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Abstract. Soil and land-management interactions in Australian native-forest regrowth remain a major source of
uncertainty in the context of the global carbon economy. We sampled soil total organic C (TOC) and soil total N (TN)
stocks at 45 sites within the Brigalow ecological community of the Brigalow Belt bioregion, Queensland, Australia.
The sites were matched as triplets representing three land uses, specifically: uncleared native brigalow forest
(‘Remnant’); grassland pasture (‘Pasture’), derived by clearing native vegetation and maintained as pasture for a
minimum of 10 years, and; regrowing native brigalow forest (‘Regrowth’, stand ages ranging from 10 to 58 years) that
had developed spontaneously after past vegetation clearing for pasture establishment. Soil TOC fractions and natural
abundance of soil C and N isotopes were examined to obtain insight into C and N dynamics. An updated above- and
belowground carbon budget for the bioregions was generated. Average soil TOC stocks at 0–0.3-m depth ranged from
19 to 79Mg ha–1 and soil TN stocks from 1.8 to 7.1Mg ha–1 (2.5th and 97.5th percentiles, respectively). A trend in
stocks was apparent with land use: Remnant >Regrowth ffi Pasture sites. Soil d13C ranged from –14 to –27‰, and soil
d15N ranged from 4‰ to 17‰, in general reflecting the difference between Pasture (C4-dominated) land use and N2-
fixing (C3-dominated) Remnant and Regrowth. Mid-infrared spectroscopy predicted C fractions as a percentage of soil
TOC stock, which ranged from 5% to 60% (particulate), 20–80% (humus) and 9–30% (resistant/inert). The geo-
referenced soil and management information we collected is important for the calibration of C models, for the
estimation of national C accounts, and to inform policy developments in relation to land-resource management
undertaken within the Brigalow Belt bioregions of Australia.
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Introduction

Assisted natural regeneration (managed regrowth) in cleared
rangelands offers substantial and cost-effective opportunities for
carbon (C) sequestration (Evans et al. 2015). Managing the
regrowth of native forests requires less intensive effort and lower
costs than tree planting, and because the naturally adapted tree
species are encouraged to grow to maturity, it facilitates multiple
benefits besides emissions mitigation. These benefits include
diversification of rural income streams, restoration of degraded
landscapes, and increased biodiversity. Assuming C credits are
worth AUD$15Mg–1 (tonne) CO2-e, as per Butler and Halford
(2015), management of regrowth for C credits could provide
net economic benefits across ~3.7-million ha in Queensland, and

potentially yield aboveground biomass increases equivalent
to up to 6� 107Mg (60 Mt) CO2-e over 10 years, with ongoing
sequestration at 1.4� 107 Mg (14 Mt) CO2-e year

–1. However,
relatively little is known about the amount or composition of
soil organic C within these systems or their sensitivity to
management, so only C pools in biomass and debris are used in
the calculation of C benefits from land-use change. Henry et al.
(2015) noted a high uncertainty associated with impacts
of land-use change and soil organic C in grazing lands, with
regional-scale spatial and temporal datasets rarely available.
Improved understanding of soil organic carbon (SOC) under
managed regrowth is important for national policy and C
management, including the Native Forest from Managed
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Regrowth Methodology Determination (Commonwealth of
Australia 2015a), which uses the C model FullCAM (Richards
and Evans 2000) to calculate baseline and projected scenarios
for C pools in plant biomass and debris.

The Brigalow (Acacia harpophylla F.Muell. ex Benth.
dominant and co-dominant) ecological community within the
Brigalow Belt bioregions (Commonwealth of Australia 2013,
2015b), of Queensland, Australia, was used as a case study to
explore soil C in relation to managed regrowth. Brigalow
communities are nationally listed as endangered under the
Environment Protection and Biodiversity Conservation Act 1999
(Commonwealth of Australia 1999) as they now occupy less
than 10% of their former ~7.5-million-ha distribution (Butler
2009; Commonwealth of Australia 2013). In their review of
the benefits of brigalow regrowth in Queensland, Peeters and
Butler (2014) estimated forest C stocks in standing aboveground
mature brigalow forest of ~50–125MgCha–1 and suggested
that regrowth accumulates biomass at ~1.9–3.2Mg ha–1 year–1

