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Land-use change can have a major influence on soil organic carbon (SOC) and above-ground C pools. We
assessed a change from native vegetation to introduced Pinus species plantations on C pools using eight
paired sites. At each site we determined the impacts on 0–50 cm below-ground (SOC, charcoal C, organic
matter C, particulate organic C, humic organic C, resistant organic C) and above-ground (litter, coarse
woody debris, standing trees and woody understorey plants) C pools. In an analysis across the different
study sites there was no significant difference (P > 0.05) in SOC or above-ground tree C stocks between
paired native vegetation and pine plantations, although significant differences did exist at specific sites.
SOC (calculated based on an equivalent soil mass basis) was higher in the pine plantations at two sites,
higher in the native vegetation at two sites and did not differ for the other four sites. The site to site vari-
ation in SOC across the landscape was far greater than the variation observed with a change from native
vegetation to introduced Pinus plantation. Differences between sites were not explained by soil type,
although tree basal area was positively correlated with 0–50 cm SOC. In fact, in the native vegetation
there was a significant linear relationship between above-ground biomass and SOC that explained
88.8% of the variation in the data. Fine litter C (0–25 mm diameter) tended to be higher in the pine forest
than in the adjacent native vegetation and was significantly higher in the pine forest at five of the eight
paired sites. Total litter C (0–100 mm diameter) increased significantly with plantation age (R2 = 0.64).
Carbon stored in understorey woody plants (2.5–10 cm DBH) was higher in the native vegetation than
in the adjacent pine forest. Total site C varied greatly across the study area from 58.8 Mg ha�1 at a native
heathland site to 497.8 Mg ha�1 at a native eucalypt forest site. Our findings suggest that the effects of
change from native vegetation to introduced Pinus sp. forest are highly site-specific and may be positive,
negative, or have no influence on various C pools, depending on local site characteristics (e.g. plantation
age and type of native vegetation).

Crown Copyright � 2016 Published by Elsevier B.V. All rights reserved.
1. Introduction

There is global concern that land-use change results in a deple-
tion of soil organic carbon (SOC), terrestrial biomass and conse-
quent increases in atmospheric CO2 (e.g. Houghton, 2003;
Strassmann et al., 2008). Conversion of forest to agricultural
land-uses usually results in loss of above-ground biomass C and
SOC, particularly when conversion is to cultivated land (Brown
and Lugo, 1990; Ellert and Gregorich, 1996; Murty et al., 2002;
Guo and Gifford, 2002). However, the impacts of change from
one forest type to another are less clear and there is a high degree
of uncertainty regarding the degree and direction of change
(Bashkin and Binkley, 1998; Rhoades et al., 2000) due to factors
such as plantation age, type of plantation (native or exotic species),
soil type and environmental factors (e.g. climate) and management
factors (Kasel and Bennett, 2007).

The role of different forest compositions on forest C stocks and
dynamics is poorly understood (Jandl et al., 2007) and there is a
paucity of detailed information on soil C stocks in sub-tropical for-
ests. An international review by Guo and Gifford (2002) reported
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that, on average, SOC stocks declined by 15% following conversion
from native forest to conifer plantation, but there was variability in
this change depending on plantation species, rainfall and planta-
tion age. Studies in southern Australia (e.g. Turner and Lambert,
2000; Turner et al., 2005) also reported reductions in SOC stocks
following land-use conversion to conifer plantations. Further, in
the sub-tropics, Chen et al. (2004) and Richards et al. (2007)
reported significant reductions in total SOC following conversion
of native vegetation to hoop pine (Araucaria cunninghamii, a native
species to the region) plantations. The losses in SOC are likely due,
at least in part, to site preparation for tree planting, which involves
cultivation (e.g. ripping and mounding) that disturbs soil structure
and breaks down soil aggregates (Jandl et al., 2007). However, few
published studies have reported the impacts of conversion to intro-
duced conifer plantations in the sub-tropics, and few studies have
considered the form of soil organic C (i.e. humic, particulate or
resistant) which is important when considering the resilience of
these C stocks and our ability to model SOC changes.

Following clearing of native forest there is an initial reduction in
above-ground plant biomass. In the case where native forest is
replaced with plantation forest, above-ground biomass may be
lower (Chen et al., 2005), similar, or reach higher levels than in
the previous vegetation (e.g. Lugo, 1992), usually through modifi-
cation of the site productivity (e.g. addition of fertilizer, Oren
et al., 2001). Reports of the amount of above-ground biomass for
Pinus plantations in the sub-tropics suggest approximately
316 Mg ha�1 (�155 Mg C ha�1) can be sequestered by age 30
(Simpson et al., 2000). Tree C stocks in native vegetation in sub-
tropical Australia may vary greatly from site-to-site but range from
approximately 40 to 220 Mg C ha�1 depending on the soil type and
site productivity (Westman and Rogers, 1977; Hero et al., 2013;
Ngugi et al., 2014; Moroni and Lewis, 2015). We are unaware of
any studies that consider the impact of conversion of native vege-
tation to Pinus sp. plantation on tree C and litter C stocks in the
sub-tropics of Australia.

In both native vegetation and plantation forest, a significant C
stock can be found in the litter layer, which potentially plays an
important role in building soil C (Liski et al., 2002). This C pool
may be dynamic (Bubb et al., 1998; Birk and Simpson, 1980), but
often a steady state between litterfall and decomposition is
reached over time (Olson, 1963) and incorporating litter C into
total site C stocks can be important when assessing land-use
changes (Richter et al., 1999; Paul et al., 2002). Pinus sp. forests
are known to contain particularly high litter biomass stocks, partly
due to slower rates of decomposition relative to native forests (e.g.
Paul and Polglase, 2004; Prescott, 2010), however, there are few
published comparisons between Pinus sp. forests and native vege-
tation in tropical and sub-tropical regions.

