 1

DAT and one 3 DAT trial were conducted for the second season.

Bifenthrin (Talstar 250 EC Insecticide/Miticide) was omitted from

the 3 DAT first season cucumber fly trial due to poor efficacy at 1

DAT. Three fruit from each treatment replicate were exposed to

fruit flies in small laboratory cages (wire frame, netted cages, 21 cm

wide, 21 cm high, 33 cm deep). Each cage contained 10 male and

Table 1. Dates of spray application and trials, season one (2014)

Date Capsicum Zucchini

18 Feb. 2014 Spray application

25 Feb. 2014 Spray application Spray application

26 Feb. 2014 Laboratory cage trial

one 1 DAT

4 Mar. 2014 Spray application Spray application

5 April 2014 Field cage trial

Laboratory cage trial

two 1 DAT

11 Mar. 2014 Spray application

12 Mar. 2014 Laboratory cage

trial one 1 DAT

18 Mar. 2014 Spray application Spray application

21 Mar. 2014 Laboratory cage

trial 3 DAT

25 Mar. 2014 Spray application

1 April 2014 Spray application

2 April 2014 Field cage trial

Laboratory cage trial

two 1 DAT

4 April 2014 Laboratory cage trial 3 DAT

DAT—day after treatment.

Table 2. Dates of spray application and trials, season two (2015)

Date Capsicum Zucchini

24 Feb. 2015 Spray application

3 Mar. 2015 Spray application Spray application

4 Mar. 2015 Field cage trial

10 Mar. 2015 Spray application Spray application

11 Mar. 2015 Laboratory cage trial 1 DAT

13 Mar. 2015 Laboratory cage trial 3 DAT

17 Mar. 2015 Spray application

24 Mar. 2015 Spray application

25 Mar. 2015 Laboratory cage

trial 1 DAT

27 Mar. 2015 Laboratory cage

trial 3 DAT

31 Mar. 2015 Spray application

1 April 2015 Field cage trial

DAT—day after treatment.
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10 female fruit flies, provided with sugar and water. Exposure times

varied dependent on the fruit type, fruit fly species, and time of day

that fruit were harvested. In season one, zucchinis in the 1 DAT tri-

als were picked and placed into cages in the afternoon, and hence in-

fested overnight (13 and 18 h infestation periods). This was reduced

to 3 h for the 3 DAT trial. Capsicums were infested for 3 h (1 DAT

trial one), overnight (� 15 h, 1 DAT trial two) or 2.5 h (3 DAT

trial). In season two, exposure was reduced due to overinfestation in

season one, and all laboratory cage trial fruit was infested for be-

tween 2 and 3 h. Following exposure to the fruit flies, fruit were

held in ventilated containers under controlled conditions as

described previously, and the number of pupae counted. Mortality

of adult fruit flies was assessed 1 d (� 24 h) after placement of fruit

into the cages.

Statistical Analyses
Numbers of pupae developing from the fruit were analyzed using a

generalized linear mixed model (GLMM) assuming a Poisson distri-

bution and a log link function. Due to variability in number and size

of fruit sampled from each replicate of each treatment, fruit weight

was initially used as a covariate in the field cage analyses. However,

with the exception of season one (2014) trial with B. tryoni in capsi-

cum, the effect of fruit weight was found to be not significant and

therefore removed. Where a significant effect of treatment was

found, pairwise comparisons between the transformed means were

made using the 95% least significant difference (LSD). In some in-

stances, no pupae developed in a treatment, or pupae developed in

only one replicate of a treatment, resulting in an overinflated stand-

ard error. Means with an overinflated standard error were not

included in the pairwise comparisons; however, when no pupae de-

veloped we can intuitively say that there was a significant effect of

treatment. Control corrected means (Abbott 1925) were also calcu-

lated and presented to facilitate comparison of treatment efficacy.

The proportion of dead fruit flies at one day after exposure to

the treated fruit was analyzed using a GLMM assuming a binomial

distribution and logit link function. Where a significant treatment

effect was found, pairwise comparisons between the transformed

means were made using the 95% LSD. Mortality was expressed as

the mean number of dead fruit flies per cage for presentation in

results.