(~3.3–5.5 Mg CO2-e ha
–1 year–1), although the authors note that

this estimation is expected to be limited by conditions including
site features (strongly seasonal rainfall, highermaximumsummer
temperatures, competition) and management (clearing, fire and
continuous high grazing pressure). Similar estimates of soil C are
comparatively scarce: Dwyer et al. (2009) suggested that ‘soil
carbon stocks in regrowth probably remain at levels of mature
forests, however, this remains to be tested’, whereas Peeters and
Butler (2014) noted that ‘management to accumulate carbon in
the aboveground biomass is expected also to increase soil carbon
stocks’. Variation in the history of brigalow land clearing, land
use, climate and environmental conditions, as well as land
management goals, which may not be congruent (Dwyer et al.
2010), present a challenge for estimating the C sequestration
potential of forest regrowth. Peeters and Butler (2014) noted
that ‘some carbon returns might be traded off with other land
uses such as livestock grazing which might limit carbon
accumulation rates’, although they noted that ‘low to moderate
levels of livestock grazing appear to be compatible with
restoration of brigalow vegetation’. In their global review,
McSherry and Ritchie (2013) found that grazing effects on SOC
reflected interactions between precipitation, grass and soil
type, although they observed that grazing effects may be highly
context-dependent and, in the case of tropical grasslands,
virtually unstudied (Allen et al. 2013). With these complex
interactions identified, information regarding the composition
and dynamics of SOC would improve the certainty of simulation
models that predict different land-management scenarios.

Baldock et al. (2013a, 2013b) outlined methods for
measuring soil total organic carbon (TOC) composition as
biologically significant fractions based upon their size, extent of
decomposition and chemical composition. In addition to these
techniques, the measurement of the relative abundance of stable
isotopes d13C and d15N using natural abundance techniques
has provided insight into C and N dynamics within soil-plant
systems, e.g. under vegetation change in Queensland (Krull
et al. 2005, 2007), although the interpretation of this technique
requires caution (Högberg 1997; Wynn and Bird 2008; Bai et al.
2013).

This study, part of the National Soil Carbon Program
(Commonwealth of Australia 2015c), aims to quantify: (i) soil

TOC stocks and fractions (i.e. particulate, humus and resistant/
inert components) and (ii) soil properties including total N
stocks, natural abundance of soil C and N isotopes within the
brigalow ecological community of the Brigalow Belt bioregion
of Queensland. Results from this study are added to literature
values to provide an updated C budget for these bioregions.
Further, our findings are used in a companion study to explore
the relationship between soil C, soil N and the cycle of tree-
clearing, grazing, and natural regeneration of trees within the
Brigalow Belt bioregions, Queensland (Pringle et al. 2016).

Materials and methods
Site selection

A desktop exercise was undertaken to identify the most-accurate
spatial coverage of major soil and vegetation groups within the
BrigalowBelt bioregions, Queensland, focusing on the Brigalow
(Acacia harpophylla dominant and co-dominant) ecological
community (Commonwealth of Australia 2013). Vegetation
information, as describedwithinQueensland regional-ecosystem
mapping units, was sourced from the State of Queensland
‘Carbon Accumulation Through Ecosystem Recovery’ project
database (Fensham and Guymer 2009; the database includes
sites sampled by Dwyer et al. 2010). Soil information was
sourced from The State of Queensland ‘Soils and Land
Information’ database (Biggs et al. 2000), which interprets the
best-available Australian Soil Classification at Order level
(Isbell 2002) from surveys at different mapping intensities. The
approach generated a list of potential sites, stratified by land
use and soil–vegetation associations.