The commercial plantation forestry estate covers approximately
two million hectares in Australia, of which 51% is planted with
softwood species (Montreal Process Implementation Group for
Australia and National Forest Inventory Steering Committee,
2013) with approximately 18% of this softwood estate occurring
in Queensland. This study focusses on the impacts of change from
native vegetation to plantation forest, which occurred 28–60 years
ago, using paired comparison sites in Queensland. We aimed to
determine, across a range of sites with varying soil types and plan-
tation ages, whether C pools differed between introduced Pinus
plantations and adjacent native vegetation. Based on the above-
mentioned studies in southern Australia we hypothesised that
SOC would be lower in the conifer plantations, but litter C would
be higher in these plantations relative to the native vegetation.
We also hypothesised that above-ground woody plant C would
be lower in the Pinus plantations, particularly in young plantations,
given the likely relationship between above-ground biomass and
plantation age.
2. Methods

2.1. Site details

Eight paired sites were selected from within the Pinus sp. plan-
tation resource in south-eastern Queensland, Australia (Fig. 1).
Pinus sp. plantations in the paired comparisons varied from six to
34 years since planting (mean age of 21 years, Table 1). Plantation
plots were either in their first or second rotation (Table 1). Soil
types varied between the eight sites (classified using Australian
Soil Classification, Isbell, 1996): two sites were on yellow Kan-
dosols, two sites were on brown Kandosols, one site was on a grey
Chromosol and three sites were on Podosols (Table 1). Pine planta-
tions were dominated by Pinus elliottii var. elliottii, Pinus caribaea
var. hondurensis and P. elliottii � P. caribaea hybrids (Table 1). Adja-
cent native vegetation varied between sites; in most cases (six
sites) it was naturally occurring forest dominated by tree species
including Eucalyptus racemosa, Corymbia intermedia, Eucalyptus
acmenoides, Lophostemon suaveolens, Syncarpia glomulifera andMel-
aleuca quinquenervia, or open woodland (one site) and heathland
(one site) with dominant species such as Eucalyptus umbra, Banksia
aemula and Melaleuca viridiflora (Table 1). In all cases the native
vegetation was multi-aged remnant vegetation and hence could
not be accurately aged. Mean annual rainfall across the study
region varied from 1193 to 1611 mm (average = 1408 mm, Table 1),
with rainfall being higher in the summer months. Mean minimum
temperature ranged from 14.7 �C to 15.8 �C while mean maximum
temperature ranged from 25.1 �C to 26.6 �C. Climatic data for the
study area were based on spatially interpolated Bureau of Meteo-
rology observational data from 1889 to 2013 (Jeffrey et al., 2001).
2.2. Plot layout

Paired-comparison sites were chosen on the basis of sufficient
area of the target vegetation being on the same soil type, with
the same slope position. Plots were 0.5 ha (in most cases
100 � 50 m) in both the pine and native vegetation, and were sep-
arated by <200 m at each site. Six of the eight paired sites were
selected as part of an earlier (unpublished) study in 1998 and the
authors are currently investigating temporal trends in soil nutri-
ents over this time. Each plot was divided into 50 sub-plots of
10 � 10 m and six sub-plots were randomly selected for sampling
(stratified simple random sampling, Fig. 1b). Plots and sub-plots
were established using tape measures, optical squares and sighting
posts to ensure right-angles. Each sub-plot contained 100 1 � 1 m
squares, of which ten were randomly selected for sampling (e.g.
Fig. 1c). Each selected sub-plot and square was marked with line-
marking paint to delineate the sampling positions. The positions
of sub-plots and sampling squares were referenced from the plot
corner positions to determine their UTM reference points and to
allow future sampling within the same locations. Sampling took
place between May and November 2013.
2.3. Litter sampling and above-ground carbon estimates

A steel quadrat (0.5 � 0.5 m square) was placed in the centre
of each 1 � 1 m sample square, and all dead and detached vege-
tation (litter) was collected down to the soil surface, being careful
to exclude mineral soil. All litter material 625 mm diameter was
defined as fine litter and litter material >25 mm and <100 mm
diameter was defined as coarse litter. All material collected
within each sub-plot was bulked by litter type (i.e. fine and
coarse) and fine litter was weighed in the field. A representative
sub-sample (>25% of the total biomass) of the fine litter from
each sub-plot was placed in a paper bag, weighed in the field



Fig. 1. Locations of paired sampling sites (pine forest and adjacent native vegetation) within the pine plantation estate of southern Queensland, Australia (inset A). Examples
are shown of: the plot sampling layout (inset B), where darker shaded cells represent those randomly selected for sampling; and inset C, showing locations of 10 sampling
points randomised within a 10 � 10 m sub-plot.
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then oven dried at 65 �C to constant weight. This provided a
moisture correction factor for total field weights of fine litter.
All coarse litter was collected and oven dried (65 �C) to constant
weight. Litter C was determined by multiplying biomass by C
concentration. Litter C concentration was determined by dry-
combustion with a LECO CNS-2000 analyser (LECO Corporation,
MI, USA).
Material P100 mm was defined as coarse woody debris
(CWD) and was assessed using the line-intersect method (Van
Wagner, 1968; McKenzie et al., 2000). This involved running a
series of 10 m transects from a random start point and initial
transect direction. At each 10 m interval, the transect continued
at 90� to the current direction of travel, where direction of travel
(left or right) was determined randomly. If the transect inter-



Table 1
Details of the study sites in south-eastern Queensland Australia. Rotation refers to whether the plantation is in its first or second Pinus sp. rotation following conversion from
native vegetation. Plantation age is based on the number of years since planting in the current rotation. Soil type is based on Isbell (1996). Tree basal area (BA) was calculated for
all live trees (DBH trees P 10 cm) within a 0.5 ha plot. Mean annual rainfall (MAR, mm) is provided for each site.

Site name Dominant species Plantation
age (years)

Rotation Soil type Tree BA
(m2 ha�1)

MAR
(mm)

Blackswamp Pinus elliottii var. elliottii 34.1 1st Podosol 43.4 1495
Eucalyptus racemosa, Corymbia intermedia, Melaleuca quinquenervia na na Podosol 30.2

Bluegum 201 Pinus caribaea var. hondurensis 28.5 2nd Brown Kandosol 41.3 1611
Syncarpia glomulifera, C. intermedia, Lophostemon suaveolens, Eucalyptus cloeziana na na Brown Kandosol 60.2

Bluegum 203 P. elliottii � P. caribaea 26.0 2nd Yellow Kandosol 54.6 1611
E. racemosa, Eucalyptus acmenoides, C. intermedia, L. suaveolens na na Yellow Kandosol 22.1

Cowra P. caribaea var. hondurensis 26.5 1st Podosol 41.7 1358
Eucalyptus umbra, Banksia aemula na na Podosol 10.0

Laminex P. elliottii � P. caribaea 9.7 2nd Brown Kandosol 31.9 1228
E. racemosa, E. acmenoides, C. intermedia na na Brown Kandosol 22.7

Melaleuca P. elliottii � P. caribaea 6.4 2nd Grey Chromosol 5.2 1193
Eucalyptus umbra, Melaleuca viridflora na na Grey Chromosol 3.4

Round Pinus elliottii var. elliottii 31.5 1st Podosol 47.5 1520
Eucalyptus tereticornis, C. intermedia, Melaleuca quinquenervia, L. suaveolens na na Podosol 37.0

Ulirraba P. elliottii � P. caribaea 8.3 2nd Yellow Kandosol 30.9 1251
E. acmenoides, C. intermedia, S. glomulifera, E. racemosa na na Yellow Kandosol 13.2
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sected with the plot edge, then the direction of travel rebounded
90� at that point back into the plot for the remaining part of the
10 m transect (McKenzie et al., 2000). Each transect was contin-
ued for a total distance of 50 m and three 50 m transects were
conducted in each plot. Diameters were recorded for any CWD
that intersected the transect and an estimation of decay (%)
recorded for each piece.