Statistical analyses were performed in GenStat for Windows 16th

Edition (VSN International 2013).

Results

Season One (2014) B. tryoni in Capsicum
Results of a field cage trial found a significant effect of treatment on

development of pupae from treated fruit (P¼0.002; Table 3). All in-

secticide treatments resulted in significantly fewer pupae than the

control. Weight of fruit harvested from each replicate of each treat-

ment varied between 908 g and 1984 g. The first 1 DAT laboratory

cage trial and the 3 DAT laboratory cage trial both found a signifi-

cant effect of treatment (P<0.001), with significantly fewer pupae

in all treatments compared to the control at 3 DAT and significantly

fewer pupae in all treatments except bifenthrin compared to the con-

trol at 1 DAT. There was no significant effect of treatment in the se-

cond laboratory cage trial (P>0.05), due in part to large variability

in the control treatment (pupal counts ranged from 0 to 108). The

effect of treatment on development of pupae from treated fruit was

also expressed as control corrected means (Fig. 1). Clothianidin con-

sistently resulted in circa 100% reduction in development of pupae

in all four trials; imidacloprid, alpha-cypermethrin, and cyantranili-

prole resulted in greater than 90% reduction in development of

pupae in three of the four trials; and bifenthrin was effective only in

the field cage trial.

Mortality of the adult fruit flies in the laboratory cage trials was

assessed at � 24 h (Table 4). There was a significant effect of treat-

ment on fruit flies exposed to 1-d residues (1 DAT), in both trials

(P�0.011), with significantly higher mortality in the dimethoate

treatment compared to the control, and in the clothianidin treatment

compared to the control in the first trial only. Three-day-old resi-

dues had no significant effect on mortality of the adult fruit flies

(P>0.05).

Season One (2014) Z. cucumis in Zucchini
Results of a field cage trial found a significant effect of treatment on

the number of pupae developing from the fruit (P¼0.011; Table 5).

Clothianidin, alpha-cypermethrin, cyantraniliprole, and dimethoate

resulted in significantly fewer pupae compared to the untreated con-

trol. Weight of fruit harvested from each replicate of each treatment

varied between 892 g and 1200 g. Two laboratory cage trials con-

ducted at 1 DAT and a laboratory cage trial at 3 DAT all found a

significant effect of treatment (P�0.004). Clothianidin and di-

methoate consistently resulted in the fewest pupae, and bifenthrin
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Fig. 1. Effect of treatments on reduction in numbers of B. tryoni pupae developing from treated capsicum compared with control fruit in season one trials.
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was ineffective. Only clothianidin resulted in over 90% reduction in

development of pupae in all four trials (Fig. 2).

There was a significant effect of treatment on adult fruit fly mor-

tality in all three laboratory cage trials (P<0.001; Table 6).

Mortality was highest in the dimethoate and clothianidin treatments

at 1 DAT, and in the dimethoate treatment at 3 DAT.

Although not quantified, it was observed that occurrence of

aphids (Myzus persicae and Aphis gossypii) and sweetpotato white-

fly (Bemisia tabaci) was much higher in plots treated with alpha-

cypermethrin, bifenthrin, and dimethoate compared with other

treatments.

Season Two (2015) B. tryoni in Capsicum
Results of a field cage trial found no significant effect of treatment

on the development of pupae from treated fruit (P>0.05; Table 7).

Weight of fruit harvested from each replicate of each treatment var-

ied between 421 g and 2836 g. Laboratory cage trials at 1 DAT and

3 DAT both found a significant effect of treatment (P�0.018), with

no pupae developing in the clothianidin treatments, and significantly

fewer pupae in the thiacloprid and dimethoate treatments compared

to the control. In addition, pupal counts were significantly lower

than the control for abamectin in the 1 DAT trial and spinetoram in

the 3 DAT trial. Only the higher rate of clothianidin (40 g/100 liter)

and thiacloprid resulted in greater than 90% reduction in develop-

ment of pupae in all three trials (Fig. 3).