Sites were attributed to one of three categories reflecting the
history of land management, similar to Fensham and Guymer
(2009). Brigalow land that was mostly uncleared was assigned
the Remnant category. Cleared land that had been brigalow
forest before clearing and had been managed as grass pasture
for a minimum of 10 years before sampling was assigned
the Pasture category. Areas with young native tree species
representing regenerating (e.g. through suckering of lateral
roots) brigalow forest on previously cleared land was assigned
the Regrowth category. Time elapsed since the last clearing
was estimated for each regrowth stand using (where possible)
satellite remote-sensed data, historical air photos and landholder
comment. For each soil Order, Pasture and Regrowth sites were
restricted to locations occurring within 10 km of Remnant sites.
Limited information was available regarding grazing intensity;
cattle grazing occurred at most Pasture and Regrowth sites,
although limited cattle grazing also occurred at Remnant sites.

Soil collection

Prior to soil sampling, ArcGIS (ESRI 2011) was used to create a
polygon feature of roughly similar area at each of the candidate
Remnant, Pasture and Regrowth sites. Within each polygon
feature, 10 random locations for sampling were allocated; an
additional 10 random locations for each polygon were allocated
as a reserve, e.g. in case field-based validation at any of the first
10 locations identified a discrepancy between the mapped and
observed soil Order, or where time permitted sampling of >10
locations.
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A differential GPS was used to geo-reference soil profiles
collected at the allocated locations. The soil profile was extracted
using a percussion-driver fitted with a 0.043-m-diameter push
tube. Cores were taken to at least 0.5m depth and sectioned
at intervals of 0–0.1, 0.1–0.3, and 0.3–0.5m. The soil at each
interval from an individual core was sealed in a plastic bag,
transported at air temperature during 1–3 days-transit, weighed
and then stored at 48C for processing.

Validation of site classification to soil Order level
and compositing procedure for bulk soil analyses

The desktop exercise identified that most sites were mapped
at low intensity, with polygons broadly representing recurring
patterns of geology, topography, soil and vegetation (Land
Systems 1 : 250K scale, density of sites <1 per 100 ha; The State
of Queensland 2015a). Field observations and laboratory
analysis were undertaken to validate whether sampled profiles
matched the soil Order identified within the polygon feature
(as per Allen et al. 2013). Sampled soil profiles were described
to Order level according to Isbell (2002). In the laboratory,
infrared spectroscopy analysis of the soil profile was undertaken
to assess similarity between soil profiles at a site, e.g. where
profile descriptions identified either: (i) gradual change in soil
characteristics at depth, or (ii) a discrepancy between described
and mapped soil Order. For infrared spectroscopy analysis, a
subset of soil from each profile was sampled from the upper
(0–0.1m) and lower (0.3–0.5m) depths, dried and ball-milled.
Approximately 5 g of each subsample was analysed using
diffuse reflectance infrared Fourier transform spectroscopy
(DRIFTS) of the mid-infrared region (4000–450 cm–1). To
maximise the discrimination of soil type, spectra of the two
depth intervals were concatenated for each soil profile. Principal
component analysis was undertaken on the combined spectra, to
assess the degree of similarity between individual soil profiles
within a site. Results from the principal component analysis (>3
dimensions) were visualised in two-dimensional space using
a Sammon map (Sammon 1969). Obvious outliers detected
visually on both the Sammon map and from visual inspection of
the profiles were discarded from the sample replicates. Analysis
of soil properties was undertaken on individual soil profiles for
each site, with the exception of soil texture and Colwell-P. For
these two soil properties, a sample composite (derived from
combining subsamples of individual profiles within a site) was
analysed. For compositing purposes, individual samples within
each depth interval were mixed in proportion to their relative
bulk densities, producing a single composite profile for a unique
land-use-site combination. The composite profile consisted of
three samples, corresponding to 0–0.1-, 0.1–0.3-, 0.3–0.5-m soil
depth, for analysis.