CWD volume V was calculated using:

Volume ¼ ðp2R d2
=8LÞ

where V is volume of wood per unit area (m3 m�2), d is piece diam-
eter (m) and L is length of transect line (m) (Van Wagner, 1968).
This formula assumes that pieces were cylindrical, horizontal and
randomly oriented. For CWD with decay, volume calculations
involved subtraction of the decayed proportion of each piece (i.e.
missing volume in reference to a simple cylindrical volume). To
convert CWD volumes to a mass per unit area, the volumes of intact
and decayed CWD were multiplied by their respective wood densi-
ties (450 kg m�3 for pines and 650 kg m�3 for native vegetation, Ilic
et al., 2000). Carbon concentration of CWD was not measured, but C
stocks of CWD were estimated by multiplying CWDmass (Mg ha�1)
by a default C concentration value of 50% (Coomes et al., 2002;
Garrett et al., 2008).

For each plot the diameter at breast height (DBH) of trees
P10 cm was measured. The DBH was used to calculate the basal
area (m2 ha�1) of woody vegetation and to provide an estimation
of the above-ground biomass. The above-ground biomass was esti-
mated using general allometric relationships for softwood planta-
tions and eucalypt vegetation for the Pinus sp. forest and
adjacent vegetation, respectively (Paul et al., 2016). These allomet-
rics were developed based on existing biomass datasets in Aus-
tralia and were based on 455 individuals of softwoods (mostly
Pinus radiata) and 6004 eucalypt individuals (Eucalyptus and
closely-related genus of Corymbia and Angophora). For the Pinus
sp. plantations and native vegetation we used the following equa-
tions, respectively:

(1) Above-ground biomass (kg) = exp [�2.573 + 2.460 ln
(DBH)] � 1.018

(2) Above-ground biomass (kg) = exp [�2.016 + 2.375 ln
(DBH)] � 1.067
Tree biomass was converted to carbon using a C concentration
of 49% (Gifford, 2000). In each sub-plot the diameter of all woody
plants with a DBH 2.5–9.9 cm were measured to allow calculation
of sub-plot basal area and to estimate C stored in these under-
storey plants. No assessment of biomass was made for grasses,
herbs and vines. Biomass of these components is usually
<3 Mg ha�1 in the ecosystems studied (Moroni and Lewis, 2015;
Westman and Rogers, 1977).

2.4. Soil sampling

Following litter collection, at each randomly selected sampling
location soil samples were collected to a depth of 50 cm using
70 cm long hardened steel cores with two different cutting head
sizes. Cutting heads were 42 mm and 44 mm, with all cores having
an internal tube diameter of 45 mm. For fine textured soils, the
42 mm cutting heads were used due to expansion of clays within
the tube, and for coarse textured sandy soils the 44 mm cutting
heads were used, as expansion of sands within the tube is usually
minimal. The cores were driven into the ground using a Bosch
GSH16 jack-hammer powered by a portable generator (Honda
EU20i 240 V). A specially designed soil-core lifter was used to
remove the core from the ground.

The soil samples were pushed out of the core onto hemi-
cylindrical tubes, then divided into five sampling depths: 0–5 cm,
5–10 cm, 10–20 cm, 20–30 cm and 30–50 cm and transferred into
labelled, sealable plastic bags. Soil samples collected within each of
the ten 10 � 10 m sub-plot were bulked together for each depth.
Once collected, soils were kept in a cool dark location until the
samples were air dried, processed and sent to the laboratory.

In addition to the soil C samples, samples for ‘soil core mass’
(oven-dried mass per unit core volume for bulk density) determi-
nations were collected from four randomly selected, previously
sampled squares in each plot. Each of these samples was collected
using the same core sampler as that used for soil C samples. Soil
core mass samples were collected for the same sampling depths
as for the standard soil samples, and were placed in individually
labelled plastic bags for each depth. These samples were later dried
in an oven at 40 �C to constant weight, to determine air-dry
weights, and then dried at 110 �C to constant weight, to determine
the oven-dry weight for calculation of core mass and the moisture
correction factor between air-dry and oven-dry soil for a plot.
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2.5. Soil processing and analysis

All soil samples, except the core mass samples, were weighed
after air drying and carefully processed by hand through a 2 mm
sieve. During processing, visible organic material (roots, buried
debris, fungal hyphae and macro fauna including material
<2 mm), charcoal and rocks were separated by hand using long
nosed surgical tweezers. While we did separate visible plant roots,
it is acknowledged that our sampling did not attempt to sample the
‘root ball’ and tap roots located immediately below the tree bole
and it is unlikely that our sampling intensity (60 cores per 0.5 ha)
was adequate to accurately sample total root biomass (Resh et al.,
2003). The contribution of this root mass is known to be variable,
but significant (e.g. Westman and Rogers, 1977; Resh et al., 2003;
Coll et al., 2008) and hence our values of below-ground C are
under-estimates of total below-ground C. We did not attempt to
sample this below-ground ‘root ball’ biomass pool due to the
destructive nature of such sampling, nor did we estimate this pool
as there is little available root biomass data for sub-tropical Pinus
sp. forests and adjacent native vegetation.

