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Abstract 
 

The development of fishery indicators is a crucial undertaking as it ultimately provides 

evidence to stakeholders about the status of fished species such as population size and 

survival rates. In Queensland, as in many other parts of the world, age-abundance 

indicators (e.g. fish catch rate and/or age composition data) are traditionally used as the 

evidence basis because they provide information on species life history traits as well as on 

changes in fishing pressures and population sizes. Often, however, the accuracy of the 

information from age-abundance indicators can be limited due to missing or biased data. 

Consequently, improved statistical methods are required to enhance the accuracy, 

precision and decision-support value of age-abundance indicators. 

 

This research uses three case studies as the basis for improving the effectiveness of age-

abundance indicators in fisheries management: eastern king prawns, stout whiting and 

spanner crab. 

 

The case study species were chosen to demonstrate different aspects that age-abundance 

indicators need to adapt to. The case studies contrast different life history characteristics 

(e.g. varied lifespan), fishery management (e.g. effort versus harvest restrictions) and 

fishery challenges (e.g. fishing power bias and high operational costs of fishing for eastern 

king prawns; inconsistent data for stout whiting; need for more comprehensive 

management methodology for spanner crab). Collectively, the case studies form the 

scientific detail of the thesis. 

 

The first case study developed new methodology for the calculation of abundance 

indicators and reference points for eastern king prawns. Bio-economic indicators were 

standardised for calibrating simulations and identified catch-rate levels that were effective 

for monitoring profitability and useful in simple within-year effort-control rules. Favourable 

performance of catch-rate indicators in management was achieved only when a legitimate 

upper limit was placed on total allowable fishing effort. The findings inform decision 

makers on the uncertainty and assumptions affecting economic indicators. 
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For the second case study, a new catch curve methodology was described for estimating 

annual survival fractions of stout whiting. The method analysed individual fish age-

abundance data such as length and age by using Gaussian finite mixtures and was 

designed to overcome fishery dependent sampling issues, assuming that only fish ages 

within each length category were sampled randomly and that fish lengths themselves were 

not. The analysis improved estimates of stout whiting survival in waters along Australia’s 

east coast. The catch curve mixture model applies naturally to monitoring data on fish age-

abundance and is applicable to many fisheries. 

 

In the third case study, revised abundance indicators were developed to achieve more 

responsive spanner crab management. Simulations identified harvest and catch-rate 

baselines to assisting setting quotas that ensured sustainable crab biomass. The 

management procedure is robust against strong trends in catch rates and adaptable for 

use in many fisheries. 

 

The following strategies were identified for the case study fisheries to improve the 

usefulness of age-abundance indicators in determining management decision making 

reference points: 

• Eastern king prawns – the combined approach of setting target fishing effort near 

the level for maximum economic yield and a secondary in-season lower limit on 

catch rates. 

• Stout whiting – a mean survival fraction calculated over the two most recent years 

and evaluated against a target fraction corresponding to the years that best 

represented stable and profitable fishing. 

• Spanner crab – precautionary levels of base quota set below average harvests and 

above average catch rate reference points ensured robust performance of the 

management procedure. 

 

The general basis of indicator management was not different between species or method 

of harvest regulation. The analysis procedures adapted allowing application to each 

species. 

 

The case studies also demonstrate the use of modernised frameworks for generating and 

using indicators in fisheries management in Queensland. Mitigation of indicator variance 
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and high risk management strategies rests with setting conservative reference points and 

decision rules to enable active management. The systems described can help improve 

and measure sustainable and economic outcomes of other fisheries, both in Australia and 

globally. 
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Introduction 

Overview 
 

The development and reporting of fishery status indicators is the crucial basis for the 

provision of accurate information on the status of fished stocks for management agencies, 

the fishing sectors and the public. It is equally vital for underpinning appropriate 

management procedures that seek to reach stock sustainability goals. The information 

reporting process (or “stock assessment process”) typically involves integrating information 

about the fished species biology, gathering age-abundance data, conducting statistical 

population analyses and reporting indicator results against reference levels based on 

objectives to identify appropriate management procedures This process requires: a) 

consistent and representative spatial-temporal data collection, b) use of contemporary 

statistical methodology to address data limitations and to improve time-series validity of 

age-abundance indicators and c) use of sensible benchmarks to judge indicator signals 

and set harvest rules based on operational objectives for the fishery. Crucially, all three 

aspects are necessary to form a robust framework for fisheries management planning and 

success. Evaluation and discussion of this process is relevant to all fisheries globally, 

especially for those like Queensland where an appropriate modernised framework is 

missing for generating and using fishery indicators in management. For Australia, this 

process has been reviewed and outlined in the national guidelines to develop fishery 

harvest strategies (Sloan et al., 2014). 

 

For many fisheries globally, age-abundance indicators are traditionally the most used line 

of evidence to assess the status of fished stocks. Age-abundance indicators generally 

consist of catch rate and/or age composition data to index changes in population size and 

rates of survival, which then allow for the assessment of stock status and fishing 

pressures. The data can be obtained from the fishery (fishery dependent) or sampled 

through scientific surveys (fishery independent). This data can reveal important species’ 

life history traits such as age, growth and mortality. A time series of age-abundance 

indicators, for example, can identify important changes in fishing pressures, population 

size and success or failure of fishery management (Hilborn and Walters, 1992). Further, 

time series changes in age-abundance indicators can be used to correlate a wide range of 



2 

 

environmental influences, such as changes in survey catch rates of young lobsters with 

ocean currents (Caputi et al., 2001). For these reasons, age-abundance indicators are the 

frequent focus for interpretation in stock assessment. 