Soil analysis for carbon, nitrogen, d13C and d15N of soil
�2-mm and soil carbon fractions
Individual samples were weighed, air-dried to 408C, re-weighed
and passed through a 2-mm sieve; any gravel or charcoal >2mm
found within the sample was also weighed. A subsample of each
2-mm sieved soil was ground to <100mm and analysed for soil
total (inorganic and organic) carbon (TC), and total nitrogen
(TN) contents by high-temperature combustion (Rayment and

Lyons 2011; methods 6B2a and 7A5, using TruMac CN, LECO
Corporation, St Joseph, MI, USA). Subsamples were then tested
for carbonates using 1M HCl. If effervescence was detected
the sample was treated with H2SO3 on a hotplate and analysed
a second time for TOC content. Total inorganic C (TIC) was
calculated as the difference ofTCandTOC.All totalC,TOC,TIC
and TN contents were reported on an oven-dry mass, determined
by their gravimetric water contents at 1058C (Linn and Doran
1984).

Natural abundance of d13C and d15N in soil was determined
using a Flash 2000 Organic Elemental Analyser (Thermo-Fisher
Scientific, Scoresby, Vic., Australia) coupled to an isotope ratio
mass spectrometer analyser (Isoprime-EuroEA 3000, Isoprime
Ltd, Stockport, UK), with 10% replication. Samples containing
inorganic carbonates were pre-treated with 1M HCl for 24 h
on a 608C hotplate before analysis. The isotope ratios were
expressed using the ‘delta’ notation (d), with units of per mille,
or parts per thousand, relative to International Atomic Energy
Agency (IAEA) reference material standards with known
isotopic composition (Parr and Clements 1991). For C, the
Vienna Pee Dee Belemnite standard (IAEA-303; Craig 1953)
was used to determined d13C using the relationship:

d13Cð‰Þ ¼ ððRsample=RstandardÞ � 1Þ � 1000 ð1Þ
where R is the molar ratio of 13C/12C of the sample or standard
(Ehleringer et al. 2000).

For N, ammonium sulfate standards (IAEA-N-1; IAEA-N-2;
IAEA-USGS25) were used to determine d15N. Equation 1 was
applied, but in this case the respective Rsample and Rstandard were
the ratios of 15N/14N in the sample and atmospheric N2 (Högberg
1997).

Prediction of TOC fractions

In addition to high-temperature combustion to determine soil
TOC content, DRIFTS analysis in the mid-infrared region,
combined with multivariate partial least-squares regression
analysis, was used to predict TOC content (see McCarty et al.
2002 for overview and Bellon-Maurel and McBratney 2011 for
critical review). This served as a cross-check between methods,
and also allowed us to predict the mass-fractions of TOC:
particulate (POC), humus (HOC), and resistant (ROC).
Predictions were based on a calibration model that comprised
312 soil samples underpinning the Australian Government Soil
Carbon Research Program (Baldock et al. 2013a, 2013b). In
brief, TOC was calibrated against measured TOC contents of
the �2-mm soil, determined as described above. An automated
50-mm sieve shaker system was used to quantify the amount
of POC (2mm–50mm) and HOC (�50mm) fractions. The
organic C content of these fractions was determined by high-
temperature combustion. The amount of ROC present in the
combined POC and HOC fractions was determined by 13C NMR
analysis.

Soil analysis for pH, electrical conductivity,
particle size, phosphorus
Individual samples were subsampled and measured for pH and
electrical conductivity (1 : 5 water; method 4A1 of Rayment and
Lyons 2011). For composite soil samples, clay and silt contents
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were measured by the hydrometer method (Thorburn and
Shaw 1987) and bicarbonate-extractable P (‘Colwell-P’) was
determined by method 9B2 of Rayment and Lyons (2011).

Calculation of soil bulk density and soil stocks
Bulk density of the individual samples was determined using
fresh sample weight minus oven-dry soil weight (a subsample
of fresh soil was dried for 3 days at 1058C; Linn and Doran 1984)
divided by the soil core volume. Samples identified within the
Vertosol soil Order were standardised to bulk density at field
capacity by applying a model of three-dimensional swelling
(Pringle et al. 2014).

We estimated stocks of soil TOC (both LECO-measured and
MIR-predicted), POC, HOC, ROC and TN on an equivalent
soil mass basis, according to the method outlined in Pringle
et al. (2014). Thus the depth intervals cited throughout are only
nominal.