The components removed during processing were oven-dried at
65 �C for 48 h and weighed. The oven-dried weights of these com-
ponents were subtracted from the moisture corrected total sample
weight, to give the oven-dried weight of the <2 mm fraction of the
soil sample. The soil density was calculated for each soil sample
using the oven-dried weight of the <2 mm soil sample and the vol-
ume of the soil coring tube at the individual samples depth inter-
val. The soil sample was also inspected for the presence of
carbonates, but no carbonates were detected in the soils in this
study (soil pH 4.5–6). Sub-samples of the <2 mm soil were sepa-
rated from the whole sample by passing repeatedly through a riffle
box sample splitter. Total C and nitrogen (N) concentrations were
then determined by dry-combustion with a LECO CNS-2000 analy-
ser (LECO Corporation, MI, USA). Soil organic C fractions for partic-
ulate (POC), humus (HOC), and resistant (ROC) were estimated
using mid-infrared spectroscopy (MIRS) following the methods of
Baldock et al. (2013).

SOC stocks for each depth interval were calculated using:

SOC ðMg ha�1Þ ¼ %C� q� V � ð1� f Þ

where %C is the C concentration (% weight); q the soil density
(g m�3); and V the volume (m3) of soil per hectare (depth in
m � 104 m�2) in the samples depth interval, after the volume frac-
tion (f) of the organic material, charcoal and rocks have been
subtracted.
2.6. Data analysis

Analysis of variance (ANOVA) was carried out in GenStat (16th
edition, VSN International Ltd.) to determine the effects of vegeta-
tion type (pine plantation vs native vegetation) on soil C stocks
across the eight sites. As the five different depth levels could not
be randomised, and there is likely some correlation between values
down the profile, we treated the depth factor as a ‘repeated mea-
sures’ factor, which takes into account levels of correlation and
makes appropriate adjustments to tests of significance and least
significant difference (LSD) values. Soil response variables analysed
included SOC (Mg ha�1), charcoal C (Mg ha�1), visible organic
material C (Mg ha�1), below-ground C (SOC plus charcoal C plus
visible organic material C, Mg ha�1), MIR POC (Mg ha�1), MIR
HOC (Mg ha�1) and MIR ROC (Mg ha�1). These variables were con-
verted to a comparable depth (5 cm) prior to analysis to account
for the different volumes of soil in the different depth intervals.
Analysis of the soil variables was carried out on a fixed depth inter-
val basis and on an equivalent soil mass basis (Ellert and Bettany,
1995) due to likely modifications in density associated with plan-
tation establishment. Equivalent soil mass for each depth interval
was calculated using the cubic spline method of Wendt and
Hauser (2013). In addition to the above soil variables, we analysed
litter C (fine and coarse, Mg ha�1), CWD C (Mg ha�1), small woody
plant C (Mg ha�1), plot above-ground tree C (Mg ha�1) and total
ecosystem C (0–50 cm below-ground C plus above-ground woody
plant C plus all litter and CWD, Mg ha�1) using a split-plot ANOVA
(with variation due to sites accounted for in the ‘Block’ stratum). In
addition to analysing soil variables at individual depths, variables
were also analysed for the total 0–30 cm and 0–50 cm depths using
a split-plot ANOVA, with soil type included as a factor.

To account for variations in plantation age, tree basal area (all
plants with a DBH > 2.5 cm) was included as a covariate in the
analyses, where significant. Where necessary, variables were log
transformed (log10 + 1) to meet the assumptions of ANOVA.
ANOVA was also used to determine significant vegetation type
effects and vegetation type � depth effects at an individual site
level. Regression analysis was used to investigate relationships
between response variables and potential predictors (e.g. planta-
tion age, tree basal area, mean annual rainfall). Predicted means
and LSDs (5% level) from ANOVA analyses and adjusted R2 from
regression analysis are reported.
3. Results

3.1. Soil and below-ground C pools

Soil charcoal C stocks were significantly higher in the pine for-
est at three of the eight sites and significantly higher in the native
vegetation at two of the eight sites while the remaining three sites
did not differ significantly in charcoal stocks (Table 2). Across all
sites, soil charcoal C stocks did not differ between the native and
non-native vegetation types (F1,7 = 1.04, P = 0.34, Table 3), the veg-
etation type � depth interaction was not significant (F4,56 = 0.34,
P = 0.75) and tree basal area had no significant influence. Soil char-
coal C stocks did vary with depth (F4,56 = 15.71, P < 0.001); with
greater stocks in the upper soil layers (predicted means of 0.25,
0.26, 0.15, 0.07 and 0.03 log + 1 Mg ha�1 per 5 cm depth, for the
0–5, 5–10, 10–20, 20–30 and 30–50 cm depths, respectively,
LSD = 0.13). Mean charcoal C stocks for 0–30 cm depth were
2.9 Mg ha�1 for the native vegetation and 4.6 Mg ha�1 for the pine
forest (LSD = 2.7).

Visible organic matter was significantly higher in the native
vegetation than in the pine forest at two of the eight sites, was sig-
nificantly higher in the pine forest at one site and did not differ sig-
nificantly at the remaining sites (Table 2). Across all sites, only
depth of sample had a significant influence on visible organic mat-
ter C stocks (F4,56 = 49.1, P < 0.001). Visible organic matter C stocks
were higher at the surface depths (predicted means of 0.69, 0.60,
0.50, 0.37, 0.22 log + 1 Mg ha�1 per 5 cm depth, for the 0–5, 5–
10, 10–20, 20–30 and 30–50 cm depths, respectively, LSD = 0.10).
Across all sites, tree basal area had no influence on the visible
organic matter pool, but had a significantly positive association
at two individual sites (Table 2). Mean visible organic matter car-
bon stocks for 0–30 cm depth were 16.0 Mg ha�1 for the native
vegetation and 15.2 Mg ha�1 for the pine forest (LSD = 8.8).

SOC (equivalent mass) was significantly higher in the pine for-
est at two of the eight sites, was significantly higher in the native
vegetation at two sites and did not differ between native and
non-native vegetation types at four sites (Table 2). Across all sites,
SOC stocks did not differ between native and non-native vegeta-
tion types (F1,6 = 0.48, P = 0.51, Table 3) and the vegetation type -
� depth interaction was not significant (F4,56 = 0.47, P = 0.64).
However, SOC stocks did differ among depths (F4,56 = 23.0,



Table 2
Summary of ANOVA results for individual paired sites (Pinus forest, PF vs native vegetation, NV) for below-ground C pools (0–50 cm). Sites at which significant differences
(P < 0.05) occurred for the main effects of vegetation type (pine and native vegetation) are identified with an ⁄. Sites at which significant differences occurred for depth (0–5, 5–10,
10–20, 20–30 and 30–50 cm) and the vegetation type by depth interaction are listed. Predicted means (Mg ha–1) are presented and where analyses where run on log transformed
data means were back-transformed. ‘Site’ refers to site code (BSW, Blackswamp; BG03, Bluegum 203; BG01, Bluegum 201; ULI, Ulirraba; LAM, Laminex; COW, Cowra; MEL,
Melaleuca; RND, Round); ‘Trend’ refers to the overall trend with depth from the surface to 50 cm. The number of individual sites with significant positive or negative associations
with tree basal area are listed under the ‘Covariate’ column.