There was a significant effect of treatment on adult fruit fly mor-

tality in both the 1 DAT and 3 DAT laboratory cage trials

(P�0.007; Table 8). Significantly higher mortality compared to

other treatments was observed for dimethoate and both rates of clo-

thianidin, in both trials.

Season Two (2015) Z. cucumis in Zucchini
Results of a field cage trial found no significant effect of treatment

on the number of pupae developing from the zucchinis (P>0.05;

Table 9). Weight of fruit harvested from each replicate of each treat-

ment varied between 1172 g and 2696 g. Laboratory cage trials at 1

DAT found a significant effect of treatment on number of pupae de-

veloping from the fruit (P<0.001), with significantly fewer pupae

in all treatments compared to the untreated control. Clothianidin

and dimethoate resulted in the fewest pupae, and abamectin was the

least effective treatment. There was no significant effect of treatment

for 3 DAT residues (P>0.05). Only clothianidin resulted in close to

100% reduction in development of pupae in all three trials (Fig. 4).

There was a significant effect of treatment on adult fruit fly mor-

tality in both the 1 DAT and 3 DAT laboratory cage trials

(P�0.008; Table 10). The highest mortality was observed in the

clothianidin and dimethoate treatments.

Table 3. Mean number of pupae developing from capsicum exposed to B. tryoni in season one trials; back-transformed means (BTM) and

predicted means on the log scale 6 1 standard error (PM)

Treatment Field cage trial, 1 DAT Lab cage trial 1, 1 DAT Lab cage trial 2, 1 DAT Lab cage trial, 3 DAT

BTM PM BTM PM BTM PM BTM PM

Clothianidin 0.0 �16.82 6 d 0.5a �0.69 6 1.90 0.0 �16.48 6 d 0.3 �1.39 6 d
Imidacloprid 3.1a 1.12 6 1.13 46.7b 3.84 6 0.20 0.7 �0.32 6 1.66 3.3a 1.18 6 1.28

Bifenthrin 1.0a �0.02 6 1.62 108.2c 4.68 6 0.14 11.1 2.41 6 0.80 39.3a 3.67 6 0.37

a-Cypermethrin 1.3a 0.24 6 1.65 32.2b 3.47 6 0.24 1.2 0.15 6 1.38 7.5a 2.02 6 0.85

Cyantraniliprole 0.5a �0.63 6 2.22 48.5b 3.88 6 0.20 0.0 �16.48 6 d 9.8a 2.28 6 0.74

Dimethoate 1.0a �0.04 6 1.63 24.0ab 3.18 6 0.28 1.3 0.26 6 1.32 7.3a 1.98 6 0.86

Untreated control 70.2b 4.25 6 0.48 127.2c 4.85 6 0.13 17.2 2.85 6 0.77 123.5b 4.82 6 0.21

GLMM F 5.41 12.59 2.10 6.31

df 6, 17.7 6, 20 6, 18.2 6, 21

P 0.002 < 0.001 0.104 < 0.001

Means with a letter in common are not significantly different (LSD test; P> 0.05).

d indicates an overinflated standard error.

Table 4. Mean mortality per cage of 20 adult B. tryoni exposed to insecticide residues on capsicum in season one trials; back transformed

means (BTM) and predicted means on the logit scale 6 1 standard error (PM)