 

The limitations of age-abundance indicators have been critiqued globally, where trends in 

catch rates are often considered not proportional to population abundance and changes in 

age composition data biased by different fishing gears and locations (Hilborn and Walters, 

1992). A broad range of research has been published confronting these issues by using 

improved analyses and estimation to better represent the uncertainty surrounding model 

predictions (Maunder and Piner, 2015). These improved statistical techniques represent 

great advancements but, in some cases, age-abundance data was still shown to contain 

little contrast or information on the status of the fished population (Walters and Martell, 

2004). Hence, the literature has pointed towards new kinds of data or methods such as the 

spatial mapping of a fishing vessel's satellite location data for measuring absolute 

densities of abundance (Peel and Good, 2011); fish tagging and genetic mark-recapture 

experiments for harvest rate monitoring (Walters and Martell, 2004; Buckworth et al., 

2012); genetic estimates of effective numbers of spawners (Ovenden et al., 2007); remote 

sensing of the abundance of fish aggregations using video or sonar technology (Mackie et 

al., 2009); and large-scale swept area estimates of population size (Dichmont et al., 2000). 

 

To date there has been no routine uptake of these new data indicators due to their own 

technical limitations, their higher cost of implementation and their unclear use in 

management. For these reasons, fishery monitoring agencies continue to build on their 

existing time series of age-abundance indicators. In this context, this thesis takes a 

focused assessment of age-abundance data in an attempt to overcome data limitations, 

such as missing or biased spatial-time series data and to improve statistical methodology 

for standardising fishery dependent age-abundance indicators for applications in 

management. The need to standardise age-abundance indicators is critical to reduce 

biases and variability and ensure consistency in management decisions. If not done, over 

or under estimation of indicators driving management change could incorrectly affect the 

sustainability, economic and social performance of a fishery. 

 

Accordingly, innovative and case specific statistical applications and simulations were 

conducted to show how to develop and use appropriate age-abundance indicators in the 
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management of Queensland's fisheries. Notably, these have highlighted example 

procedures to reduce and manage indicator variance and bias and to apply quantitative 

tools in setting decisions on fishing harvest or effort. The results of these applications are 

presented in five papers using three case study fisheries as presented in appendices I to 

V. They form the spine and evidentiary basis of the thesis. 

 

The research aimed to explore the following questions: 

- What constitutes an appropriate age-abundance indicator? 

- What are the risks in using age-abundance indicators? 

- What analytical procedures are required to reduce indicator variance and bias? 

- What are the important considerations for using age-abundance indicators in 

fisheries management overall? 

 

To address the research questions, the three case studies were used to characterise the 

operational and managerial situations for different economically important Queensland 

fisheries. The species considered in the case studies varied from fast growing and short 

lived prawns to slower growing and longer lived crabs and fish and encompassed different 

management approaches of input effort controls versus quota output controls. The case 

studies allowed the development and testing of improved age-abundance indicators and 

comparison of results across fisheries. While the case studies are based in Australia, 

similar fishery characteristics are found globally making the research relevant to fisheries 

management internationally. 

 

The case studies are categorised as follows: 

- Eastern king prawns (fast growing with a lifespan of 1-3 years; managed through 

input effort controls; indicators developed from fishery dependent logbook catch and 

effort data); Appendix I and II. 

- Stout whiting (moderate growth with a lifespan of 5-9 years; harvest quota 

managed, large discard mortality; indicators developed from fishery dependent 

logbook catch and effort data and fish age frequency monitoring); Appendix III and 

IV. 

- Spanner crabs (slow growing with a lifespan of 10-20 years; harvest quota 

managed with size limit; fishery dependent and independent catch and effort data); 

Appendix V. 
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The results from the case studies service the key management components for each 

species that can integrate under the national harvest strategy guidelines, recognising that 

periodic adjustment may be needed for future changes and constraints on management 

and data (Sloan et al., 2014): 

• Defined operational objectives for the fishery; 

• Indicators of fishery performance related to the objectives; 

• A statement defining acceptable levels of risk to meeting the objectives; 

• Reference points for performance indicators; 

• A monitoring strategy to collect relevant data to assess fishery performance; 

• A process for conducting assessment of fishery performance relative to objectives; 

• Decision rules that control the intensity of fishing activity and/or catch. 

 

Understanding indicators and their use in fisheries management 
 

Indicators are measurable variables that are designed to identify important changes in the 

phenomena of interest. They can cover many elements, functions and issues depending 

on their application and purpose. For fisheries, indicators aim to inform us about changes 

in stock, environment and fishing conditions over time and space that may have 

consequences for stock viability and have economic ramifications for industry. Similarly, 

indicators may provide flags or decision points where strategic decisions are made to 

manage a stock. For example, low catch rate of prawns may indicate low stock size, 

prompting further assessment to investigate if this was due to over fishing or changed 

environmental conditions or both. 

 

Fishery indicators are not only variables that measure the state of the fishery (the stock, 

commercial/recreational operations and environment) but also the performance of 

management (Garcia and Staples, 2000). They can track resource (stock), environment, 

economic and social conditions individually or in an integrated manner. Uses of such 

indicators include detection of low catch rates (stock), reduced habitat (environment), 

financial losses (economic) and overly competitive fishing (social). Government and public 

stakeholders can use such indicators to judge the performance of fisheries management 

policy and assess fisheries with respect to operational objectives (Fletcher et al., 2002; 



5 

 

Sloan et al., 2014). In some fisheries the policy and operational objectives of different 

stakeholders can be inconsistent and management performance may be judged by the 

balance that is achieved rather than the attainment of each specific objective. 