Carbon pool Vegetation type Depth Significant Vegetation type � Depth interactions Covariate
(tree BA)

Site NV mean PF
mean

Sites at which
differences exists

Trend Site and depths at
which differences exists

NV mean PF mean

Soil organic C (ESM) BSW
BG03⁄

BG01
ULI
LAM⁄

COW
MEL⁄

RND

7.5
6.3
8.7
2.8
5.5
4.8
1.3
5.8

8.6
5.0
7.7
4.1
5.2
3.2
1.5
6.1

BSW
BG03
ULI
LAMCOW
MEL
RND

All BG01, 0–5 cm
30–50 cm

ULI, 0–20 cm
COW, 0–10 cm
30–50 cm

MEL, 0–10 cm

4.2
10.3
15.5
15.3
1.2
4.8

11.3
4.3
26.6
7.6
2.8
6.4

1 +ve (BSW)

Humic organic C BSW⁄

BG03
BG01⁄

ULI⁄

LAM
COW⁄

MEL
RND

2.5
2.7
1.8
1.7
3.1
0.8
1.5
3.6

3.9
2.6
1.4
1.5
3.2
0.9
1.6
3.9

BG03
BG01
ULI
LAM
COW
MEL
RND

All ULI, 20–50 cm 1.9 1.1 1 �ve (RND)

Particulate organic C BSW
BG03⁄

BG01
ULI⁄

LAM
COW⁄

MEL⁄

RND⁄

1.3
1.0
1.1
0.8
1.0
0.9
0.2
1.4

1.3
0.7
1.3
1.0
0.8
0.2
0.4
1.1

All sites All ULI, 10–50 cm
COW, 0–20 cm
MEL, 0–10 cm
RND, 0–20 cm

1.1
4.1
0.6
5.7

2.2
0.7
1.4
4.3

2 +ve (BSW, BG03)

Resistant organic C BSW
BG03⁄

BG01
ULI⁄

LAM
COW
MEL⁄

RND

2.7
1.4
2.5
1.2
1.2
0.3
0.1
1.3

3.4
1.2
2.2
1.7
1.1
0.5
0.3
1.7

BSW
BG03
BG01
ULI
LAM
MEL
RND

All MEL, 0–20 cm 0.4 1.2 1 +ve (BSW)
1 �ve (RND)

Charcoal C BSW⁄

BG03⁄

BG01
ULI⁄

LAM
COW⁄

MEL
RND⁄

0.78
0.44
0.98
0.58
0.28
0.00
0.05
0.02

0.37
0.37
0.75
1.05
0.27
0.48
0.03
0.07

BG03
BG01
ULI
LAM
COW
MEL
RND

All 1 +ve (BG03)
1 �ve (COW)

Visible organic matter C BSW⁄

BG03⁄

BG01
ULI⁄

LAM
COW⁄

MEL⁄

RND

1.3
1.2
0.8
0.9
2.6
3.8
1.9
1.3

1.6
1.3
1.0
1.5
2.4
2.2
1.4
1.3

All sites All BSW, 0–10 cm
ULI, 0–10 cm
30–50 cm

BG01, 0–10 cm
COW, 0–20 cm
RND, 0–5 cm
20–30 cm

4.4
2.9
0.3
2.5
24.8
1.4
1.2

8.0
9.5
0.1
4.4
11.2
3.2
0.8

3 +ve (LAM, MEL, RND)

Total below-ground C BSW⁄

BG03
BG01⁄

ULI⁄

LAM
COW⁄

MEL⁄

RND⁄

5.1
9.1
5.5
3.9
10.1
5.7
2.9
4.6

6.0
8.5
5.4
5.9
9.3
4.2
2.7
4.9

All sites All ULI, 0–30 cm
BG01, 0–5 cm
20–50 cm

COW, 0–20 cm
RND, 0–5 cm

25.9
8.7
6.3
41.4
12.3

46.7
17.2
4.0
22.5
16.1

2 +ve (BSW, MEL)
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P < 0.001). SOC stocks decreased with depth; predicted means
were 8.27, 7.45, 5.90, 4.20, 2.89 Mg ha�1 per 5 cm depth, for the
0–5, 5–10, 10–20, 20–30 and 30–50 cm depths, respectively
(LSD = 1.49). Mean SOC stocks for 0–30 cm depth were
33.7 Mg ha�1 for the native vegetation and 36.7 Mg ha�1 for the
pine forest (LSD = 10.6). Tree basal area was positively associated
with SOC at one site (Table 2) and had an overall positive associa-
tion with 0–50 cm SOC stock (F1,6 = 25.83, P = 0.002, b = 5.09).
However, based on the limited number of data points for the plan-
tation sites (eight points, ages 6–34 years), the relationship
between SOC and current rotation age was not significant
(F1,7 = 2.60, P = 0.16).

Below-ground C was significantly higher in the pine forest at
three of eight sites, significantly higher in the native vegetation
at three of the eight sites and did not differ between native and
non-native vegetation types at two sites (Table 2). Across all sites,



Table 3
Summary of observed mean ± standard error (range) 0–50 cm below-ground C pools and above-ground C pools (Mg ha�1) for pine plantations and adjacent native vegetation.
Differences based on ANOVA analyses (sometimes on log transformed data) across all sites were non-significant in all cases except for small woody plant C (P = 0.006) and fine
litter C, which was only marginally significant (P = 0.09).