All calculations and projections of data as figures were
undertaken using R statistical software (R Core Team 2014).

Carbon budget

An updated C budget, incorporating results from the present
study and published literature, was generated for the Brigalow
Belt bioregions, Queensland. Nomenclature used within the
budget is described in detail by the Australian Government
Clean Energy Regulator (Commonwealth of Australia 2015d).

Results

Inventory

The desktop analysis identified 51 sites within the Brigalow Belt
bioregions of Queensland that had potential for soil sampling.
Following landholder consent, 45 sites representing Remnant,
Pasture and Regrowth were sampled (Fig. 1). Field classification
and DRIFTS analysis of the soil profiles identified 10 sites
which differed from the mapped soil Order class. Sampled sites,
listed by revised soil Order class, are shown in Table 1.

At low concentrations of TOC, the sum of the MIR-predicted
mass-fractions (i.e. particulate (POC) + humus (HOC) + resistant
(ROC) fractions) tended to fall below MIR-predicted TOC
(Fig. 2a). Furthermore, the sum of the mass-fractions was
influenced by the amount of carbonate in the soil sample (Fig. 2b).
The implications of these results were: (i) the MIR calibration
under-represented the components of low-TOC soil; (ii) LECO-
measured rather than MIR-predicted TOC was selected for all
further analyses; and, (iii) mass-fractions were consequently
expressed in the form adopted byRabbi et al. (2014), i.e. adjusted
to a proportion of theMIR-prediction (with the summation forced
to 1.0), followed by an assumption that the proportions were
applicable also to LECO-measured TOC.

The concentration of TOC generally decreased with depth in
the soil profile (Fig. 3). One Pasture profile, however, showed
an unexpected increase in TOC with depth. The sampling record
for this profile noted a large amount of coarse charcoal visible at
depth in this soil core.

Typical values of soil attributes for the depth interval 0–0.3m,
derived from the laboratory analyses, are presented in Tables 2 to
4. Similar patterns were observed for the 0–0.-1 and 0–0.5-m
depth intervals (results not shown). Analysis of general soil

properties (Table 2) revealed the following trends: (i) moderately
acidic to moderately alkaline soil, although the trend in soil pH
with soil depth was inconsistent within each land use and soil
Order; (ii) low soil electrical conductivity and Colwell P;
(iii) medium-heavy clay content (with the exception of one site
in the Remnant category which had a sandy clay-loam texture).
TOC and TN stocks tend to be higher in Remnant than Pasture,
and d13C and d15N tend to be higher in Pasture than Remnant
(Table 3); formal hypothesis tests about the effects of land-use
change on the soil attributes are examined in the companion
paper (Pringle et al. 2016). The TOC stock is dominated by the
HOC fraction (Table 4).

Carbon budget

The updated C budget (Fig. 4) suggests an estimated total
C (above + belowground) stock ranging between 28 and
365Mg ha–1 in the Brigalow Belt bioregions, Queensland. Areas
of highest budget uncertainty are in the Brigalow Belt North.

142E 144E 146E 148E 150E 152E 154E

32S

30S

28S

26S

24S

22S

20S

Longitude

La
tit

ud
e

BRISBANE
QUEENSLAND

0 250 500

Kilometres

Brigalow Belt
N/S demarcation
Queensland border
Selected site

Fig. 1. Plot of sites sampled. Sites (crosses) are located in the Brigalow
Belt bioregions (grey). The dotted line denotes the demarcation between
Brigalow Belt North and Brigalow Belt South.

