1-Methylcyclopropene Delays Softening in Tomato Slices D.H. Pangaribuan^{1,2}, D.E. Irving² and T.J. O'Hare³ ¹University of Lampung, Bandar Lampung, 35145, Indonesia; ² School of Agronomy and Horticulture, University of Queensland, Gatton; ³ DPI, Gatton Research Station, LMB7, MS437, Gatton 4343, Australia s4003645@student.uq.edu.au # **ABSTRACT** 1-Methylcyclopropene (1-MCP) has the potential in tomato to reduce ethylene-associated changes in texture. Tomato cv. 'Revolution' was harvested at the 'pink' maturity stage and whole fruit treated with 0, 0.1, 1.0 or $10.0~\mu L.L^{-1}$ 1-MCP at 20 °C for 12 h. Slices of 7-mm thickness were cut using a commercial slicer, and the slices stored in vertical stacks in plastic containers at 5°C for 7 days. The application of 1-MCP reduced both ethylene production and respiration rate of slices and resulted in firmer pericarp firmness. Ethylene production was 24%, 40%, and 62% lower following 0.1, 1.0, 10.0 $\mu L.L^{-1}$ 1-MCP, respectively, compared with controls. In addition, respiration rate was reduced 6%, 10% and 20% by those 1-MCP treatments. 1-MCP treatments produced 20%, 34%, and 24% higher pericarp firmness, respectively, than in fruit not treated with 1-MCP. #### INTRODUCTION Softening is the major quality problem with fresh cut tomato slices during storage. Ethylene is known to promote this problem and therefore an ethylene-blocking agent such as 1-methylcyclopropene (1-MCP) might reduce the rate of softening at low level concentration (Sisler and Serek, 1997). Mostofi et al. (2003) demonstrated that a single application of 1-MCP (250 nL L ⁻¹; 24 h; 20 °C) led to significant delays in ripening of green tomatoes as measured by changes in tissue firmness. This paper focuses on effect of different concentrations of 1-MCP on ethylene, respiration and rate of softening of tomato slices. # MATERIAL AND METHODS Tomato fruit were selected at the 'pink' stage with hue values $75-80^{\circ}$ and firmness ca. 20 N. Uniform medium size (weight 175 ± 15 g; diameter 73 ± 2 mm; length 68 ± 15 mm) fruits were washed with 100 ppm sodium hypochlorite before being sliced using a commercial tomato slicer. All procedures were conducted in a cool room at 10 °C. Methods described by Macnish et al. (1999) were followed for 1-MCP treatments and quantification. 1-MCP was generated from Ethylbloc® and was quantified by flame ionisation gas chromatography, using isobutane as a calibration gas. Intact fruit were treated with 0, 0.1, 1.0 and 10.0 µl L L ⁻¹ 1-MCP for 12 hours at 20 °C. Fruit were left in air for 6 hours to equilibrate and then sliced. After 1-MCP treatment, five slices of 7 mm thickness from each fruit were vertically stacked in ventilated plastic containers to ensure an aerobic atmosphere (Wu, 2002) and stored at 5 °C. Samples were analysed after 7 days to evaluate ethylene production and respiration rate (using gas chromatography of the headspace) and pericarp firmness (using an Instron Food Texture Analyser by penetrating the pericarp with a 3 mm probe at a speed of 1 mm/s). The experimental design was based on a completely randomised design with five replications. #### RESULTS AND DISCUSSION Ethylene production was 24%, 40%, and 62% lower, and respiration rate reduced 6%, 10% and 20% by these 1-MCP treatments. In addition, firmness of tomato slices was increased 20%, 34%, and 24%, following 0.1, 1.0, 10.0 μL L⁻¹ 1-MCP, respectively, compared with the controls after 7 days storage (Table 1). This is consistent with results by Jiang and Joyce (2002) who also found reduced ethylene production and greater firmness of apple slices treated with 1-MCP before cutting. 1-MCP treatments have also been found to reduce respiration rates in pineapple slices (Budu and Joyce, 2003). Despite the quantitative decrease in both ethylene production and respiration rate with increasing 1-MCP concentration, there was little difference in tissue firmness within the 0.1-10 μL L⁻¹ 1-MCP range tested. Table 1 Effect of 1-MCP (20 °C, 12 h) on ethylene production, respiration rate, and firmness of tomato slices after 7 days storage at 5 °C | MCP concentration | Storage time (days) | Ethylene
(nmol g ⁻¹ h ⁻¹) | Respiration (µmol g ⁻¹ h ⁻¹) | Firmness (N) | |------------------------|---------------------|---|---|-------------------| | 0.0 μL L ⁻¹ | 1 ¹ | 0.094 ± 0.008 | 0.420 ± 0.009 | 6.346 ± 0.184 | | | . 7 | 0.069 ± 0.004 | 0.144 ± 0.016 | 5.985 ± 0.534 | | 0.1 μL L ⁻¹ | 1 | 0.066 ± 0.007 | 0.382 ± 0.008 | 6.847 ± 0.407 | | | 7 | 0.052 ± 0.002 | 0.136 ± 0.004 | 7.164 ± 0.218 | | 1.0 μL L ⁻¹ | 1 | 0.079 ± 0.006 | 0.314 ± 0.019 | 8.966 ± 0.407 | | | 7 | 0.041 ± 0.002 | 0.131 ± 0.021 | 8.057 ± 0.296 | | 10 μL L ⁻¹ | 1 | 0.068 ± 0.006 | 0.200 ± 0.026 | 7.340 ± 0.584 | | | 7 | 0.026 ± 0.001 | 0.115 ± 0.007 | 7.429 ± 0.192 | Measured 24 hours after treatment ## CONCLUSION Application of 1-MCP to intact tomato fruit was effective in depressing ethylene production, respiration rate and maintaining firmness of subsequently cut slices. 1-MCP treatment within the range $0.1\text{--}10~\mu\text{L}^{-1}$ 1-MCP produced a similar effects on slice softening. ## REFERENCES - Budu, A.S., and D.C. Joyce, Effect of 1-methylcyclopropene on the quality of minimally processed pineapple fruit, Australian Journal of Experimental Agriculture, 43, 177-184, 2003. - Jiang, Y., and D.C. Joyce, 1-Methylcyclopropene treatment effects on intact and fresh-cut apple, *Journal of Horticultural Science and Biotechnology*, 77, 19-21, 2002. - Macnish, A.J., D.C. Joyce, P.J. Hofman, D.H. Simons, Involvement of ethylene in postharvest senescence on *Boronia heterophylla* flowers, *Australian Journal of Experimental Agriculture*, 39, 911-913, 1999. - Mostofi, Y., P.M.A. Toivonen, H. Lessani, M. Babalar, and C. Lu, Effects of 1-methylcyclopropene on ripening of greenhouse tomatoes at three storage temperatures, *Posthavest Biology and Technology*, 27, 285-292, 2003. - Sisler, E.C., and M. Serek, Inhibitors of ethylene responses in plants at the receptor level: recent developments, *Physiology Plant*, 100, 577-582, 1997. - Wu, T., and J.A. Abbott, Firmness and force relaxation characteristics of tomatoes stored intact or as slices, *Postharvest Biology and Technology*, 24, 59-68, 2002.