Carbon pool (Mg ha�1) Pine plantation Native vegetation

Soil organic C (ESM) 55.9 ± 8.2 (17.4–86.8) 57.0 ± 12.2 (14.5–132.3)
Humic organic C 23.0 ± 3.5 (13.2–38.4) 21.7 ± 2.5 (9.5–32.2)
Particulate organic C 7.7 ± 1.2 (3.1–12.9) 9.4 ± 1.9 (1.5–18.2)
Resistant organic C 13.4 ± 2.8 (1.8–27.5) 11.6 ± 2.6 (0.7–20.8)
Charcoal C 4.3 ± 1.5 (0.2–13.4) 3.1 ± 1.1 (0.1–8.7)
Visible organic matter C 17.4 ± 1.7 (10.7–27.7) 19.7 ± 5.4 (9.5–55.8)
Total below-ground C 77.6 ± 8.4 (33.9–107.9) 79.8 ± 12.5 (33.3–153.2)
Fine litter C 15.5 ± 2.8 (5.5–30.6) 10.7 ± 2.0 (3.1–21.0)
Coarse litter C 1.9 ± 0.4 (0.6–4.0) 1.0 ± 0.3 (0.0–2.4)
Coarse woody debris C 3.2 ± 1.3 (0.3–9.4) 5.4 ± 2.0 (0.0–18.1)
Small woody plant C 0.5 ± 0.4 (0.0–3.1) 6.2 ± 1.5 (2.6–13.2)
Above-ground tree C 88.7 ± 14.3 (7.3–128.5) 83.7 ± 19.8 (2.3–183.0)
Total ecosystem C 243.3 ± 28.8 (77.6–344.8) 243.9 ± 45.1 (58.8–497.8)
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below-ground C (SOC plus charcoal C plus visible organic material
C) only differed significantly between depths (F4,56 = 35.21,
P = <0.001). Predicted means were 14.1, 13.5, 10.0, 6.7, 4.4 Mg ha�1

per 5 cm depth, for the 0–5, 5–10, 10–20, 20–30 and 30–50 cm
depths, respectively (LSD = 2.36). The effects of vegetation type
(F1,6 = 0.08, P = 0.79, Table 3) and the vegetation type � depth
interaction were not significant (F4,56 = 0.51, P = 0.57). Tree basal
area was positively associated with the below-ground C pool
(F1,6 = 10.37, P = 0.018, b = 3.22) across all sites, and at one of the
eight individual sites (Table 2). Mean below-ground C stocks for
0–30 cm depth were 59.7 Mg ha�1 for the native vegetation and
62.5 Mg ha�1 for the pine forest (LSD = 21.0).

Humic organic carbon (HOC) was significantly higher in the
pine forest at two of the eight sites, significantly higher also in
the native vegetation at two of the eight sites and did not differ
between native and non-native vegetation types at four sites
(Table 2). Across all sites, the effect of vegetation type
(F1,7 = 0.25, P = 0.63) on HOC and the vegetation type � depth
interaction were again not significant (F4,56 = 0.05, P = 0.95). HOC
did vary significantly between depths (F4,56 = 25.40, P < 0.001). Pre-
dicted means were 3.13, 3.12, 2.70, 2.10, 1.63 Mg ha�1 per 5 cm
depth, for the 0–5, 5–10, 10–20, 20–30 and 30–50 cm depths,
respectively (LSD = 0.42). Mean HOC stocks for 0–30 cm depth
were 15.5 Mg ha�1 for the native vegetation and 16.2 Mg ha�1

for the pine forest (LSD = 3.4). Tree basal area was not associated
with HOC across all sites and had a negative association with
HOC at one individual site (Table 2).

Particulate organic carbon (POC) was significantly higher in the
pine forest at two of eight sites, significantly higher in the native
vegetation at three of the eight sites and did not differ between
native and non-native vegetation types at three sites (Table 2).
Across all sites, only sampling depth had an influence on POC
(F4,56 = 24.39, P < 0.001). Predicted means were 2.04, 1.39, 0.88,
0.45 and 0.62 Mg ha�1 per 5 cm depth, for the 0–5, 5–10, 10–20,
20–30 and 30–50 cm depths, respectively (LSD = 0.44). The vegeta-
tion type effect (F1,6 = 0.08, P = 0.79, Table 3) and the vegetation
type � depth interaction were again not significant (F4,56 = 0.21,
P = 0.76). Mean POC stocks for 0–30 cm depth were 6.3 Mg ha�1

for the native vegetation and 5.9 Mg ha�1 for the pine forest
(LSD = 1.6). Tree basal area was positively associated with POC
across all sites (F1,6 = 11.21, P = 0.015, b = 3.35) and had a positive
influence on POC at two individual sites (Table 2). POC varied sig-
nificantly with soil type (F3,4 = 7.13, P = 0.044); the Podosol sites
had higher POC values than the grey Chromosol site (predicted
means of 11.7 and 2.3 Mg ha�1, LSD = 5.91).

Resistant organic carbon (ROC) was significantly higher in the
pine forest at two of eight sites, significantly higher in the native
vegetation at one of the eight sites and did not differ between
native and non-native vegetation types at five sites (Table 2).
Across all sites, sampling depth had a significant influence on
ROC stocks (F4,56 = 28.99, P < 0.001); predicted means were 2.39,
2.29, 1.76, 1.03, 0.57 Mg ha�1 per 5 cm depth, for the 0–5, 5–10,
10–20, 20–30 and 30–50 cm depths, respectively (LSD = 0.46).
The vegetation type effect (F1,6 = 1.14, P = 0.33) and the vegetation
type � depth interaction were again not significant (F4,56 = 0.09,
P = 0.94). Mean ROC stocks for 0–30 cm depth were 9.7 Mg ha�1

for the native vegetation and 10.8 Mg ha�1 for the pine forest
(LSD = 3.5). Tree basal area had a significant positive association
with ROC across all sites (F1,6 = 9.04, P = 0.024, b = 2.99), had a pos-
itive association with ROC at one individual site, and a negative
association at one site (Table 2).

3.2. Above-ground C pools

Fine litter C was significantly higher in the pine forest at five
sites and higher in the native vegetation at one site (Table 3).
Across all paired sites fine litter C varied marginally between the
pine forest and native vegetation (F1,7 = 3.92, P = 0.088). Fine litter
C tended to be higher in the pine forest than in the adjacent native
vegetation (predicted means of 15.5 and 10.7 Mg ha�1, LSD = 5.8,
Table 3). Across all sites there was no significant difference in
coarse litter C stocks between the pine forest and native vegetation
(F1,7 = 3.19, P = 0.12, Table 3), although pine forest had greater
coarse litter C than native vegetation at four individual sites
(Table 3). Predicted mean coarse litter stocks across all sites were
1.0 Mg ha�1 in the native vegetation and 1.9 Mg ha�1 in the pine
forests (standard error = 0.35 Mg ha�1). Total litter C (fine plus
coarse) increased significantly with plantation age in the pine for-
est (F1,6 = 13.35, P = 0.011, R2 = 0.64; Fig. 2a) and with tree basal
area across both vegetation types (F1,14 = 8.48, P = 0.011,
R2 = 0.33). The variation in litter C stocks among the native forest
sites was almost as high as that among the pine plantation sites
of varying age (Table 3), reflecting the variation in vegetation and
soil types across the different native forest sites. There was no dif-
ference in coarse woody debris stocks between the pine forest and
native vegetation (F1,7 = 0.55, P = 0.48). Mean coarse woody debris
stocks were 5.4 Mg ha�1 in the native vegetation and 3.2 Mg ha�1