Treatment Lab cage trial 1, 1 DAT Lab cage trial 2, 1 DAT Lab cage trial, 3 DAT

BTM PM BTM PM BTM PM

Clothianidin 5.5d �0.97 6 0.24 3.5bc �1.55 6 0.38 1.5 �2.51 6 0.48

Imidacloprid 0.5a �3.66 6 0.68 1.5ab �2.51 6 0.54 1.5 �2.51 6 0.48

Bifenthrin 2.5bc �1.95 6 0.32 0.5a �3.66 6 0.91 0.5 �3.66 6 0.80

a-Cypermethrin 1.3ab �2.71 6 0.44 0.5a �3.66 6 0.91 1.5 �2.51 6 0.48

Cyantraniliprole 1.8ab �2.35 6 0.38 1.5ab �2.51 6 0.54 1.5 �2.51 6 0.48

Dimethoate 4.8cd �1.17 6 0.25 5.5c �0.97 6 0.32 3.3 �1.64 6 0.34

Untreated control 1.8ab �2.35 6 0.38 0.8ab �3.25 6 0.75 2.0 �2.20 6 0.42

GLMM F 5.62 3.76 1.25

df 6, 21 6, 21 6, 21

P 0.001 0.011 0.320

Means with a letter in common are not significantly different (LSD test; P> 0.05).
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Fig. 2. Effect of treatments on reduction in numbers of Z. cucumis pupae developing from treated zucchini compared with control fruit in season one trials.

Table 5. Mean number of pupae developing from zucchini exposed to Z. cucumis in season one trials; back-transformed means (BTM) and

predicted means on the log scale 6 1 standard error (PM)

Treatment Field cage trial, 1 DAT Lab cage trial 1, 1 DAT Lab cage trial 2, 1 DAT Lab cage trial, 3 DAT

BTM PM BTM PM BTM PM BTM PM

Clothianidin 23.4a 3.16 6 1.21 20.5a 3.02 6 0.92 0.0 �8.69 6 d 11.0a 2.40 6 0.97

Imidacloprid 231.5ab 5.45 6 0.49 238.6b 5.48 6 0.29 177.0c 5.18 6 0.19 281.2c 5.64 6 0.19

Bifenthrin 601.7c 6.40 6 0.39 432.0b 6.07 6 0.23 590.8e 6.38 6 0.10 a

a-Cypermethrin 2.5 0.91 6 d 213.1b 5.36 6 0.31 81.5b 4.40 6 0.28 104.0b 4.64 6 0.32

Cyantraniliprole 124.7a 4.83 6 0.60 432.0b 6.07 6 0.23 344.5d 5.84 6 0.14 539.6d 6.29 6 0.14

Dimethoate 18.7a 2.93 6 1.35 50.4a 3.92 6 0.59 17.8a 2.88 6 0.60 17.2a 2.85 6 0.77

Untreated control 435.8bc 6.08 6 0.41 424.6b 6.05 6 0.23 571.8e 6.35 6 0.11 846.6e 6.74 6 0.11

GLMM F 3.92 4.83 17.22 18.28

df 6, 17.9 6, 17.8 6, 21 5, 15

P 0.011 0.004 < 0.001 < 0.001

Means with a letter in common are not significantly different (LSD test; P> 0.05).

d indicates an overinflated standard error.
a Bifenthrin was omitted from the 3 DAT trial due to poor results in the 1 DAT trials.

Table 6. Mean mortality per cage of 20 adult Z. cucumis exposed to insecticide residues on zucchini in season one trials; back transformed

means (BTM) and predicted means on the logit scale 6 1 standard error (PM)

Treatment Lab cage trial 1, 1 DAT Lab cage trial 2, 1 DAT Lab cage trial, 3 DAT

BTM PM BTM PM BTM PM

Clothianidin 9.0b �0.20 6 0.48 5.7b �0.91 6 0.27 1.7a �2.35 6 0.44

Imidacloprid 1.0a �2.93 6 0.65 0.3a �4.38 6 0.96 0.3a �4.38 6 1.08

Bifenthrin 0.2a �4.62 6 1.15 0.5a �3.67 6 0.69 a

a-Cypermethrin 0.6a �3.48 6 0.76 1.7a �2.35 6 0.40 0.3a �4.38 6 1.08

Cyantraniliprole 0.6a �3.48 6 0.76 0.0 �16.75 6 d 0.0 �16.75 6 d
Dimethoate 3.4b �1.60 6 0.52 7.5b �0.51 6 0.25 11.0b 0.20 6 0.27

Untreated control 0.0 �17.71 6 d 0.3a �4.38 6 0.96 0.0 �16.75 6 d
GLMM F 9.95 9.36 10.64

df 6, 18.2 6, 17.9 6, 15

P < 0.001 < 0.001 < 0.001

Means with a letter in common are not significantly different (LSD test; P> 0.05).

d indicates an overinflated standard error.
a Bifenthrin was omitted from the 3 DAT trial due to poor results in the 1 DAT trials.
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Weather Data
Rainfall for the 2014 trial period was minimal except for a period

following the penultimate spray application made to capsicum (25th

March). Rainfall during the 2015 trial period was minimal in the

48-h periods following spray applications with the exception of

those applied to capsicum on 17th and 24th March.

