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Land management agencies are increasingly using multispectral satellite imagery to 

monitor post-fire ground conditions to guide effective conservation and asset 

protection management strategies. Estimates derived from such data can span over 

multiple decades and can be analysed to identify spatiotemporal burnt area patterns. 

Interestingly, fire severity is rarely derived from multi-decadal remote sensing 

datasets. Accordingly, in this study we explored the utility of imagery captured with 

Landsat sensors (5 TM, 7 ETM+ and 8 OLI) to characterise fire severity of burnt 

areas over a 23 year period in a national park with a woodland and heath ecosystem. 

The multi-temporal differenced normalised burn ratio (dNBR) was used to estimate 

fire severity for individual burnt areas, which were then aggregated to identify 

spatiotemporal patterns. Accuracy assessment was achieved using ground truth data 

collected with the Geometrically Structured Composite Burn Index (GeoCBI), which 

incorporates the fraction of cover (FCOV) of vegetation over the total plot. Our 

results indicated that Landsat imagery was ideal for significantly estimating fire 

severity (accuracy = 72 %, kappa = 0.63, P = < 0.001) in sclerophyll woodland and 

heath ecosystems. Further, we had interesting insight into the patterns of increased 

fire severity within specific vegetation types and across the study site. 

Keywords: multi-decadal fire severity patterns; Landsat; GeoCBI; dNBR; heath; 

woodland. 

1. Introduction 

Fire plays an important role in the ecosystem dynamics of Australian fire-prone 

vegetation communities (Parr and Andersen 2006; Tran and Wild 2000). The fire 

regime is central to vegetation-fire dynamics and is comprised of the variables: 

season, frequency, spatial and temporal extent, and intensity (Gill 1975). However, 

European settlement has substantially altered the fire regimes that Australian fire-

prone ecosystems are adapted too (Enright and Thomas 2008; Gill 2008). These 

changes vary across Australia and have included total fire suppression in some areas, 

and increased fire frequency in others (Penman et al. 2011). Both can lead to poor 

ecosystem health and the former to increased fuel load accumulation and 

connectivity, which under optimal climatic factors can result in large intense wildfires 

(Miller and Urban 2000; Penman et al. 2011). Returning fire regimes to a pre 

European state will prove difficult, and in many fragmented landscapes may not be 



possible (Gill 2008). Thereafter, the goal is to implement fire regimes that protect 

human assets, and enhance, or at least conserve biodiversity (Penman et al. 2011).  

The economic feasibility combined with extended spatial and temporal coverage of 

remotely sensed data are ideal for empirically analysing spatial patterns of burnt areas 

and associated ecological responses at the community level (Benson and MacKenzie 

1995; Kelly et al. 2012; Kerr and Ostrovsky 2003; Lentile et al. 2006). This is most 

pronounced in inaccessible locations where field surveys are either impractical or 

require huge resources. Furthermore, archives of the Landsat 5 TM, 7 ETM+ and 8 

OLI sensors (now referred to as Landsat) contain datasets at 30m spatial resolution, 

and temporal resolution as frequently as 8 days dating back to 1984. These archives 

can be used to reliably infer long-term fire associated ecosystem patterns (Driscoll et 

al. 2010). Multispectral remote sensing methods have been used to estimate the 

frequency, season and heterogeneity of burnt areas over multiple decades (Duncan et 

al. 2009; Durieut and Ryan 1997; Srivastava et al. 2013). Multi-decadal estimates of 

fire severity have received little attention, although, Hammill & Bradstock (2006) 

have identified it as a future research priority. Fire severity is a measure of the 

biomass consumed by the fire as derived from remote sensing methods while fire 

intensity is a measure of energy output from the active fire (Keeley 2009). Within 

similar vegetation types, fire severity measurements can be used as a surrogate for fire 

intensity, this is due to the generally high relationship and that post-fire fire severity 

can easily be quantified using remote sensing methods (Murphy and Russell-Smith 

2010). Landsat images, in conjunction with the multi-temporal band ratio index 

dNBR, have been widely used to classify burnt area and fire severity in vegetated 

landscapes (reviewed in French et al. 2008; Key and Benson 2006; Srivastava et al. 

2013). 

Multispectral remote sensing of burnt areas is not without its drawbacks. The utility 

of remotely sensed data is limited for detecting sub-canopy low severity burnt areas 

under dense green canopy cover (Arroyo et al. 2008; De Santis and Chuvieco 2009; 

Kolden et al. 2012). The GeoCBI field validation fire severity index attempts to 

correct for this by integrating FCOV measurements as a weighting factor into the total 

plot fire severity measurement. Thereby, as FCOV increases, a proxy for canopy 

cover, the total plot fire severity rating decreases. This produces field measurements 

that are more closely related to Landsat dNBR fire severity classifications (De Santis 

and Chuvieco 2009). Thus GeoCBI more consistently relates to a wider range of fire 

severities as derived from Landsat dNBR classifications (De Santis and Chuvieco 

2009). Although the GeoCBI-dNBR provides an improved relationship over other 

field validation methods, low severity surface burnt areas under tall dense canopy are 

still difficult to detect (De Santis and Chuvieco 2009). 

This paper describes the methods used in a preliminary study to: 1) estimate the 

spatial and temporal extent and frequency of low, moderate and high fire severity 

classes; 2) evaluate the relationship between Landsat dNBR classifications and 

GeoCBI field validation data. 