Table 1. The number of sites sampled in the Brigalow Belt bioregions
of Queensland, listed by land use, age since clearing, and soil Order
(Isbell 2002), and the range of years since clearing of remnant

vegetation for dominant Vertosol and Dermosol soil Orders

Vertosol Dermosol Sodosol Tenosol

Land use
Remnant 7 4 1 1
Pasture 11 2 – –

Regrowth 5 9 – –

Years since clearing
Pasture 18–73 15–34 – –

Regrowth 21–45 10–58 – –
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Fig. 2. Scatter plots of (a) Mid infrared (MIR) spectroscopy prediction of TOC (x-axis) and TOC derived
from summation of particulate, humus and resistant carbon components (sum MIR TOC components, y-axis)
and (b) measured (combustion LECO, x-axis) and predicted total organic carbon (TOC) derived from summation
of MIR-predicted particulate, humus and resistant organic carbon components (sum MIR TOC components,
y-axis). Units of measurement are shown as concentration (%), expressed as log-transformation.

Table 2. Typical values for the depth interval 0–0.3m, for each combination of soil Order (Isbell 2002) and
land use, for measured soil attributes pH, electrical conductivity, clay content and phosphorus (Colwell-P)

Medians are shown, with quantities in brackets denoting the 2.5th and 97.5th percentiles

Soil Order Land use pH Electrical conductivity
(dSm–1)

Clay (%) Colwell-P
(mg kg–1)

Vertosol Remnant 7.4 (5.3–8.6) 0.18 (0.05–0.56) 48 (42–57) 6.9 (5.2–88.7)
Vertosol Pasture 7.5 (5.6–8.7) 0.17 (0.05–0.76) 52 (37–59) 10.9 (3.5–132.0)
Vertosol Regrowth 7.6 (5.5–8.7) 0.14 (0.02–0.76) 44 (31–54) 15.7 (5.1–71.4)
Dermosol Remnant 7.6 (5.3–8.4) 0.20 (0.08–0.56) 53 (51–58) 27.7 (10.1–36.8)
Dermosol Pasture 7.8 (6.2–8.6) 0.17 (0.07–0.33) 54 (47–55) 18.6 (5.1–20.0)
Dermosol Regrowth 6.6 (5.2–8.1) 0.25 (0.05–0.98) 54 (45–59) 13.5 (8.5–18.8)
Other Remnant 7.2 (6.3–8.2) 0.06 (0.03–0.15) 30 (24–35) 38.4 (13.9–67.4)
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Fig. 3. Concentration of soil total organic carbon (TOC, mg kg–1) with depth (m) for individual soil cores
sampled within Remnant, Pasture and Regrowth land use. Note that the data are displayed as equal-area spline
predictions as per Bishop et al. (1999).
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Discussion

Median stocks of soil TOC and TN calculated for our study
(34–49 and 3.1–4.2Mg ha–1, respectively; Table 3) are similar to
values reported for Queensland’s semiarid Acacia-dominated
rangelands (Harms et al. 2005; Mathers et al. 2006; Kirschbaum
et al. 2008; Dalal et al. 2013) and are within the estimates
reported for humid sub-tropical to warm semi-arid climates
globally (Batjes 1996; Viscarra Rossel et al. 2014; de Godoi
et al. 2016). HOC (<50mm) comprised around half of the soil
TOC in our study (Table 4), which is within the range reported
(41–70%) for brigalow forest and conversion to pasture (Dalal
et al. 2011). The C budget estimated here for Queensland’s
Brigalow Belt (Fig. 4) aligns with studies reporting lower TOC
and TN stocks upon conversion of forest to grassland (Dalal
et al. 2005; Harms et al. 2005; Kirschbaum et al. 2008) and long
timeframes (>30 years) before comparable TOC stocks between
reforested and remnant sites are observed (Cunningham et al.
2015). However, there are also reports of no change in SOC
stock following clearing of forest to pasture (Dalal et al. 2011)
or reforestation of pasture to Acacia (Oelofse et al. 2016). Where
no change in TOC stocks occurred, significant differences in
POC (Dalal et al. 2011) and HOC (Eclesia et al. 2012) soil C
fractions were observed.

The inconsistency of these results may reflect the different
methods adopted to assess variation in TOC and TN stocks,
different ages of land-use conversion, initial SOC stocks and
comparable land condition. In the absence of longitudinal data
(e.g. ‘stock-change’method; Toriyama et al. 2011), many of the
studies deferred to point-in-time measurements using paired-site
or chronosequence (space-for-time substitution) approaches.