 

Fishery indicators can be developed from fishery dependent or independent data sources. 

Fish catch rate and age data collected directly from fishers or their markets are fishery 

dependent sources and subject to their practices at the time of sampling. By comparison, 

fish catch rate and age data obtained from scientific surveys are fishery independent with 

data collection structured according to a consistent sampling design. Independent samples 

are generally more costly and therefore provide relatively limited sample sizes and 

temporal-spatial coverage, but less subject to the biases and confounding issues that 

complicate the interpretation of fishery-dependent indices, such as changing fishing gear 

or locations. Financial limits often prevent or constrain the use of independent sampling 

(Hilborn and Walters, 1992). Therefore improved analyses are required to make the best 

use of fishery dependent data. 

 

To interpret indicator results, clear benchmarks are required. These benchmarks are 

typically discrete values called reference or trigger points believed to represent critical 

situations (Garcia and Staples, 2000). Developing reference points for a particular fishery 

is complex. Their setting is reliant on the detailed analyses used to estimate the indicator 

values and therefore should be designed at the same time. The reference points can then 

be related directly to the indicator value to help improve and measure the status of a 

fishery. 

 

Two types of reference points are defined in fisheries management. The most common 

reference point is known as a limit. A hypothetical example of a limit could be if the 

average catch rate (indicator: catch-per-standard-unit-effort) of prawns drops below 100 kg 

per boat night (limit reference point) it indicates the fishery is overfished. The other type of 

reference point is known as a target, aiming towards a state of fishing and/or resource size 

that is considered to be desirable. For example, the fishery might produce most profit for 

industry if average catch rates (indicator) were maintained at 200 kg per boat night (target 

reference point). This reference point approach is used in the management of a number of 

fisheries, such as for commercial trawl fisheries (Australian Government, 2007). 
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The need for monitoring and assessment of important fisheries resources is now 

embedded in most legislation in the developed world. Governments have strategic 

responsibilities to ensure sustainable fishery resources; thereby inheriting the burden of 

developing accurate and timely indicators for ongoing monitoring of fished resources. 

There are many factors to consider when analysing and developing data for performance 

indicators and their reference points. For example: 

• Is the data collection and data type suitable? 

• Are data limitations and biases acknowledged and addressed? 

• Are analysis assumptions valid? 

• Have the significance and uncertainties of the findings been reported appropriately? 

In the stock assessment reporting process these factors need to be considered in order to 

demonstrate that fishing practices are sustainable, economical and socially acceptable. 

 

Age-abundance indicators 
 

What are they and what do they tell us? 

 

Marine animals generally have complex life dynamics which can make their populations 

hard and costly to measure. It is often difficult or impossible to conduct large-scale surveys 

to estimate absolute population numbers. Consequently, age-abundance data are used 

extensively as surrogate inputs into fishery stock assessment. 

 

The type of age-abundance data can vary between different kinds of fisheries and 

analyses. In different fisheries either the age or abundance dimension or both may be 

available to assess. Herein the term "age-abundance" is used interchangeably to describe 

the data or the indicator calculated from the data, whether it is age or abundance or both. 

 

The “age” dimension typically relates to fish ages derived from laboratory readings of 

otoliths or other bone structures, or ages derived quantitatively from models for either fish 

or invertebrate species (Francis and Campana, 2004). This data dimension can also 

include age covariates such as length, weight, otolith weight and other morphometric 

measures. The age dimension can inform on different types of population effects: (1) 

selectivity or vulnerability, with smaller or younger animals usually less susceptible to 

fishing gear; (2) cumulative mortality, with older or larger animals less abundant; and (3) 
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recruitment variation, with some age-cohorts being more frequent than others (Walters and 

Martell, 2004). 

 

The “abundance” dimension usually relates to a relative catch rate measure. It is generally 

of more importance and informs on the magnitude of change in fished populations 

(Francis, 2011). Trends over time may reflect changes in the proportion of the population 

being harvested, changes in the abundance of the fished species or both (Quinn and 

Deriso, 1999). It is normally assumed that the abundance dimension is related 

proportionally to the true population size. However, this is questionable if the data 

represents only a subset of the population (risks discussed below). Stock abundance 

assessments based only on raw catch and effort data can produce biased predictions 

owing to efficiency changes in fishing effort through time and between fishing vessels. 

There is therefore a need for standardised average catches, for example by employing a 

regression model (Hilborn and Walters, 1992), to reduce the biases or variation in the data 

by accounting for factors affecting relative abundance and fishing efficiency. This results in 

a time series of the abundance dimension that is more representative of trends in the 

population. 

 

The basic guiding concepts and science supporting the use of age-abundance data have 

been demonstrated in numerous texts such as Hilborn and Walters (1992), Quinn and 

Deriso (1999) and Walters and Martell (2004). They are built on the dynamic theory that 

abundance of a species cohort logically declines as it ages due to mortality. Equation (1) 

outlines the simple mathematical dynamic; which can be expanded to have more realistic 

and complex spatial-temporal-age-size-weight dynamics (Quinn and Deriso, 1999). Here 

the equation illustrates that abundance N can change between years t at the mortality rate 

Z, with the addition of new young recruits R. Inferences from age-abundance data can 

follow this mathematical logic, where the frequency of younger aged animals can signify 

the strength of recruitment and the rate of decline in abundance of older fish can measure 

the level of mortality. Further, changes in abundance N can correlate proportionally with a 

standardised catch rate index Ut. If the standardised catchability q can be assumed to be 

constant, then declines in catch rate may indicate reduced abundance and higher mortality 

(Hilborn and Walters, 1992; Quinn and Deriso, 1999; Haddon, 2001). 