Discussion

All the insecticides demonstrated some level of efficacy compared to

the untreated control. Efficacy was generally lower for Z. cucumis

than B. tryoni. This may in part have been because the zucchinis de-

veloped more quickly than capsicums, were picked more frequently

and hence received fewer sprays. However, it is likely that the com-

parative vigour of the two fruit fly species also had an effect; the

number of Z. cucumis pupae developing in all treatments, including

the control, was generally much higher than for B. tryoni.

Unpublished data collected for the two fruit fly colonies used in the

trials found that egg hatch and total survival to adult in Z. cucumis

(94–98% and 78–87%, respectively) was higher than B. tryoni (76–

87% and 65–79%).

Clothianidin (Sumitomo Samurai Systemic Insecticide) was the

most effective of the eight insecticides assessed, with both 1- and 3-

d-aged residues consistently demonstrating efficacy comparable to

dimethoate in terms of numbers of pupae developing from treated

fruit. Clothianidin was the only insecticide other than dimethoate to

significantly affect mortality of adult fruit flies. Two other neonico-

tinoid insecticides, thiacloprid (Calypso 480 SC Insecticide) and imi-

dacloprid (Confidor 200 SC), also demonstrated efficacy

comparable to dimethoate against B. tryoni in terms of reduction in

pupal development. However, they were generally much less effect-

ive against Z. cucumis, and had no effect on adult mortality in either

species. Reynolds et al. (2014) found clothianidin to be moderately

effective in semifield trials with B. tryoni in stonefruit.

Neonicotinoids have also proven to be effective against a number of

other tephritid species. Rahman and Broughton (2016) found clo-

thianidin and thiacloprid significantly reduced infestation of stone-

fruit by Mediterranean fruit fly, Ceratitis capitata (Wiedemann), in

laboratory trials of 24-h field aged residues. Efficacy was reduced

when residues were aged for 7 d. Yee and Alston (2006) found thia-

cloprid and imidacloprid significantly suppressed infestation by

western cherry fruit fly Rhagoletis indifferens Curran in field trials

0

10

20

30

40

50

60

70

80

90

100

clothianidin

40 g/100 L

clothianidin

30 g/100 L

thiacloprid abamectin spinetoram

morf
gnipoleved

eapup
ni

noitcudertnecreP
lortnoc

ot
derap

moctiurf
detaert

Treatment

field cage trial lab trial 1 DAT lab trial 3 DAT

Fig. 3. Effect of treatments on reduction in numbers of B. tryoni pupae developing from treated capsicum compared with control fruit in season two trials.

Table 7. Mean number of pupae developing from capsicum exposed to B. tryoni in season two trials; back-transformed means (BTM) and

predicted means on the log scale 6 1 standard error (PM)

Treatment Field cage trial, 1 DAT Lab cage trial, 1 DAT Lab cage trial, 3 DAT

BTM PM BTM PM BTM PM

Clothianidin 40 g/100 liter 0.0 �13.68 6 d 0.0 �11.69 6 d 0.0 �18.71 6 d
Clothianidin 30 g/100 liter 15.3 2.73 6 0.74 0.0 �11.69 6 d 0.0 �18.71 6 d
Thiacloprid 1.4 0.36 6 2.29 13.2a 2.58 6 0.64 3.4a 1.22 6 1.10

Abamectin 35.0 3.56 6 0.52 47.7ab 3.87 6 0.34 41.8bc 3.73 6 0.37

Spinetoram 42.2 3.74 6 0.49 103.7bc 4.64 6 0.24 11.1ab 2.41 6 0.63

Dimethoate 6.5 1.87 6 1.10 20.4a 3.02 6 0.51 2.2a 0.78 6 1.37

Untreated control 35.5 3.57 6 0.52 182.5c 5.21 6 0.19 75.2c 4.32 6 0.31

GLMM F 0.94 6.32 3.53

df 6, 18.2 6, 18.1 6, 17.7

P 0.492 0.001 0.018

Means with a letter in common are not significantly different (LSD test; P> 0.05).

d indicates an overinflated standard error.