2. Material and methods 

Study area 

Research was conducted in the Mooloolah River National Park/conservation area 

(MRNP), in South East Queensland (Figure 1). MRNP consists of a north and south 

section dissected by a dual-lane motorway (Figure 1). 



 

Figure 1. The 2013 burnt area in the south section of MRNP is visually identifiable as maroon in 

colour, as captured by the Landsat 8 OLI sensor. The false colour composite image was created 

with SWIR 2, NIR, and red spectral bands. 

The vegetation of MRNP consisted of sclerophyll woodland and heath communities, 

detailed summaries of vegetation classes are compiled by Accad et al. (2008). In 

brief, heath communities were characterised as structurally dense single-story wet and 

dry vegetation classes growing to less than two meters tall. Woodlands were 

characteristic of an open structure mostly less than 20 meters tall with a heath and 

graminoid understory, and an occasional shrubby midstorey three to eight meters 

high. Fragments of tall closed Eucalyptus forest occurred in the northwest of the north 

section and estuarine communities fringed a river on the east side of the south section. 

GeoCBI field measurements 

Field measurements were taken six months after the December 2013 fire. Although 

vegetation regeneration processes had begun, signs of fire severity were still apparent. 

The total plot FCOV was visually estimated using a spherical densitometer. 

Measurements were taken four times at four evenly spaced points recorded 7.5 meters 

from the plot centre and averaged. To avoid issues with miss-registration sampling 

plots were at least 60 meters apart and were centred in the middle of at least 2x2 pixel 

aggregates with a variation in dNBR values of less than five precent. This reduces the 

introduction of field and imagery geo-rectification error, and autocorrelation of 

reflectance from surrounding pixels (Congalton 1991; Key and Benson 2006). 

Clusters of 3x3 homogeneous pixel are recommended for field sampling sites 

(Congalton 1991; Key and Benson 2006), however they only occurred in the high 

severity classes. Pixel centre coordinates of sample point locations were uploaded 

onto a Trimble Geoexplorer 6000 series differential GPS and used for field 

navigation. Once at the field sample point the plot centre coordinates were recorded 

and later corrected using gnss correction logs collected by Geoscience Australia 

(2014) at their Caboolture station (approximately 50 Km South of MRNP). After 



differential corrections were applied, the estimated accuracy of field sample point 

were 45% >15cm, 98% >2m and 100% >5m. 

Burnt area data 

The Department of National Parks, Recreation, Sports and Racing (DNPRSR) hold 

fire perimeter maps and fire reports for most national parks in Queensland, which for 

MRNP dated back to 1970. Perimeter maps were used to locate Landsat images 

acquired for path 89 and row 79 as standard level one terrain corrected (L1T) 

products from the United States Geological Survey (USGS) Earth Explorer (2014) 

archive. Landsat images were obtained as close to the pre and post ignition dates as 

possible. Exact dates of three fire events are unknown due to incomplete fire reports. 

However, the maximum known interval between a fire event and image capture was 

68 days (Table 1). This was attributed to interference from cloud cover and shadow 

that precluded burnt area classification. Ignition dates and Landsat image 

characteristics used for fire severity classifications are provided (Table 1). 

Table 1. Landsat images and fire dates used to estimate MRNP fire severity over the 23 year 

study period. 

Ignition date  Landsat capture date Days after fire Sun elevation (°) 

December 1991 Pre 8th October 1991  48.80 

Post 27th December 1991  53.45 

2nd November 1992 Pre 24th September 1992  44.04 

Post 27th November 1992 25 55.01 

26th January 1993 Pre 27th November 1992  55.01 

Post 4th April 1993 68 37.92 

21st November 1994 Pre 30th September 1994  44.97 

Post 20th January 1995 60 47.64 

1996 Pre 3rd September 1996  36.86 

Post 6th November 1996  54.03 

1998 Pre 8th August 1998  33.07 

Post 11th October 1998  52.69 

23rd July 2000 Pre 2nd June 2000  31.03 

Post 21st August 2000 29 38.68 

29th August 2000 Pre 21st August 2000  38.68 

Post 22nd September 2000 31 49.12 

9th September 2000 Pre 21st August 2000  38.68 

Post 22nd September 2000 13 49.12 

13th August 2002 Pre 10th July 2002  29.71 

Post 27th August 2002 14 39.88 

1st January 2007 Pre 18th November 2006  62.31 

Post 6th February 2007  36 54.52 

2nd September 2009 Pre 2nd August 2009  38.68 

Post 23rd September 2009 21 49.28 

10th October 2009 Pre 23rd September 2009  49.28 

Post 11th October 2009 33 60.93 

7th December 2013 Pre 4th October 2013  55.18 

Post 23rd December 2013 16 62.09 



The spectral resolution of data acquired from Landsat sensors has been described 

(Figure 2). Spatial resolutions for Landsat multispectral bands are 30m, and the 

panchromatic band captured by 7 ETM+ and 8 OLI sensors is 15m. 

Table 2. Spectral band resolutions acquired by Landsat 8 OLI, 7 ETM+ and 5 TM sensors.  