( )1 expt t t

t t

N N Z R
U qN

−= − +

∝
 (1) 
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What are the risks of using age-abundance data? 
 

The risks associated with using age-abundance data primarily relate to over or under 

estimating fish population status and fishing pressures, which may lead to incorrect 

recommendations for management. These risks can stem from important confounders 

related to poor fishing and data recording processes, as well as natural biological 

considerations. Based on my individual workings on fishery logbook and fish age 

monitoring data, I propose a number of confounders of age-abundance data (Table 1). 

Examples include fishers improving their fishing methods; fisher behaviour and fisher 

knowledge leading to bias and overestimated age-abundance (Robins et al., 1998; O'Neill 

et al., 2003); the aggregation pattern of fish may increase the variance in trying to detect 

changes in age-abundance and the lack of detailed fishing effort data may remove signals 

from the age-abundance indicator (Hilborn and Walters, 1992; O'Neill et al., 2011). As a 

result, complex analyses are required to identify a consistent indicator that is positively 

correlated with the fished population. For fishery independent surveys, many of these 

issues can be mitigated with both age and abundance data sampled together using an 

appropriate spatial and temporally replicated design. 

 

A particular risk associated with the collection of fishery dependent age-abundance data, 

is when catch rates or age frequencies remain consistent as fish abundance declines. This 

situation, known as hyperstability (Hilborn and Walters, 1992), can paint an optimistic 

picture of a fishery (Figure 1). As shown in Figure 1 a very substantial change in stock can 

occur even when catch rates only change slightly. An alternate risk is when age-

abundance declines due to spatial movements of fishing; for example moving fishing effort 

from distant high fish density locations to close lower density areas thereby 

underestimating fisheries stock. This situation could occur for financial reasons and spatial 

adjustments to age-abundance may be required for reporting a consistent index for the 

whole spatial stock (Walters, 2003). 

 

Hyperstability is the main concerning bias in age-abundance data. Australian examples of 

hyperstability include the targeted ring netting of schooling ocean beach sea mullet and 

tailor and offshore spotted mackerel (Leigh and O'Neill, 2004; Begg et al., 2005; Bell et al., 

2005). Internationally, hyperstability has been described in a number of species of 
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schooling fish which have been fished with little indication of stock declines shown in age-

abundance indicators (Rose and Kulka, 1999; Harley et al., 2001). Typically this was 

because of the schooling behaviour of pelagic fish species, where the reported catch rate 

data remained high and consistent for extended periods even when the abundance was 

less than predicted. Fish schooling and fishing targeting behaviour caused inaccurate and 

biased age-abundance data. Even if stock has declined, the schooling behaviour of 

pelagic fish can still result in commercially economic or recreationally acceptable catches. 

 

In order for age-abundance data to be a reliable index of stock abundance, data 

collections should be distributed and quantified consistently over a number of areas 

through time. However, as noted by Hilborn and Walters (1992), any fisher who regularly 

fished randomly over many sites would soon be out of business as they wouldn’t catch 

many fish. Most commercial fishers know where fish can be found, resulting in non-

random fishing, which is typically concentrated on locations with higher numbers of fish. 

Age-abundance data would be far more accurate if fishers reported daily effort records on 

each fishing operation’s target species, vessels, gear, travel time, search time and 

efficiency, locations fished, active fishing time and zero catches (Table 1). As an example 

of the limitation of some commercial logbook data with no records of detailed fishing effort, 

Figure 2 represents the hypothetical difference between two fishing days of high and low 

fish abundance with a vessel catching the same number of fish per day but expending 

different levels of unreported fishing effort. Many variants of this example are possible, 

which in reality would produce significant variance in the recorded catch rates. In the 

example without appropriate standardised fishing effort information, trends in age-

abundance only indexed changing densities of fish schools when found and caught, not 

the frequency of schools or stock abundance as would be quantified using the hours of 

fishing effort. Thus the measure of fishing effort is crucial to ensure catch rates reflect the 

particular indicator of interest. 

 

Further associated risks include judgements on age-validation and whether sufficient 

independent and identically distributed random samples of age-abundance have been 

collected (Sumpton and O'Neill, 2004; Francis, 2011). This is an important consideration 

particularly when a number of fish lengths are to be converted into a representative age 

distribution. Other risks or characters relate to parameter estimation, where patterns in age 

structure may be confounded by changes in fishing mortality, natural mortality and 



10 

 

length/age vulnerabilities. Figure 3 illustrates the difference between logistic (assumes that 

larger and older animals are fully selected and fished) versus domed (assumes that larger 

and older animals are less likely to be fished; e.g. too large to be trapped in a net) 

vulnerability. If domed vulnerability is present, a higher frequency of larger and older 

spawning fish may be alive and less likely to be exploited. If logistic vulnerability were 

assumed in analyses, the estimated annual rate of fish survival could be deflated and 

effect recommendations on sustainable harvests. 

 
Table 1. The confounders of fishery dependent age-abundance data. 