in the pine forests (standard error = 2.2 Mg ha�1).
Pine trees nearing the end of the commercial rotation had

sequestered up to 128 Mg C ha�1. Carbon stored in pine plantation
trees increased with plantation age (Fig. 2b, F1,6 = 30.1, P = 0.002)
and plantation age explained 80.6% of the variation in above-
ground tree C. The unexplained variation in this relationship is
likely due to local site productivity factors, such as soil fertility
and rainfall. Carbon stored in the trees (P10 cm DBH) in native
vegetation adjacent to pine plantations varied from 2.3 Mg ha�1
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Fig. 2. Significant relationships between total litter C (fine and coarse litter) and
pine plantation age (a, significant linear relationship, adjusted R2 = 0.64) and
between above-ground tree C and plantation age (b, significant exponential curve,
adjusted R2 = 0.81).

Soil C = 8.18 + 0.286*AGB

Above- ground biomass (Mg ha-1)

0 100 200 300 400

So
il 

ca
rb

on
 (M

g 
ha

-1
)

0

20

40

60

80

100

120

140

Fig. 3. Significant linear relationship between SOC and above-ground biomass
(AGB) for the native vegetation plots that were paired with pine plantations
(adjusted R2 = 0.89).
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in a heathland site to 183.0 Mg ha�1 in a eucalypt forest. Carbon
stored in understorey woody plants (2.5–9.9 cm DBH) was a small
pool, but was significantly higher in the native vegetation than in
the pine forest (F1,7 = 15.3, P = 0.006, Table 3). There was a signifi-
cant linear relationship between total 0–50 cm SOC and above-
ground tree biomass for the native vegetation sites that explained
88.8% of the variation in the data (F1,6 = 56.7, P < 0.001, standard
error of estimate = 11.5; Fig. 3). There was also a significant linear
relationship between total 0–50 cm SOC in the native vegetation
sites and mean annual rainfall (F1,6 = 7.78, P = 0.032, standard error
of estimate = 16.2; R2 = 0.33) which is to be expected given known
the relationship between above-ground biomass and rainfall.

Above-ground C stocks varied greatly between individual sites
(Fig. 4). Total ecosystem C (0–50 cm below-ground C plus above-
ground woody plant C plus all litter and CWD) varied from
58.7 Mg ha�1 on the native heathland grey Chromosol site to
497.8 Mg ha–1 on a native eucalypt forest brown Kandosol site.
Across all sites, therewasno significantdifference in total ecosystem
C between the native vegetation and pine forests (F1,7 = 0.00,
P = 0.98, Table 3).
4. Discussion

4.1. Below-ground C estimates

Our hypothesis, based on studies in southern Australia (Turner
and Lambert, 2000; Turner et al., 2005) and meta-analyses (Guo
and Gifford, 2002; Don et al., 2011), that SOC would be lower in
Pinus plantations than adjacent native vegetation, was not sup-
ported across all sites. In fact, at two of eight sites SOC was higher
in the plantation forests and this was driven by higher POC and
ROC at both sites. Changes in POC are not surprising given these
pools are known to respond to land-use changes (e.g. Chan,
2001; John et al., 2005). The differences in ROC between sites were
unexpected as the resistant fractions are thought to be relatively
inert and turn-over in longer time frames than those associated
with vegetation type conversion in the current study (von
Lützow et al., 2007). However, it is possible the ROC is higher in
some pine plantations due to pyrogenic C, which may not be con-
sidered inert (Singh et al., 2012), as these plantations are fre-
quently burnt with low intensity fire to reduce wildfire risk
(Hunt and Simpson, 1985) and occurrence of fire to burn debris
is common immediately following clearing of native vegetation.
In fact at one site, both soil ROC and soil charcoal C that was sep-
arated during soil processing, was higher in the pine plantations
than the adjacent native vegetation. At the two sites where SOC
was greater in the plantation forest, the difference tended to be
in the 0–20 cm depth. In fact, a further plantation site had higher
SOC in the 0–5 cm depth horizon than in the native vegetation
(i.e. significant vegetation type � depth interaction). This is con-
trary to the findings of a meta-analysis by Don et al. (2011) who
reported higher SOC in the surface horizons of primary forest. This
suggests that introduced Pinus plantations in the sub-tropics may
have higher SOC and visible organic matter in the surface horizons
than certain native vegetation communities, perhaps due to shal-
low and dense root systems (e.g. Mou et al., 1995) and associated
mycorrhizae in these plantings.

Several studies report significant losses in SOC associated with
forest type change from native forest to plantation forest (Guo
and Gifford, 2002; Chen et al., 2004; Richards et al., 2007) although
changes in SOC may be influenced by the species planted (Guo and
Gifford, 2002; Don et al., 2011). In the current study, of the two
sites where SOC was higher in the native vegetation relative to
two 26 year old Pinus plantations, this difference was restricted
to the 0–10 cm depths at one site, and was driven by higher POC.
The native vegetation at this particular site was open woodland
with dense clusters of proteoid roots near the soil surface (associ-
ated with B. aemula); which play an important role in the acquisi-
tion of phosphorus and other mineral nutrients in infertile soils
(Dinkelaker et al., 1995; Lamont, 2003). At the other site where
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SOC was higher in the native vegetation the difference was attrib-
uted to higher POC, ROC and charcoal C.