Journal of Economic Entomology, 2017, Vol. 0, No. 0 7

Deleted Text: data
Deleted Text: <bold>.</bold>
Deleted Text:  
Deleted Text: our
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: <sup>TM</sup>
Deleted Text: one 
Deleted Text: three 
Deleted Text: ay 
Deleted Text: &reg;
Deleted Text: &reg;
Deleted Text: -
Deleted Text:  
Deleted Text: our
Deleted Text: seven 
Deleted Text: ays


in cherry orchards. Reissig (2003) found imidacloprid to be more ef-

fective than thiacloprid in laboratory trials with apple maggot,

Rhagoletis pomonella (Walsh), but thiacloprid was more effective in

orchard trials. The author suggested efficacy was primarily a result

of reduced oviposition; neither insecticide resulted in high adult

mortality. Hu and Prokopy (1998) demonstrated that whilst imida-

cloprid was effective against R. pomonella via contact (residues

applied to glass) and ingestion, it was ineffective when applied to fo-

liage. Similarly, Hu et al. (1998) found imidacloprid to be ineffective

for control of R. pomonella in apple orchards, suggesting that this

was due to rapid absorption by the foliage and degradation by

sunlight.

Alpha-cypermethrin (Nufarm Fastac Duo Insecticide) was effect-

ive against B. tryoni in capsicums in laboratory and field cage trials,

with efficacy of 1-d and 3-d residues comparable to dimethoate.

Alpha-cypermethrin was also effective against Z. cucumis in zuc-

chini when tested in the field cage trial, but was less effective in

laboratory trials. Reynolds et al. (2014) found that efficacy of

alpha-cypermethrin against B. tryoni was comparable to fenthion

in semifield tests. Various isomers of cypermethrin have demon-

strated efficacy against tephritids, for example, cypermethrin

reduced infestation and increased yield in a trial to manage

Bactrocera spp in cucumber (Sharma et al. 2016); residues of

zeta-cypermethrin on cherries effectively reduced oviposition by

R. indifferens (Yee and Alston 2012); fresh cypermethrin residues

on cucumber prevented oviposition by Dacus ciliatus Loew, the

lesser pumpkin fly (Maklakov et al. 2001). Efficacy of the second

synthetic pyrethroid assessed, bifenthrin (Talstar 250 EC

Insecticide/Miticide) was also comparable with dimethoate in a

field cage trial against B. tryoni. However, efficacy in laboratory

trials was generally low and this insecticide was ineffective

against Z. cucumis. Maklakov et al. (2001) found that fresh bifen-

thrin residues prevented oviposition by D. ciliatus in cucumbers,

suggesting that cypermethrin and bifenthrin had a repellent effect

on fruit flies. Repellency of pyrethroids has been documented in a

variety of insects, including mosquitoes, houseflies, honey bees,

Lepidoptera, and mites (Virgona et al. 1983, Rieth and Levin

1988, Hirano 1989, Siegert et al. 2009). A repellent effect could

explain the better efficacy achieved for alpha-cypermethrin and

bifenthrin in field cage trials, where fruit flies were presented with

a choice of treated and untreated fruit, as opposed to laboratory

cage trials, where fruit flies were confined in close proximity with

treated fruit.

Cyantraniliprole (DuPont Benevia Insecticide) demonstrated effi-

cacy in field cage trials against both fruit fly species, and laboratory

cage trials against B. tryoni. It was less effective against Z. cucumis.