Fisher behaviour – capacity to chase fish: 
- Efficient at finding fish at local scale. 

- Vessels can travel large distances; at sea and from different ports to expand the 

spatial range of exploitation. 

- Improved knowledge and information sharing between vessels that leads to non-

random spatial fishing. 

- Increased fishing power from using better vessels, gear, techniques and improved 

knowledge. 

- Aggregation of effort at high catch times and areas. 

- Seasonality of market demand and price for product. 

- Paucity of data from low catch areas. 

Fish biology – aggregation patterns: 

- The dynamics of schooling and movement. 

- Type of concentration profile: the density of animals distributed spatially in time 

(Hilborn and Walters, 1992). 

- Vulnerability to fishing due to environmental drivers. 

Commercial logbooks – data reporting templates: 
- Limited catch validation via linking catch, disposal and quota reporting systems. 

- No data codes to link fishing trips over multiple days. 

- No daily recording of each fishing operation’s target species, vessels, gear, travel 

time, search time and efficiency, locations fished, active fishing time, zero catches 

and catchability. 

- Determinants of effort by fishers not recorded. 

- Determinants of area fished not recorded. 

- Fish age data and validation are generally collected separately and not linked to the 

catch-abundance data. 
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Figure 1. Hypothetical example of a hyperstable relationship between population size (black diamonds) and 

catch rates (blue circles); as stock size declines catch rates remain steady. 

 



12 

 

 
Figure 2 Hypothetical comparison of how limited effort data can cloud catch rate (cpue) differences between 

a) high and b) low abundance. At high abundance the vessel searched and fished over a four hour day 

yielding 20 fish at a rate of 5 per hour. At low abundance the vessel had searched and fished over nine 

hours to yield the same catch at a rate of 2.2 per hour. The daily catch rate (CPUE1), as would be recorded 

in commercial logbook, indicated no change in abundance (hyperstable). In this hypothetical reality 

abundance had declined by 2/3 and catch rate per hour (CPUE2) declined by 56% (part-hyperstable). Here 

the drop in abundance and cpue were not 100% proportional as the fishing pattern was non-random. 

Legend: N = exploitable population size, E = fishing effort, CPUE1 = daily catch rate, CPUE2 = catch per 

hour, vessel track = blue lines and symbols, fish = black circles and A = start of fishing track which 

progressed east and then south, before returning to A. 
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Figure 3. Hypothetical comparison between fish exploitable age structures (maximum age = 9 years and 

natural mortality M=0.6 year-1). The curves compare four rates of total mortality assuming logistic 

vulnerability (solid lines) and the same total mortalities with domed vulnerability (dotted lines), with 95% 

vulnerability assumed at age group 3. 

 

How can age-abundance data be used in management? 

 

Successful management of a fishery is based on adapting harvest and fishing effort to 

ensure sustainable, profitable and socially acceptable fishing; with primary focus usually 

on sustainability. Adaptation is reliant on effective and flexible management procedures. In 

recent years, dynamic management procedures have been adopted by some Australian 

and International fisheries (for example: Butterworth and Punt, 1999; Butterworth and 

Rademeyer, 2005; Australian Government, 2007). These procedures contain indicators 

that measure the state of the fishery (Seijo and Caddy, 2000) and use them in control rules 

to alter fishing pressure so as to achieve target goals in a fishery (Rademeyer et al., 2007; 

Smith et al., 2008). Generally the procedures are designed for commercial fisheries 

serviced by complex quantitative assessment models (such as maximum economic yield: 

Grafton et al., 2007; Dichmont et al., 2008). Management procedures can also use simple 

indicators derived directly from age-abundance data (Bentley et al., 2005; Little et al., 
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2011). Irrespective of whether indicators are generated simply or from more intensive 

methods, the performance of management procedures can be unreliable without critical 

analysis and consideration of uncertainty, conservative management and data-gathering 

principles (Dowling et al., 2008; Smith et al., 2008). Examples of published theoretical and 

applied management procedures using age-abundance indicators include the following: 

(i) Data-based procedures using averaged recent catches of sablefish 

(Anoplopoma fimbria) were smoothed with a research survey index of 

abundance in Canada to provide a practical means of setting annual catch limits 

in the absence of an acceptable model based approach (Canada; Cox and 

Kronlund, 2008). 

(ii) For data-limited estuarine fisheries in New South Wales, Australia, simulations 

and control charts were used to identify important changes in annual time-series 

of harvest that detected both recruitment and survival failure; accepting a high 

rate of false triggers (Scandol and Forrest, 2001; Scandol, 2003). 

(iii) Quota management procedures for the South African west coast rock lobster 

(Jasus lalandii) fishery were first implemented in 1997 and later modified in 2000 

and 2003 (Johnston and Butterworth, 2005; Plagányi et al., 2007). Notably, the 

empirical components used catch rates of lobster from the commercial fishery 

and a fisheries-independent monitoring survey. The rules altered quota directly 

from that of the previous year based on a weighted average of fishery and 

survey catch rates divided by their fixed baselines. Maximum change in annual 

quota was restricted to 10%. The latest management procedures were 

simulated to show positive trade-offs between resource recovery and future 

catch objectives, with the ability to adapt to changes in lobster growth. 

(iv) For Australia’s southeastern scalefish and shark fisheries, utilising linear 

regression of commercial catch rate trends alone to determine quota without 

benchmarks was found to keep quotas at their current levels and failed to 

rebuild resources when needed (Smith et al., 2008). The regression method was 

replaced with a new control rule that compared average catch rates directly 

against limit and target baselines (Little et al., 2008), with the ability to increase 

or decrease stock sizes. 