Spectral band  Wavelength (μm) Bandwidth (μm) 

 OLI ETM+ TM OLI ETM+ TM 

Costal Blue 0.433-0.453   0.020   

Blue  0.450-0.515 0.452-0.514 0.452-0.518 0.065 0.062 0.66 

Green  0.525-0.600 0.519-0.601 0.528-0.609 0.080 0.082 0.081 

Red  0.630-0.680 0.631-0.692 0.626-0.693 0.050 0.061 0.067 

Near Infrared  0.845-0.885 0.772-0.898 0.776-0.904 0.040 0.126 0.128 

Short Wave Infrared 1 1.560-1.660 1.547-1.748 1.567-1.784 0.100 0.201 0.217 

Short Wave Infrared 2  2.100-2.300 2.065-2.346 2.097-2.349 0.200 0.281 0.252 

Panchromatic 0.500-0.680 0.515-0.896  0.165 0.381  

Image rectifications 

Georectification 

All the images used in this study were geo-rectified with a high resolution four band 

aerial image (near infrared, red, green and blue), captured in 2008 with a horizontal 

accuracy of ±  0.30 meters, obtained from the Sunshine Coast Regional Council. 

Landsat images were geo-rectified using a first order polynomial transformation with 

root mean square error (RMSE) of less than five meters. This study applied 

recommendations by Hughes et al. (2006) to use hard features for the geo-

rectification of satellite and aerial images. Hard features, that generally include man-

made structures such as the corners of buildings and road intersections, are discrete 

and contain distinct corners that remain stationary over time, thus provide increased 

accuracy as ground control points in multi-temporal image analysis. The coordinate 

system applied to all datasets used in this study was WGS 84 UTM zone 56S. 

Radiometric conversion 

Radiometric conversions were performed to allow for direct comparison between 

images acquired on different dates, at different view angles and between Landsat 

satellite sensors. Radiometric conversion to spectral radiance at-sensor’s aperture was 

achieved (Equation 1) (Chander et al., 2009). This was followed by conversion to top 

of atmosphere (TOA) (Equation 2) (Chander et al., 2009). 

𝐿𝑠𝑎𝑡𝜆  =  𝐺𝜆 ∗ 𝐷𝑁𝜆 + 𝑂𝜆 (1) 

where 𝐿𝑠𝑎𝑡𝜆 is the satellite radiance in W m-2 sr-1 μm-1 for band 𝜆, 𝐺𝜆 and 𝑂𝜆 are the 

gain and offset respectively, for band 𝜆 specific spectral at-sensor radiances in W m-2 

sr-1  μm -1, and 𝐷𝑁𝜆is the raw band 𝜆 specific pixel. 

𝑇𝑂𝐴𝜆  =  
( 𝐿𝑠𝑎𝑡𝜆 ∗ 𝑑2 ∗ 𝜋)

(𝐸𝑆𝑈𝑁𝜆 ∗ 𝐶𝑜𝑠(90 − 𝜃))
 (2) 

where 𝑇𝑂𝐴𝜆  is unitless, 𝑑  is the earth sun distance, 𝐸𝑆𝑈𝑁𝜆  is the band 𝜆  specific 

exoatmospheric irradiance in W m-2 sr-1 μm-1 and θ  is the  solar elevation angle. 

𝐸𝑆𝑈𝑁𝜆 values for 5 TM and 7 ETM+ sensors are reported (Chander et al. 2009), and 

8 OLI (Vanhellemont and Ruddick 2014). The metadata text file provided with 



Landsat files contain the date of image capture and solar elevation for the entire 

scene, gain (RADIANCE_MULTI_BAND) and offset (RADIANCE_ADD_BAND) 

for each band. Earth sun distance was determined by converting the date of image 

capture to day-of-year then using the look up table provided by Chander et al. (2009). 

Image normalisation 

Radiometric consistency between multi-temporal datasets is a requirement for 

detecting earth surface changes such as fire severity (Vicente-Serrano et al. 2008), 

and to accurately apply fire severity detection thresholds retrospectively (Salvador et 

al. 2000). Since this study used a Landsat dataset that spanned 23 years a stringent 

image normalisation method was vital. Radiometric normalisation methods can be 

absolute, where pixel values are converted to their true surface values, or relative, 

where pixel values are calibrated to values of a common reference image. Absolute 

radiometric calibration models such as 6S radiative transfer codes require the sensors 

spectral profile and atmospheric property codes, the latter of which generally is not 

available for retrospective studies (Du et al. 2002). While absolute radiometric 

calibration models such as dark object subtraction contains simplified assumptions 

that can significantly introduce error into the analysis (Furby and Campbell 2001; 

Vicente-Serrano et al. 2008). Relative radiometric normalisation methods are widely 

used due to their simplicity and accuracy for producing multi-temporal datasets with 

comparable values (Chen et al. 2005; Furby and Campbell 2001). Relative 

atmospheric correction can be achieved be fitting pseudo invariant features (PIF) to a 

linear regression model. PIF are targets on Earth’s surface that can be assumed to 

remain stable in reflectance over long time periods and thereby changes in their pixel 

values can be associated with radiometric noise (Chen et al. 2004; Furby and 

Campbell 2001; Vicente-Serrano et al. 2008). PIF targets should include house and 

building rooftops, roads, quarries and deep water (Vicente-Serrano et al. 2008). 

Through linear regression model fitting, atmospheric contamination can be reduced 

by selecting the reference image as cloud free and with the least haze (Furby & 

Campbell 2001). Cloud is generally associated with increased atmospheric water 

vapour (Furby and Campbell 2001).  

Relative atmospheric correction was achieved by fitting values from 154 PIF points to 

a linear regression model. The reflectance values captured by PIF were well spread 

across the spectral range of Landsat bands. PIF targets were manually selected, and 

the same pixel locations were sampled over all images. This method reduced the 

possibility of statistical outliers caused by dramatic land-use change that can occur 

with automated PIF selection methods. Linear regression of PIF values was used to 

derive gain and offset coefficients to be used for image normalisation (Equation 3). 