There is relatively little published data on the effect of this new in-

secticide on tephritid flies. Reynolds et al. (2014) found cyantranili-

prole to have little impact on mortality of adult B. tryoni in

laboratory tests. Cyantraniliprole significantly reduced adult emer-

gence of B. dorsalis, Z. cucurbitae, and C. capitata, when applied as

a soil drench (Stark et al. 2013), and resulted in high adult mortality

of B. dorsalis when ingested (Zhang et al. 2015).

Spinetoram (Success Neo Insecticide) was not effective in the

field cage trials and had mixed efficacy in the laboratory cage trials.

Reynolds et al. (2014) found spinetoram to be moderately effect-

ive on mortality of B. tryoni in laboratory tests. Likewise, Yee

and Alston (2012) found that this chemical resulted in 81% mor-

tality of R. indifferens females exposed to residues on cherries at

Table 8. Mean mortality per cage of 20 adult B. tryoni exposed to

insecticide residues on capsicum in season two trials; back trans-

formed means (BTM) and predicted means on the logit scale 6 1

standard error (PM)

Treatment Lab cage trial,

1 DAT

Lab cage trial,

3 DAT

BTM PM BTM PM

Clothianidin

40 g/100 liter

6.3b �0.79 6 0.25 3.2b �1.65 6 0.29

Clothianidin

30 g/100 liter

8.0b �0.41 6 0.23 2.5b �1.95 6 0.31

Thiacloprid 0.3a �4.37 6 1.03 0.3a �4.38 6 0.86

Abamectin 0.0 �14.75 6 d 0.0 �16.75 6 d
Spinetoram 0.3a �4.37 6 1.03 0.3a �4.38 6 0.86

Dimethoate 9.0b �0.20 6 0.23 2.7b �1.84 6 0.30

Untreated

control

0.0 �14.75 6 d 0.3a �4.38 6 0.86

GLMM F 5.62 4.32

df 6, 21 6, 18.2

P 0.002 0.007

Means with a letter in common are not significantly different (LSD test;

P> 0.05).

d indicates an overinflated standard error.

Table 9. Mean number of pupae developing from zucchini exposed to Z. cucumis in season two trials; back-transformed means (BTM) and

predicted means on the log scale 6 1 standard error (PM)

Treatment Field cage trial, 1 DAT Lab cage trial, 1 DAT Lab cage trial, 3 DAT

BTM PM BTM PM BTM PM

Clothianidin 40 g/100 liter 2.8 1.02 6 4.25 1.7a 0.56 6 1.75 0.0 �13.69 6 d
Clothianidin 30 g/100 liter 0.0 �15.52 6 d 12.7a 2.54 6 0.65 1.5 0.39 6 3.97

Thiacloprid 376.4 5.93 6 0.47 90.3b 4.50 6 0.25 189.1 5.24 6 0.38

Abamectin 375.3 5.93 6 0.47 478.3c 6.17 6 0.12 385.9 5.96 6 0.28

Spinetoram 361.0 5.89 6 0.47 151.2b 5.02 6 0.20 253.8 5.54 6 0.34

Dimethoate 44.8 3.80 6 1.09 9.0a 2.20 6 0.77 236.1 5.46 6 0.35

Untreated control 423.7 6.05 6 0.45 797.4d 6.68 6 0.10 243.7 5.50 6 0.34

GLMM F 0.91 32.06 0.87

df 6, 17.9 6, 18 6, 18.1

P 0.507 < 0.001 0.538

Means with a letter in common are not significantly different (LSD test; P> 0.05).

d indicates an overinflated standard error.
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24 h, and reduced oviposition compared to controls. Both

Reynolds et al. (2014) and Yee and Alston (2012) applied treat-

ments and aged residues under laboratory conditions. Yee et al.

(2007) found that aging of spinetoram residues under field condi-

tions resulted in reduced mortality of adult R. pomonella; how-

ever, residues remained effective up to 14 d in terms of preventing

oviposition.

Abamectin (Vertimec Miticide/Insecticide) had no effect in field

cage trials. One-day residues had a small but significant effect on B.

tryoni and Z. cucumis in laboratory trials. Kay (2004) found aba-

mectin residues on capsicum resulted in up to 70% mortality of B.

tryoni up to 4 h after dipping, but 24-h residues were less effective.