(v) Total harvests of Australia’s south east blue eye trevalla (Hyperoglyphe 

antarctica) are assessed using only annual frequencies of fish age, with 

recommended biological harvests set on the ratio of target fishing mortality 



15 

 

compared to the current estimate of fishing mortality (Fay et al., 2011). Effective 

implementation required appropriate choice of target reference points, to allow 

for data uncertainty and assumptions on fish productivity and natural mortality. 

 

These examples, including the case studies herein, provide understanding of how age-

abundance data and their attributes can be built into management in order to improve 

sustainable fishing. This includes examples of appropriate monitoring, analysis of data, 

setting of reference points and management of data variances. The examples also show 

that management procedures need to learn from past experiences and evolve in time and 

need to be focussed on management objectives (e.g. sustainability and/or socio-

economic). Herein, specific understandings were learnt from the limitations of using simple 

nominal catch rates of spanner crab versus the use of standardised catch rates and more 

precautionary reference points. The benefits of higher fleet profit and higher catch rates of 

eastern king prawns were demonstrated under more precautionary economic reference 

points. New catch curve methodology revealed inconsistency in stout whiting age data, 

which helped direct analyses and the calculation of survival indicators. These results and 

published experiences demonstrate improved certainty in management procedures in their 

local contexts but also with potential gain if employed for other fisheries globally.  
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Using Queensland case studies to improve the use of age-abundance 
indicators 
 

In many fisheries age-abundance indicators were calculated historically from simple 

analyses of fishery-dependent nominal data (examples: Hilborn and Walters, 1992; Sparre 

and Venema, 1992; Flood et al., 2014). These approaches were generally used only for 

simple stock reporting processes, with no standardisation or adjustments made for the 

possible confounders (Table 1). Only in the last decade have standardisations been more 

readily applied (examples: Robins et al., 1998; Campbell, 2004; O'Neill and Leigh, 2006; 

Carruthers et al., 2011). The adoption of new data analyses and improved indicators in the 

management of fisheries requires the development of a defined process to utilise the data 

in a set of management procedures or harvest rules. 

 

The defined process for using indicators in stock assessment requires improved 

integration of: a) spatial-temporal data, b) use of contemporary statistical methodology to 

address data limitations and to improve time-series validity of age-abundance indicators 

and c) use of sensible benchmarks to judge indicator signals and set harvest rules. These 

three process stages link to the following research questions as previously noted: 

- What constitutes an appropriate age-abundance indicator? 

- What are the risks in using age-abundance indicators? 

- What analytical procedures are required to reduce indicator variance and bias? 

- How should age-abundance indicators be used in management overall? 

To evaluate these questions a case study approach was used in this thesis as this 

approach offers the advantage of demonstrating the utility of improved analyses in real 

stock assessment scenarios. A summary of the case studies is provided below including a 

detailed presentation of the particular methods and results for each study, as well as a 

case-specific discussion of the outcomes. 

 

The applications of age-abundance indicators in the case study fisheries are summarised 

in Table 2. The key data outlined in Table 2 informed the analyses, particularly to account 

for where, when and how different fishers operated. The fishery dependency of these data 

carried a number of risks, for example increasing fishing power (catchability), which was 
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common across the case studies (Table 2). The new analysis procedures developed here 

in the case studies are adjusted for these risks to improve the validity of data to calculate 

the age-abundance indicators. The importance of maintaining and improving the 

representativeness and consistency of the data is an ongoing need, particularly to mitigate 

the main risks (Table 2) that could undermine the indicator process and result in over or 

under estimation of stock trends and incorrect recommendations for management. For 

each study, the process stages have now been established and used to improve fisheries 

management. 

 

In the following summaries of the respective case studies the major attributes of the fishery 

and the application of age-abundance data are presented. In addition, each case study 

seeks to elucidate the specific aspects of utilising this indicator type so as to provide a 

wider understanding of age-abundance data and its management applications. 

 



18 

 

Table 2. Application of age-abundance indicators in case study fisheries. 

Age-abundance indicators 
Case study fisheries 

Eastern king prawn Trawl whiting Spanner crab 

    

Attributes of each fishery 
Species lifespan≈ 3 years. 

Mobile crustacean. 

Managed by trawl effort 

control. 

Spp. lifespan ≈  9 years. 

Unreported fishing mortality 

Main trawl / Danish seine 

sector managed by harvest 

quota. 

 

Spp. lifespan ≈  15 years. 

Capture by entanglement 

on flat dilly-nets. 

Managed by harvest quota. 

Questions?    

Key indicator Monthly catch rate. 
Annual total mortality. 

Annual catch rate. 
Annual catch rate. 

Key data used 

 

Detailed daily fishery catch 

and effort records. 

Economic and fishing gear 

data. 

 

Multivariate fish aging data. 

Detailed trawl shot-by-shot 

fishery catch and effort 

records. 

Fishing gear data. 

 

 

Detailed daily fishery catch 

and effort records. 

Economic and fishing gear 

data. 

Fishery independent 

survey. 

 

Main risks 

 

Common across studies: 

Hyperstability, increasing fishing power, aggregation of fishing effort, change in spatial 

patterns of fishing effort, changing fishing gear, catch rate variance, missing data and data 

quality. 