This relationship assumes that linear atmospheric effects outweigh non-linear effects 

(Furby and Campbell 2001; Vicente-Serrano et al. 2008). 

𝐷𝑁𝑁𝑂𝑅𝑀𝜆 = 𝐺𝜆 ∗ 𝐷𝑁𝑆𝑈𝐵𝜆 + 𝑂𝜆 (3)  

where 𝐷𝑁𝑁𝑂𝑅𝑀 are normalised band 𝜆 pixel values, G and O are the gain and offset 

derived from PIF linear regression values and 𝐷𝑁𝑆𝑈𝐵 are band 𝜆 pixel values to be 

normalised. 

Accuracy of image normalisation can be assessed with measures of RMSE. The 

RMSE is a measure of response variable variation (normalised images) from the 

model prediction (reference image used for atmospheric normalisation). Smaller 



RMSE implies a reduction in noise between the reference and normalised image, thus 

improving the multi-temporal consistency of image datasets (McGovern et al. 2002). 

The RMSE between TOA un-normalised and normalised bands was measured to 

gauge the effectiveness of PIF linear regression to produce temporally homogeneous 

images. RMSE was conducted with a set of 57 independent PIF targets. All 

normalised images produced RMSE values of less than one precent, the threshold set 

by McGovern et al. (2002) to assess image normalisation success. 

Fire severity detection and classification 

The NBR index measures change in the spectral response caused by fire, especially to 

vegetation (Equation 4) (Figure 2 D) (Key 2006). The pre-fire NBR can be subtracted 

from the post-fire NBR classifications as in the multi-temporal spectral index dNBR 

(Equation 5) (Figure 2 E) to detect absolute change in spectral reflectance between the 

pre and post fire images. 

𝑁𝐵𝑅 =  
(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)
 (4) 

𝑑𝑁𝐵𝑅 =  𝑝𝑟𝑒𝑁𝐵𝑅 − 𝑝𝑜𝑠𝑡𝑁𝐵𝑅 (5)  

where the Landsat spectral bands 𝑆𝑊𝐼𝑅 and 𝑁𝐼𝑅 are short wave infrared and near 

infrared respectively.  

Increasingly positive dNBR values correspond with a greater change between the pre 

and post NBR classifications. Burnt area pixel values in the NIR band decrease, and 

are associated with reduced photosynthetically active vegetation (Figure 2 B) (Key 

2006). While in the SWIR band increases in pixel values are associated with reduced 

photosynthetically active vegetation, moisture content, ash deposition and increased 

soil exposure (Figure 2 C) (Key 2006). 



 

Figure 2. The dNBR classification process as applied to the 2013 burnt area. (A) The post fire 

Landsat 8 OLI false colour composite image is created with SWIR 2, NIR, and red spectral 

bands. (B) The NIR band is used in NBR to detect spectral changes associated with reduced 

photosynthetically active vegetation. (C) The SWIR band is used in NBR to detect spectral 

changes associated with photosynthetically active vegetation, moisture content, ash deposition 

and increased soil exposure. (D) The NBR discrete post-fire classification. (E) The dNBR discrete 

fire severity classification. (F) The discrete fire severity classification. 

The continuous dNBR data classifications were reclassified into four discrete severity 

classes: unburnt; low; moderate and high fire severity (Figure 2 F). The GeoCBI 

contains discrete values that can be used to classify field data into fire severity 

classes, that in turn can be used to guide dNBR discrete fire severity classifications 

(Miller and Thode 2007) with the combination of mid-point threshold values 

(Hammill and Bradstock 2006). The lower and upper threshold values used for 

discrete fire severity classification of GeoCBI field data are presented (Table 3) 

(Miller and Thode 2007). 

Table 3. Upper and lower fire severity thresholds used for discrete classification of GeoCBI field 

data. 

Fire severity class Lower threshold Upper threshold 
Unburnt 0.00 0.09 

Low 0.10 1.24 

Moderate 1.25 2.24 

High 2.25 3.00 

dNBR discrete classification was achieved by extracting the pixel values that 

corresponded with GeoCBI field sample points. These pixel values were grouped into 

fire severity classes based on their GeoCBI rating, and a mean dNBR pixel value was 

derived for each class. Midpoint values were then derived between each of the 



adjoining dNBR class means. Finally the mid-point values were used as thresholds for 

discrete dNBR fire severity reclassification. 

Multi-decadal fire severity analysis 

The fire severity thresholds created for the 2013 classification were extrapolated to 

the dNBR classifications of retrospective burnt areas in this study. The discrete fire 

severity classifications for each fire event were then aggregated to produce pixel 

based estimates of the frequency for low, moderate and high fire severity classes. 

Time-since-fire estimates were also produced that incorporated fire severity into each 

vegetation age class. 

Accuracy assessment 

A confusion matrix accuracy assessment was used to validate remotely sensed dNBR 

classifications against GeoCBI field data (Congalton 1991). The Kappa statistic was 

used as a measure of agreement to determine whether the classification was better 

than that produced by chance alone (Congalton 1991). Landis and Koch (1977) 

developed a scale (Table 4) to provide consistency when determining the strength of 

the Kappa statistic measurement for categorical data as used in this study. 

Table 4. The discrete scale used to determine the strength of the Kappa statistic. 