Reynolds et al. (2014) found abamectin residues on stonefruit re-

sulted in high mortality of adult B. tryoni and reduced oviposition.

Abamectin is rapidly degraded by exposure to light and air

(MacConnell et al. 1989).

In summary, the neonicotinoid clothianidin demonstrated effi-

cacy comparable to dimethoate against both B. tryoni and Z.

cucumis. Thiacloprid and imidacloprid were also generally effect-

ive against B. tryoni. However, there are concerns about effects of

neonicotinoids on bees and other pollinator species (Blacquière

et al. 2012, Godfray et al. 2014). The synthetic pyrethroid alpha-

cypermethrin was also very effective. However, observations of

increased aphid and whitefly activity in alpha-cypermethrin and

bifenthrin plots compared with other treatments suggest a disrup-

tive effect on natural enemies. Cyantraniliprole was effective

against B. tryoni and is claimed by the manufacturer to be soft on

beneficials. Spinetoram, abamectin, and bifenthrin were generally

less effective than the other treatments. However, these insecti-

cides are registered in fruiting vegetable crops for control of other

pests, and it is likely that their use would have a suppressive effect

on fruit flies. It should also be noted that treated fruit were

exposed to much higher fruit fly pressure than could be expected

in the field, and it is possible that greater efficacy of treatments

would be observed in actual use conditions. Large variability be-

tween replicates was a problem and may have obscured some

treatment effects; incomplete coverage by insecticides may have

accounted for some of this variability.

These data represent the first successful trial of the efficacy of in-

secticides, applied to a vegetable crop as cover sprays, against B.

tryoni and Z. cucumis. Although Kay (2004) applied insecticides

using a similar small plot layout, background fruit fly pressure alone

was not sufficient to result in a significant difference amongst treat-

ments. Reynolds et al. (2014) also used a semifield method to com-

pare insecticides for efficacy against B. tryoni; however, although

insecticides were applied to fruit in the field, fruit flies were then

caged in close proximity to the treated fruit. The field cage method

described here allowed for comparison of a number of insecticides

under semirealistic conditions. Insecticides were applied to plants

and the residues aged under field conditions; fruit flies were exposed

to entire plants bearing fruit; and fruit flies were able to choose

where to land and oviposit. This allowed for evaluation of effects

other than mortality, for example, repellent effects resulting in

reduced oviposition. This is significant, as few of the insecticides af-

fected adult mortality in the laboratory cage trials, but the majority

Table 10. Mean mortality per cage of 20 adult Z. cucumis exposed

to insecticide residues on zucchini in season two trials; back trans-

formed means (BTM) and predicted means on the logit scale 6 1

standard error (PM)

Treatment Lab cage trial, 1 DAT Lab cage trial, 3 DAT

BTM PM BTM PM

Clothianidin

40 g/100 liter

7.5b �0.52 6 0.25 5.5bc �0.97 6 0.38

Clothianidin

30 g/100 liter

4.5a �1.25 6 0.28 2.5ab �1.95 6 0.50

Thiacloprid 0.0 �18.75 6 d 0.3a �4.37 6 1.45

Abamectin 0.0 �18.75 6 d 0.3a �4.37 6 1.45

Spinetoram 0.0 �18.75 6 d 0.3a �4.37 6 1.45

Dimethoate 11.3c �0.25 6 0.25 10.0c 0.00 6 0.34

Untreated control 0.0 �18.75 6 d 0.0 �15.75 6 d
GLMM F 4.24 9.36

df 6, 18 6, 18.1

P 0.008 0.004

Means with a letter in common are not significantly different (LSD test;

P> 0.05).

d indicates an overinflated standard error.
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Fig. 4. Effect of treatments on reduction in numbers of Z. cucumis pupae developing from treated zucchini compared with control fruit in season two trials.
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demonstrated at least a suppressive effect on infestation of fruit in

field cage trials.
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