 

New analysis procedures – 

adjusting for risks above 

 

Catch rate standardisation 

(REML). 

Length-spatial stock model. 

 

Catch curve mixture model. 

Catch rate standardisation 

(HGLM). 

Catch rate standardisation 

(GLM). 

Use in management – stock 

assessment process 

established 

 

Monitor total allowable 

effort and harvest. 

In-season stock monitoring 

using catch-rates. 

 

 

Setting total allowable 

harvest. 

Monitor stock and fishing 

pressures. 

Setting total allowable 

harvest. 

Monitor stock status. 

How have the case studies 

helped management? 

 

New limit and target 

reference points to gauge 

fishery performance. 

 

New estimates of fish 

survival from age data, 

which addressed issues of 

missing and inconsistent 

data. 

 

Improved catch rate 

indicators used in a new 

and more robust 

management procedure. 

Limit reference point 

established to set zero 

quota. 
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Eastern king prawn 
 

------------- 
Work outline and reference: 
Manuscripts: O'Neill and Leigh (2007) and O'Neill et al. (2014). 

Appendix I: Fishing power increases continue in Queensland’s east coast trawl fishery, Australia. 

Appendix II: Linking spatial stock dynamics and economics: evaluation of indicators and fishery management 

for the travelling eastern king prawn (Melicertus plebejus). 

Appendix 1 established methods to standardise the catch rate abundance indicator. It was applied across six 

trawl sectors operating in Queensland waters. The catch rate standardisation method was employed to 

analyse updated eastern king prawn data in Appendix 2. Appendix 2 extended to quantify economic 

indicators for EKP. 

------------- 

 

The eastern king prawn (EKP, Melicertus plebejus) is a major component of otter-trawl 

fishing along the east coast of Australia with harvests averaging about 3000 t year-1 and 

landings valued in excess of AUD$40 million. The EKP is largely spatially separated from 

other target species and extends across two jurisdictions belonging to the States of New 

South Wales (NSW) and Queensland (Qld). Separate management regimes operate in 

each State despite there being a single breeding population, whereby EKP travel large 

distances from New South Wales and inshore Queensland waters to deep waters (> 90m) 

off Queensland as individuals grow to spawning size (Braccini et al., 2012). 

 

Reduced economic circumstances of fishers, due to higher costs of fishing and constant or 

falling prawn prices, have moved management interest in EKP towards profitability 

(therefore maximum economic yield ~ MEY), rather than maximum sustainable yield 

(MSY).  In order to improve fishing profits, additional management measures were 

assessed, including further effort control and seasonal closures with options for in-season 

management based on catch-rate reference points. A length-structured spatial population 

model (Table 3, Appendix II) and an economic model (Appendix II) were used to assess 

the fishing pressure, quantify economic performance and update reference points (Table 

9, Appendix II) for the EKP fishery. 

 



20 

 

The Queensland trawl fleet has gradually upgraded characteristics such as engine power 

and use of propeller nozzles, quad nets, global positioning systems (GPS) and computer 

mapping software. These changes, together with the ever-changing profile of the fleet, 

were analysed by linear mixed models (REML) to quantify annual efficiency increases of 

an average vessel at catching prawns or scallops (Section 2.3, Appendix I). The analyses 

included daily fishery catch and effort by species and spatial locations, matched with 

vessel characteristics (treated as fixed effects) and vessel identifier codes (treated as 

random effects). For eastern king prawn the annual rate of increasing fishing power was 

estimated near 3% year-1 between 1988 and 2004 (Table 2 and Figure 2. Appendix I). In 

this case the need to standardise catch rates for increasing fishing power, in order to 

reduce error of over estimating stock size, was significant. The calculation of monthly 

fishery dependent abundance indicators illustrates the importance of ongoing monitoring of 

trawl vessel and fleet characteristics and the need to use this information to standardise 

catch rate indices. 

 

A newly developed length–spatial stock model was then calibrated to the EKP 

standardised catch rate abundance indicators, carapace length structures and economic 

costs of fishing (Appendix II). Model simulations were then conducted to estimate 

reference points for management. Mean catch rate reference points corresponding to MSY 

and MEY were calculated (Figure 7, Appendix II). These catch rate reference points 

established the in-season status and profitability of the fishery month by month in six 

coastal regions. Retrospectively, the catch rate reference points suggested consistent 

profitable catch rates of EKP in the last three years of data 2008–2010 across all regions. 

 

A major finding for management is that it is important to limit fishing effort (E) to a level 

less than EMSY. In the simulations, management rules for closing fishing regions when 

standardised monthly catch rates fell below thresholds were examined. The catch rate 

control rules were found to be effective under lower EMEY but much less for higher EMSY 

(Figure 8, Appendix II). Under simulated EMSY they successfully reduced effort but caused 

uncertain harvest and often would indicate early closure of fishing regions mid-year. Using 

a catch rate reference point for MSY, in combination with a lower effort limit of EMEY, was 

found to be an appropriate trigger point to mitigate catch rate observation error. This 

trigger point would minimize management mistakes due to data variance. 
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The new procedures developed in this case study included ongoing monitoring of vessel 

gear data and methods for estimation of fishing power and standardised catch rates. The 

spatial monitoring of within year monthly depletion of standardised catch rates was 

important to gauge the effects of fishing pressure, early season recruitment strength, mid-

to-late season spawning abundance and profitability of fishing. The spatial-monthly catch 

rate abundance indicators were relevant to inform management on fishing effort placed on 

this short lived mobile species. Incorporation of the catch rate indicators into the new stock 

model allowed development of catch rate reference points to judge changes in abundance. 