Kappa statistic Strength of agreement 

0.0 - 0.2 Slight 

0.2 - 0.4 Fair 

0.4 - 0.6 Moderate 

0.6 - 0.8 Substantial 

0.8 - 1.0 Almost perfect 

Although this scale is arbitrary it provides a standard to assess the Kappa statistic 

measure (Landis and Koch 1977). 

Software and data analysis 

Image and statistical analysis were preformed on R statistics software 3.0.3 (R Core 

Team 2014) with the packages: raster; Landsat (Goslee 2011); caret and maptools. 

QGIS 2.2.0 was used for image visualisation and cartographical map production 

(QGIS Development Team 2014). 

3. Results 

Accuracy of Landsat fire severity estimations 

The linear regression model fitted to continuous GeoCBI-dNBR values for the 2013 

fire was significantly high (r2 = 0.8072, P = < 0.001) (Figure 3). This indicated a 

strong linear relationship between the GeoCBI field data collection method and 

Landsat derived dNBR fire severity classification. 



 

Figure 3.  Fire severity measurements for the a burnt area in a heath and woodland ecosystem. 

The linear relationship between GeoCBI field values and dNBR values derived from Landsat 

data for the 2013 burnt area are shown. 

The 2013 Landsat dNBR classification provided an estimate of discrete fire severity 

classes with an accuracy of 72 % that represented substantial agreement (kappa = 

0.63, P = < 0.001) with discrete GeoCBI classes (Table 5), as classified using 

GeoCBI threshold values (Fire severity detection and classification section). 

Table 5. Confusion matrix for 2013 Landsat 8 OLI derived dNBR fire severity classification, 

between extracted cell value count for each fire severity class and corresponding GeoCBI fire 

severity count. 

  Field data   

 Severity* 0 1 2 3 Total User’s accuracy 

2013 

dNBR 

0 18 1 1 0 20 90 % 

1 1 21 7 0 29 72 % 

2 0 3 17 5 25 68 % 

3 0 0 9 14 23 61 % 

Total 19 25 34 19 Kappa 0.63 

Producer’s accuracy  95 % 84 % 50 % 74 % P value < 0.001 

    Accuracy 72 % 

*Severity classes are: 0-unburnt, 1-low severity, 2-moderate severity, 3-high severity, and grey boxes 

represent the number of correct classifications in each class. 97 samples collected. (𝛼 0.05) 

The fire severity thresholds generally produced classes with high agreement between 

dNBR classifications and GeoCBI field data. Unburnt, low and high dNBR fire 

severity classes provided substantial to near prefect measures of agreement. While 

moderate fire severity estimations yielded the lowest agreement with field data 

(producer’s accuracy 50 %), indicating under-estimation of moderate fire severity 

classes. Further, confusion between moderate and high classes (n = 14) is evident in 

the confusion matrix (Table 5). 



Frequency of fire severity in MRNP 

Mapped fire severity estimations for the frequency of high, moderate and low fire 

severity classes were identified. The occurrence of high fire severity was mostly 

confined to heath vegetation communities (figure 4). 

 

Figure 4. Frequency of high fire severity in MRNP over a 23 year period. 

In this preliminary study patterns of moderate fire severity were not visible (Figure 5). 

 

Figure 5. Frequency of moderate fire severity in MRNP over a 23 year period. 
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Low fire severity was more widespread than moderate and high fire severity, and 

there was an increased occurrence within Melaleuca woodlands in the south section of 

MRNP (Figure 6). 

 

Figure 6. Frequency of low fire severity in MRNP over a 23 year study period. 

High frequency (three and four times burnt), high severity burnt areas were most 

common in heath vegetation communities. In all fire severity classes, increased 

frequency occurred in the south section of MRNP compared to the north section. 

Time-since-fire estimates with the inclusion of fire severity classes in each 

vegetation-age-class have been mapped (Figure 7). 
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Figure 7. Fire severity classes within each time-since-fire age class. 

The spatial homogenisation of the 2013 burnt area is evident by the nearly exclusive 

one year time-since-fire age class in the south section of MRNP (Figure 7). In 

comparison the north section consisted of three vegetation age classes that span over a 

five year period (Figure 7). The south section of MRNP was dominated by a one year 

time-since-fire vegetation age class. Whereas the north section was characterised by a 

heterogeneous time-since-fire mosaic containing long unburnt 14 - 19 year vegetation 

age classes. Throughout MRNP, sections of long unburnt (> 23 years) vegetation 

existed (Figure 7). In the south section these long unburnt patches were comprised 

mainly of estuarine communities, and in the north section by tall closed Eucalyptus 

forests. It should be noted that estuarine communities did not exist in the north 

section, nor did tall closed Eucalyptus forests in the south section. 