These approaches often assume that sites were the same before
a change in land use, particularly in terms of vegetation and
soil-forming factors (e.g. Harms and Dalal 2003; Harms et al.
2005; Powers and Veldkamp 2005; Cunningham et al. 2015).
However the influence of local biophysical factors including
soil clay minerology can strongly govern the direction and
magnitude of change, and require correction (Powers et al.
2011; Fujisaki et al. 2015). In the Vertosols of the Brigalow
Belt, this may be further confounded by carbonate dissolution,
although Ahmad et al. (2015) note that the research field of soil
carbonate equilibrium and transformation is highly uncertain,
suggesting future research to ‘track the mobility of HCO3-ions
using 14C in conjunction with other suitable methodologies to
understand the potential role of carbonates and dynamics in the
global terrestrial C budget’ is needed. Sanderman and Baldock
(2010) note that it can also be difficult to identify the underpinning
mechanism of changing TOC stocks, e.g. is a change due to a
reduction of C losses rather than an actual increase in inputs?
This makes comparisons with longitudinal studies difficult.
With these considerations in mind we adopted a novel
geostatistical approach (Pringle et al. 2016), which accounts for
spatial autocorrelation in TOC and TN, as well as the effects
of variables such as climate, soil and past land management.

Reducing uncertainty in the following areas will assist land
management and policy decisions in theBrigalowBelt bioregions:
(i) information on the amounts, decomposability, and turnover
of litter; (ii) capturing the variation in methods used to convert
brigalow forests to pasture, including regrowth control; (iii) the
role of commercial grazing within different stages of brigalow
clearing and regrowth management, and; (iv) the capacity to
capture model inputs in other Australian bioregions where

Table 3. Typical values for the depth interval 0–0.3m, for each combination of soil Order (Isbell 2002) and land use,
for carbon and nitrogen stocks and natural abundance d13C and d15N

Medians are shown, with quantities in brackets denoting the 2.5th and 97.5th percentiles

Soil Order Land use TOC stock (Mg ha–1) TN stock (Mg ha–1) d13C (‰) d15N (‰)

Vertosol Remnant 46 (27–116) 3.9 (2.3–9.8) –23.7 (–25.9 to –21.3) 7.3 (5.5–10.4)
Vertosol Pasture 35 (22–76) 3.3 (2.3–7.6) –20.8 (–23.8 to –17.6) 9.5 (6.6–11.4)
Vertosol Regrowth 43 (27–86) 3.9 (2.5–7.7) –22.2 (–24.9 to –19.0) 7.3 (5.3–10.1)
Dermosol Remnant 49 (31–87) 4.2 (3.0–7.1) –23.5 (–25.0 to –22.0) 9.6 (6.7–11.6)
Dermosol Pasture 36 (16–56) 3.4 (2.1–4.8) –22.7 (–24.0 to –21.8) 10.1 (8.8–11.6)
Dermosol Regrowth 34 (17–55) 3.1 (1.7–4.8) –24.0 (–26.2 to –21.8) 9.5 (7.2–11.3)
Other Remnant 47 (26–114) 4.1 (2.1–10.0) –22.7 (–24.8 to –19.8) 9.1 (7.7–10.8)

Table 4. Typical values for the depth interval 0–0.3m, for each combination of soil Order (Isbell 2002) and
land use, for particulate organic carbon (POC), humus organic carbon (HOC) and resistant organic carbon

(ROC) fractions
Mean values are reported to ensure the fractions sum to 1.0. Quantities in brackets are the 2.5th and 97.5th percentiles