Reviews by Paul et al. (2002) and Guo and Gifford (2002) sug-
gest it may take more than 30 or 40 years for SOC to be restored
to its original levels following plantation establishment. Similarly,
Turner and Lambert (2000) reported initial losses in SOC and sug-
gested that at least 10–20 years is needed before net accumulation
of SOC occurs after planting. Based on our chronosequence of dif-
ferent plantation ages, total SOC was not related to plantation
age, and hence time since the most recent soil disturbance,
although we acknowledge that additional data points or time-
series data are needed to test this relationship properly. The find-
ings reported here are corroborated by a concurrent study that
re-visited six paired sites (native vegetation and Pinus sp. planta-
tion) that were initially sampled in 1998 and then again 15 years
later (unpublished data). Further, Gholz and Fisher (1982) reported
relatively minor changes in SOC with increasing age in P. elliottii
plantations in Florida. It appears that SOC varies greatly from site
to site across the landscape, and that this variation is much greater
than the variation observed with a change from native vegetation
to introduced Pinus plantation. Thus changes in SOC associated
with vegetation type change really need to be assessed at a site-
level. The local site related factors that influence SOC stocks are
currently not well understood although we speculate that the vari-
able responses are at least partly due to variations in fine root bio-
mass distribution and turnover in the different vegetation
communities (Coleman et al., 2000; Rasse et al., 2005). At a land-
scape scale, certain environmental factors (e.g. rainfall, tempera-
ture, elevation, pH, soil texture, bulk density and vegetation
type) and management factors (e.g. fertiliser additions) are known
to be drivers of variation in SOC (Paul et al., 2002; Kasel and
Bennett, 2007; Rabbi et al., 2014) and influence the site-to-site
variation. The fact that our findings differ from some studies of P.
radiata plantations in southern Australia might reflect the different
Pinus species planted in the sub-tropics, the different environmen-
tal drivers (e.g. rainfall) and the high degree of variability between
sites in our study (e.g. different plantation ages, site preparation
and management methods, soil types, native vegetation types,
etc.). Our findings are, however, supported by those of Kasel and
Bennett (2007) who reported variable land-use change responses
within different P. radiata plantations.

Our study was comprehensive in that it accounted for different
below-ground C pools (organic material, charcoal, POC, HOC, ROC)
in addition to SOC. However, separation into these pools had no
major influence when testing for changes associated with vegeta-
tion type across all sites. Visible organic matter C, charcoal C and
SOC all decreased with increasing depth down the profile, as
expected based on previous studies (Gill et al., 1999; Jobbágy
and Jackson, 2000; Guo and Gifford, 2002).

4.2. Above-ground and total ecosystem C estimates

Carbon stored in above-ground tree biomass was the largest C
pool for most sites in this study (�35% of the total ecosystem C).
Our estimates of tree biomass C are in the range of those reported
for similar forest types in the region (Westman and Rogers, 1977;
Simpson et al., 2000). Few studies have estimated total ecosystem
C stocks, including SOC, for the study region. Our findings support
those from elsewhere, that the greatest potential for C sequestra-
tion in plantation forests is through above- and below-ground tree
biomass sequestration (Paul et al., 2002; Peichl and Arain, 2006).
Our hypothesis that above-ground woody plant C would be lower
in the Pinus plantations was only partially supported. At plantation
sites that were nearing the end of the commercial rotation, tree C
stocks were not always higher in the native vegetation (Fig. 4); in
fact two such sites had higher tree C stocks in the plantation forest.
Nevertheless, across all sites, C stored in trees was similar between
the two vegetation types (Table 3).

A significant finding of the current study was the relatively
strong relationship between SOC and above-ground biomass in
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the native vegetation. Similar relationships have been found in
other ecosystems (e.g. Laurance et al., 1999) but are not commonly
reported for the sub-tropics. Unfortunately it is uncertain as to
whether: (i) the initial high SOC levels support the potential for
greater biomass accumulation; or (ii) whether the greater biomass
stocks and associated higher site productivity (e.g. due to rainfall)
have contributed to SOC accumulation over a long period of time.
Nevertheless, it appears that SOC levels in native vegetation could
be a useful predictor (along with other confounding site productiv-
ity variables) of potential tree plantation growth in an adjacent
area. This is to be expected given the importance of soil organic
matter, particularly on sandy soils, in influencing soil productivity
variables like cation exchange capacity, microbial biomass and
physical properties that can increase soil moisture retention
(Reeves, 1997; Oorts et al., 2003; Jia et al., 2005; Lal, 2006;
Kimetu et al., 2008).

Litter C, although a relatively small pool (�4.9% of the total
ecosystem C in the native and 7.4% in the pine forest) responded
significantly to plantation age, with a C sequestration rate of
0.67 Mg ha�1 year�1. The relationship between litter C and tree
basal area for all sites (plantation and native vegetation), although
significant, was not strong and hence caution is needed in predict-
ing litter C from basal area measures alone. Further work is needed
to determine the best model and combination of variables for litter
C prediction, particularly in multi-aged native vegetation. Based on
previous studies (Cuevas et al., 1991; Prescott, 2010) we expected
the litter C pool to be higher in the Pinus plantations than the adja-
cent native vegetation. Across all sites this hypothesis was partially
supported, at least for the fine litter C pool, reflecting the slower
decomposition rates of pine needles (Paul and Polglase, 2004;
Prescott, 2010). However, this was not the case at all sites, as at
one site, fine litter C was higher in the native vegetation than the
pine plantation. At this site, the plantation was relatively young
(9.7 years since planting) and hence above-ground biomass had
not reached levels similar to those in the native vegetation, pre-
sumably resulting in lower litter-fall rates. There is a high degree
of variation in litter biomass stocks in both plantation and native
vegetation, not only in relation to plantation age and basal area,
but also to recent site management, such as fire. The finding that
understorey woody plant C stocks were higher in the native vege-
tation than in the pine forest might reflect the inhibitory effect of
pine needle litter on native understorey plants (Baker and
Murray, 2012), and may also be related to the occurrence of fre-
quent low-intensity fire in the pine forest understories.
4.3. Conclusions

There is regional and global concern regarding the clearing or
conversion of native vegetation. While we do not advocate clearing
of remnant native vegetation, our findings suggest that historic
conversion from native vegetation to commercial plantation has
had little influence on ecosystem C stocks across multiple sites in
our study region. The two main C pools were above-ground tree
C and SOC and neither of these pools was significantly influenced
by vegetation type change across all sites. Losses of C from the
plantation forests associated with harvesting and plantation man-
agement (e.g. site preparation) are offset by increases in live tree
biomass and debris pools over time. A key finding of this study is
that site-to-site variation in SOC, even within a relatively small
geographic area, is much greater than that associated with a
change from native vegetation to Pinus plantation forest. Another
key finding was the significant positive relationship between 0–
50 cm SOC and above-ground biomass in the native vegetation
areas. Further studies are needed to determine if this relationship
holds for other ecosystems and regions.
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