4. Discussion 

We found that Landsat data in combination with GeoCBI field surveys can provide 

accurate estimates of multi-decadal fire severity patterns. This was attributed to the 

significantly high linear relationship and confusion matrix accuracies achieved 

between the 2013 dNBR classifications and GeoCBI field data. Further, PIF linear 

regression model fitting reduced the RMSE between normalised and TOA images to a 

level acceptable to validate the extrapolation of the 2013 fire severity class thresholds 

over retrospective dNBR classifications. The linear relationship between Landsat and 

field data indicated that the GeoCBI-dNBR relationship provided a consistent 

measure of fire severity across the range of locations sampled in MRNP. The majority 

of confusion matrix error was attributed to the under-estimation of moderate fire 

severity class as classified using the Landsat dNBR index. This finding was consistent 

with Miller et al. (2009), who attributed the reduced accuracy of moderate severity 

classes to mixed spectral responses of low and high fire severity effects. During field 



surveys we found that many moderate severity sample locations contained highly 

heterogeneous mixes of moderate and low-end high severity variables. This was 

particularly apparent in vegetation where some GeoCBI variables were rated as high 

severity due to total foliage consumption, while other variables were rated as low 

severity as resprouting was vigorous and vegetation mortality was low. The GeoCBI 

was designed for North American and Mediterranean European fire-prone ecosystems 

that are dominated by obligate seeder species whose general response to at least 100 

% foliage scorch is death (Crandall and Platt 2012; Santana et al. 2012) unlike many 

Australian fire-prone species that vigorously resprout from lignotuber and epicormic 

buds, even after high severity fire (Burrows 2013). We suggest that minor changes to 

the GeoCBI may be required to better suit Australian fire-prone ecosystems. This 

aside, the combinations of remote sensing techniques and field surveys used in this 

study for multi-decadal estimates of fire severity can provide new insight into 

ecological appropriateness and fire behaviour.  

The Landsat archive provided us with the unique opportunity to characterise fire 

severity in a sclerophyll woodland and heath ecosystem over a 23 year period. Multi-

decadal burnt area estimates derived from Landsat and associated ancillary datasets 

are significantly recognised to provide the detailed information required for 

ecologically appropriate fire regime implementation (Srivastava et al. 2013), and can 

be improved with fire severity data. In this preliminary study we identified several 

patterns of fire severity in MRNP. Heath vegetation communities were most 

frequently burnt and constituted for the majority of high severity burnt areas. This co-

insides with findings that Australian heath is highly flammable and generally the 

majority of biomass is consumed by fires (Griffith et al. 2003). Hammill & Bradstock 

(2006) attributed the high biomass consumption of heath due to their short height and 

highly connected vertical fuel structure. Melaleuca vegetation communities, on the 

other hand, constituted for the majority of the frequently burnt low severity areas. The 

incorporation of fire severity estimates into time-since-fire vegetation age classes 

further identified heterogeneous spatial patterns that occurred due to the MRNP fire 

regime. We identified that the south section of MRNP received increased frequency 

of all fire severity classes and contained an even time-since-fire vegetation age class. 

The north section contained older time-since-fire vegetation age classes with the 

youngest being 14 years old. This is not ideal, as time-since-fire increases vegetation 

quickly grows to its pre-fire fuel load and can become highly connected, both 

vertically and horizontally, encouraging large intense fires (Miller and Urban 2000). 

Although, small patches should remain long unburnt to provide habitat for species 

that require deep litter (Clarke 2008). 

Based on DNPRSR fire perimeter maps, we successfully estimated the spatial extent 

of all burnt areas that occurred in MRNP over the 23 year period (unpublished data). 

The fire perimeter maps and fire reports supplied by DNPRSR provided a full fire 

history and allowed us to acquire Landsat data as close, pre and post fire, to the 

ignition dates as possible. Although unavoidable where fire history is unknown, 

studies that obtained a set number of images (2-4) per year at set times periods (3-6 

months apart) (Duncan et al. 2009), can miss burnt areas due to rapid regrowth, as 

occurs in heath, sedge and grassland communities (Hammill and Bradstock 2006; 

Mcfarland 1988; Miller and Thode 2007; Russell-Smith et al. 2012). Although we did 

sample low severity burnt areas under a maximum canopy FCOV of 70 - 83 % (n = 

3), due to small sample size this is an area that requires further research. 



Conclusion 

We demonstrated the utility of Landsat derived dNBR fire severity classifications in 

combination with GeoCBI field validation to accurately characterise multi-decadal 

spatial patterns of fire severity in native heath and woodland ecosystems. The 

GeoCBI field validation was successfully used to produce discrete dNBR fire severity 

classes, which, with prudent image normalisation methods were extrapolated over 

retrospective burnt areas. This study has identified the significantly enhanced fire 

regime information that can be derived from the Landsat data archive. Multi-decadal 

estimates provide potentially useful data for managers and ecologists to better 

understand the long-term ecological patterns and impacts of fire severity. We 

recognise the importance of the Landsat data archive, it was ideal for this study due to 

the consistent, continuous and scientifically rigorous data, which extends back to 

1984. Further research is required to assess the accuracy of Landsat and other multi-

decadal remote sensor archives to estimate fire severity across varying vegetation 

types, especially in tall closed canopies. 

Acknowledgments 

We would like to acknowledge South East Queensland Fire and Biodiversity 

Consortium for the support they provided through research funding. Further, we 

would like to acknowledge Maleny DNPRSR for providing access to MRNP, fire 

perimeter maps and associated fire reports. Finally we acknowledge USGS, QGIS 

development team and R statistics core team for providing the Landsat archive, and 

computer software respectively free of charge. 

Reference 

Accad, A., Neldner, V.J., Wilson, B. A., & Niehus, R.E. (2008) Remnant Vegetation in 

Queensland. Analysis of remnant vegetation 1997-1999-2000-2001-2003-2005, 

including regional ecosystem information. Brisbane: Queensland Herbarium, 

Environmental Protection Agency. 

Arroyo, L., Pascual, C., & Manzanera, J. (2008) Fire models and methods to map fuel 

types: The role of remote sensing. Forest Ecology and Management, vol. 256, pp. 