Soil Order Land use POC fraction HOC fraction ROC fraction

Vertosol Remnant 0.23 (0.09–0.38) 0.57 (0.34–0.74) 0.20 (0.10–0.30)
Vertosol Pasture 0.22 (0.04–0.62) 0.59 (0.20–0.81) 0.19 (0.07–0.30)
Vertosol Regrowth 0.28 (0.08–0.61) 0.48 (0.14–0.71) 0.24 (0.15–0.33)
Dermosol Remnant 0.22 (0.15–0.33) 0.61 (0.49–0.75) 0.17 (0.11–0.22)
Dermosol Pasture 0.29 (0.17–0.46) 0.56 (0.38–0.69) 0.15 (0.09–0.22)
Dermosol Regrowth 0.23 (0.07–0.44) 0.63 (0.43–0.82) 0.13 (0.07–0.21)
Other Remnant 0.24 (0.10–0.48) 0.48 (0.31–0.59) 0.28 (0.19–0.33)
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managed native regrowth is of interest. In the absence of
historical records, or to strengthen detailed grazing-management
histories, it is worthwhile exploring whether FullCAM may be
coupled to information from more advanced remote-sensing
technologies to quantify vegetation components over time, e.g.
multi-resolution time-series imagery to assess the density of
tree canopies (e.g. Schmidt et al. 2015) or spatial distribution
of pasture utilisation (e.g. Pringle et al. 2014).

Conclusions

Quantified geo-referenced soil N and C stocks, associated soil C
fractions and natural abundance of d13C and d15N in soil within
the Brigalow Belt bioregions, Queensland, are informative for
several purposes. They can be used for: calibration of process
models associated with national C accounts; improvement of
sampling methods, analytical methods and spatial interpolation

(a) Remnant

??

(b) Cleared (pasture) (c) Cleared (regrowth)

1–25 y

(d ) Cleared (regrowth)

25–50 y

3.5–35.5 0.4–3.5

4.0–22.5 18.4–39.6

1.0–5.6
1.0–5.6

??
4.6–9.9

36.5 (25 y)

4.6–9.9
1.9–4.9

24.8–59.1
1.9–5.2

20.2–76.8

1.2–2.3

99 –(118  133)

10.4–14.5 0.3–0.8

1.7–6.8 1.8–9.9

1.8–9.9

7.2–39.5 19.4–68.5

4.8–17.1

4.8–17.1

32.9–45.1

0.9–2.6

31.9–85.6 34.5–49.1
6.8–40.7

40.2–77.3

(i)

(ii)

(iii)

(iv)

(i)

(ii)

(iii)
(iv)

Brigalow Belt North

Brigalow Belt South

Fig. 4. Schematic of the estimated carbon budget (Mg ha–1) for the Brigalow Belt bioregions, listed according to management categories: (a) mostly
undisturbed (i.e. remnant); (b) remnant cleared for pasture; (c) remnant cleared for pasture with brigalow regrowing for 1–25 years; and, (d) remnant
cleared for pasture with brigalow regrowing for 25–50 years. The carbon budget is denoted as per Emissions Reductions Fund (Commonwealth of
Australia 2015d) in four components, shown vertically in order of: (i) aboveground, comprising live + dead, (ii) litter and debris, (iii) belowground,
(iv) soil organic carbon (TOC) stock 0–0.3 m. Pie charts denote the proportions of soil total organic carbon as particulate (white), humus (grey) and
resistant (black) fractions. Estimates shown represent the range of values reported from the following sources: Moore et al. (1967); Smith and
Grundy (2002); Harms and Dalal (2003); Roxburgh et al. (2006); Chandler et al. (2007); Dwyer et al. (2010); Thornton et al. (2010); Ngugi et al.
(2011); this study. Values in italics for (i) represent the estimated range in values for annual total standing dry matter, based upon modelled time-
series graphs for IBRA sub-regions (The State of Queensland 2015b). Values in italics for (ii) and (iii) are estimates based upon 25% of
aboveground values.
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of soil properties; greater mechanistic understanding of climate,
landscape and management parameters influencing C and N
cycling; and collection of physical samples and historical data,
which enables future sampling to measure change over time.
Continued emphasis linking plant litter and root biomass inputs
and soil properties to spatially derived information is necessary
to improve model estimation of TOC changes, and to determine
whether such changes are related to variation in climate, soil,
or management effects.
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