1239–1252. 

Benson, B.J., & MacKenzie, M.D. (1995) Effects of sensor spatial resolution on 

landscape structure parameters. Landscape Ecology, vol. 10, pp. 113–120. 

Burrows, G.E. (2013) Buds, bush fires and resprouting in the eucalypts. Australian 

Journal of Botany, vol. 61, pp. 331–349. 

Chander, G., Markham, B.L., & Helder, D.L. (2009) Summary of current radiometric 

calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. 

Remote Sensing of Environment, vol. 113, pp. 893–903. 

Chen, X., Vierling, L., & Deering, D. (2005) A simple and effective radiometric 

correction method to improve landscape change detection across sensors and 

across time. Remote Sensing of Environment, vol. 98, pp. 63–79. 



Chen, X., Vierling, L., Rowell, E., & DeFelice, T. (2004) Using lidar and effective 

LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates 

in a ponderosa pine forest. Remote Sensing of Environment, vol. 91, pp. 14–26. 

Clarke, M.F. (2008) Catering for the needs of fauna in fire management: science or 

just wishful thinking?. Wildlife Research, vol. 35, pp. 385–394. 

Congalton, R.G. (1991) A Review of Assessing the Accuracy of Classifications of 

Remotely Sensed Data. Remote Sensing of Environment, vol. 46, pp. 35–46. 

Crandall, R.M., & Platt, W.J. (2012) Habitat and fire heterogeneity explain the co-

occurrence of congeneric resprouter and reseeder Hypericum spp. along a Florida 

pine savanna ecocline. Plant Ecology, vol. 213, pp. 1643–1654. 

De Santis, A., & Chuvieco, E. (2009) GeoCBI: A modified version of the Composite 

Burn Index for the initial assessment of the short-term burn severity from 

remotely sensed data. Remote Sensing of Environment, vol. 113, pp. 554–562. 

Driscoll, D., Lindenmayer, D., Bennett, A., Bode, M., Bradstock, R., Cary, G., Clarke, 

M., Dexter, N., Fensham, R., Friend, G., Gill, M., James, S., Kay, G., Keith, D., 

Macgregor, C., Russell-smith, J., Salt, D., Watson, J., Williams, R., & York, A. 

(2010) Fire management for biodiversity conservation : Key research questions 

and our capacity to answer them. Biological Conservation, vol. 143, pp. 1928–

1939. 

Du, Y., Teillet, P.M., & Cihlar, J. (2002) Radiometric normalization of multitemporal 

high-resolution satellite images with quality control for land cover change 

detection. Remote Sensing of Environment, vol. 82, pp. 123–134. 

Duncan, B.W., Shao, G., & Adrian, F.W. (2009) Delineating a managed fire regime 

and exploring its relationship to the natural fire regime in East Central Florida, 

USA: A remote sensing and GIS approach. Forest Ecology and Management, 

vol. 258, pp. 132–145. 

Earth Explorer. Available online:. Available online: http://earthexplorer.usgs.gov/ 

(accessed on 15 March 2014). 

Enright, N.J., & Thomas, I. (2008) Pre-European Fire Regimes in Australian 

Ecosystems. Geography Compass, vol. 2, pp. 979–1011. 

French, N., Kasischke, E., Hall, R., Murphy, K., Verbyla, D., Hoy, E., & Allen, J. 

(2008) Using Landsat data to assess fire and burn severity in the North American 

boreal forest region: an overview and summary of results. International Journal 

of Wildland Fire, vol. 17, pp. 443–462. 

Furby, S.L., & Campbell, N.A. (2001) Calibrating images from different dates to “ 

like-value ” digital counts. Remote Sensing of Environment, vol. 77, pp. 186–196. 

Geoscience Australia. Avaliable online:. ftp://ftp.ga.gov.au/geodesy-

outgoing/gnss/logs/ (accessed on 7th July 2014). 



Gill A.M. (1975) Fire and the Australian flora: a review. Australian Forestry, vol. 38, 

pp. 4-25. 

Gill, A.M. (2008) Underpinnings of fire management for biodiversity conservation in 

reserves: fire and adaptive management. 

Goslee, S.C. (2011) Analyzing Remote Sensing Data in R : The landsat Package. 

Journal of Statistical Software, vol. 43, pp. 1-25. 

Griffith, S.J., Bale, C., Adam, P., & Wilson, R. (2003) Wallum and related vegetation 

on the NSW North Coast : description and phytosociological analysis. 

Cunninghamia, vol. 8, pp. 202–252. 

Hammill, K., & Bradstock, R. (2006) Remote sensing of fire severity in the Blue 

Mountains: influence of vegetation type and inferring fire intensity. International 

Journal of Wildland Fire, vol. 15, pp. 213. 

Keeley, J. (2009) Fire intensity, fire severity and burn severity: a brief review and 

suggested usage. International Journal of Wildland Fire, vol. 18, pp. 116–126. 

Kelly, L.T., Nimmo, D.G., Spence-Bailey, L.M., Taylor, R.S., Watson, S.J., Clarke, 

M.F., & Bennett, A.F. (2012) Managing fire mosaics for small mammal 

conservation: a landscape perspective. Journal of Applied Ecology, vol. 49, pp. 

412–421. 

Kerr, J.T., & Ostrovsky, M. (2003) From space to species: ecological applications for 

remote sensing. Trends in Ecology & Evolution, vol. 18, pp. 299–305. 

Key, C., & Benson, N. (2006) Landscape Assessment (LA) Sampling and Analysis 

Methods. 

Key, C.H. (2006) Ecological and Sampling Constraints on Defining Landscape Fire 

Severity. Fire Ecology, vol. 2, pp. 34–59. 

Kolden, C. A., Lutz, J. A., Key, C.H., Kane, J.T., & van Wagtendonk, J.W. (2012) 

Mapped versus actual burned area within wildfire perimeters: Characterizing the 

unburned. Forest Ecology and Management, vol. 286, pp. 38–47. 

Landis, J.R., & Koch, G.G. (1977) The Measurement of Observer Agreement for 

Categorical Data. Biometrics, vol. 33, pp. 159–174. 

Lentile, L., Holden, Z., Smith, A., Falkowski, M., Hudak, A., Morgan, P., Lewis, S., 

Gessler, P., & Benson, N. (2006) Remote sensing techniques to assess active fire 

characteristics and post-fire effects. International Journal of Wildland Fire, vol. 

15, pp. 319–345. 

Mcfarland, D. (1988) Fire and the Vegetation Composition and Structure of 

Subtropical Heathlands in South-eastern Queensland. Australian Journal of 

Botany, vol. 36, pp. 533–546. 



McGovern, E., Holden, N., Ward, S., & Collins, J. (2002) The radiometric 

normalization of multitemporal Thematic Mapper imagery of the midlands of 

Ireland - a case study. International Journal of Remote Sensing, vol. 23, pp. 751–

766. 

Miller, C., & Urban, D.L. (2000) Connectivity of forest fuels and surface fire regimes. 

Landscape Ecology, vol. 15, pp. 145–154. 

Miller, J.D., Knapp, E.E., Key, C.H., Skinner, C.N., Isbell, C.J., Creasy, R.M., & 

Sherlock, J.W. (2009) Calibration and validation of the relative differenced 

Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra 

Nevada and Klamath Mountains, California, USA. Remote Sensing of 

Environment, vol. 113, pp. 645–656. 

Miller, J.D., & Thode, A.E. (2007) Quantifying burn severity in a heterogeneous 

landscape with a relative version of the delta Normalized Burn Ratio (dNBR). 

International Journal of Remote Sensing, vol. 109, pp. 66–80. 

Murphy, B.P., & Russell-Smith, J. (2010) Fire severity in a northern Australian 

savanna landscape: the importance of time since previous fire. International 

Journal of Wildland Fire, vol. 19, pp. 46–51. 

Parr, C., & Andersen, A. (2006) Patch mosaic burning for biodiversity conservation: a 

critique of the pyrodiversity paradigm. Conservation biology, vol. 20, pp. 1610–

1619. 

Penman, T.D., Christie, F.J., Andersen, N.A., Bradstock, R.A., Cary, G.J., Henderson, 

M.K., Price, O., Tran, C., Wardle, G.M., Williams, R.J., & York, A. (2011) 

Prescribed burning: how can it work to conserve the things we value?. 

International Journal of Wildland Fire, vol. 20, pp. 721. 

QGIS Development Team (2014) QGIS Geographic Information System. Open 

Source Geospatial Foundation Project. Available online:  http://qgis.osgeo.org 

R Core Team (2014) R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. Available online: 

http://www.R-project.org/. 

Russell-smith, J., Durieut, R., & Ryan, P.G. (1997) A LANDSAT MSS-derived fire 

history of Kakadu National Park, monsoonal northern seasonal extent , frequency 

and patchiness. Journal of Applied Ecology, vol. 34, pp. 748–766. 

Russell-Smith, J., Edwards, A.C., & Price, O.F. (2012) Simplifying the savanna: the 

trajectory of fire-sensitive vegetation mosaics in northern Australia. Journal of 

Biogeography, vol. 39, pp. 1303–1317. 

Salvador, R., Valeriano, J., Pons, X., & Diaz-Delgado, R. (2000) A semi-automatic 

methodology to detect fire scars in shrubs and evergreen forests with Landsat 

MSS time series. International Journal of Remote Sensing, vol. 21, pp. 655–671. 



Santana, V.M., Baeza, M.J., & Maestre, F.T. (2012) Seedling establishment along 

post-fire succession in Mediterranean shrublands dominated by obligate seeders. 

Acta Oecologica, vol. 39, pp. 51–60. 

Srivastava, S., King, L., Mitchell, C., Wiegand, A., Carter, R., Shapcott, A., & 

Russell-smith, J. (2013) Ecological implications of standard fire-mapping 

approaches for fire management of the World Heritage. International Journal of 

Wildland Fire, vol. 22, pp. 381–393. 

Tran, C., & Wild, C. (2000) A Review of Current Knowledge and Literature to Assist 

in Determining Ecologically Sustainable Fire Regimes for the Southeast 

Queensland Region. Griffith University and the SEQ Fire and Biodiversity 

Consortium. 

Vanhellemont, Q., & Ruddick, K. (2014) Remote Sensing of Environment Turbid 

wakes associated with offshore wind turbines observed with Landsat 8. Remote 

Sensing of Environment, vol. 145, pp. 105–115. 

Vicente-Serrano, S., Pérez-Cabello, F., & Lasanta, T. (2008) Remote Sensing of 

Environment Assessment of radiometric correction techniques in analyzing 

vegetation variability and change using time series of Landsat images. Remote 

Sensing of Environment, vol. 112, pp. 3916–3934. 

 