This was a substantial advance from prior to the study where the confounding level of 

fishing power increase (Table 1) and reference points for economic considerations was not 

known. The time-series of standardised catch rates also illustrated the important 

consideration of variance when interpreting indicators of abundance against reference 

points. 
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Stout whiting 
 

------------- 
Work outline and reference: 
Draft manuscript and supplementary analyses: 

Appendix III: Integrating finite mixture and catch curve models for estimation of survival indicators of stout 

whiting (Sillago robusta). 

Appendix IV: Stout whiting catch curve mixture models: supplementary material to Appendix III. 
 

Appendix 3 established methods to estimate rates of fish survival using only age demographic data (model 

analysis 3). Appendix 4 detailed additional model 1 and 2 analyses, including a standardised catch rate 

abundance indicator. 

------------- 

 

Stout whiting (Sillago robusta) are fished commercially in the waters of New South Wales 

and Queensland using Danish seine and otter-trawl methods. There are three fishing 

sectors and each has different practises, fishing powers and data recording instructions. 

The Queensland stout whiting sector (T4) is the primary target fishery with annual harvest 

monitored and limited under quota (total allowable catch: TAC). The Queensland eastern 

king prawn (Melicertus plebejus) shallow water sector (T1) catches significant quantities of 

stout whiting as non-target by-catch, discarded and not reported. The New South Wales 

fishing sector (TNSW) catches both stout whiting and eastern king prawns, with stout 

whiting harvests only identified and reported suitably in recent years. Historical records of 

T1 and TNSW stout whiting harvest were not complete and fish age data had not been 

monitored. Consequently an index of stout whiting survival could only be derived from T4 

age-abundance data. Herein fish survival refers to the ratio of abundance between older 

and younger age groups across cohorts in the same years for fully recruited fish (Table 1, 

Appendix III). 

 

In this case study a new catch curve analysis was developed to estimate an index of stout 

whiting survival. The new method is described with application to T4 fish age-abundance 

data where the variability in sampling was dependent on fish retained by a small fleet of 

vessels (maximum 5 per year) and their individual spatial-temporal patterns of fishing. 

Over recent years inconsistent changes in the time series of data for 1993–2013 between 
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sampled fish length frequencies and age-length data had become more obvious. The 

patterns of age structure shifted to older fish from the year 2005, which was not evident in 

the length of fish harvested (Figure 1, Appendix III). The lengths of fish harvested were 

generally similar between years. The narrow range of fish lengths sampled each year 

suggested high sample correlation and small effective sample sizes that may mask signals 

of changing fish survival. This complex case study fishery provided description of an 

alternate method of catch curve analysis modified to overcome issues associated with the 

sample collection of fishery dependent age-abundance data. 

 

Stout whiting survival rates were estimated by joining Gaussian finite mixture, von 

Bertalanffy growth and catch curve methodology. Model estimates were solved iteratively 

using the expectation-maximisation algorithm, by estimating differences in fish 

abundances by age. A standardised catch rate abundance indicator was also quantified 

through a separate statistical analysis. Overall, three catch curve models were developed 

in attempt to estimate indices of fish survival from the T4 data. The three model versions 

were: 

• Model 1 (Table 1, Appendix IV) was first developed to connect the stout whiting 

standardised catch rate directly with the separate fish-length and age-length data. 

Its structure was dynamic in an attempt to mitigate confounding between estimated 

survival rates and variable cohort strengths. The survival results were concluded to 

be highly variable and overly sensitive to the combined year-to-year variation in 

catch rates, fish lengths and age data (Figure 3, Appendix IV). 

• Model 2 (Table 2, Appendix IV) was then designed without using catch rates, but 

still used the same fish-length and age-length data. The model still assumed the 

data were sampled randomly from the exploited population in each year. The model 

analysis identified inconsistency in the time series between years of sampled fish-

length and age-length, with survival results deemed inconsistent in some years 

(Figure 3, Appendix IV). Samples where fish length frequencies were measured but 

not aged were highly correlated and contained little information on fish survival 

compared to the age-length samples (Appendix IV). 

• Model 3 (Table 1, Appendix III) was finally designed to analyse only fish that were 

aged (separate catch rate and fish length data were excluded). The model was now 

conditional on fish length and assumed that fish ages within each length category 
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were sampled randomly; it was no longer assumed that fish lengths themselves 

were sampled randomly (Appendix III). 

 

A number of inferences were of note from the model 3 analysis of stout whiting. First were 

the low estimates of fish survival 1993–2003. It appeared the 1993–2003 survival rates 

were down as a result of the high levels of each sectors’ catch taken in the years 1994–

1999 (Figure 4, Appendix III). The estimates for the years 2003–2006 indicated stronger 

survival of fish as they recruited and aged (Figure 2, Appendix III). This coincided with 

reduced T4 harvests and the adoption of by-catch reduction devices by T1 prawn trawl 

sector. The estimated survival fractions for the years 2007–2012 had stabilised above 

those from early years (Figure 2, Appendix III). The analysis identified significant changes 

in fish age-abundance, but was also sensitive to inconsistencies in data. Therefore 

representative and consistent fishery dependent sampling of age data is important for the 

methodology. Three different models were designed in order to overcome inconsistencies 

in stout whiting data. Model 3 corrected the inconsistent results noted in models 1 and 2 by 

not assuming the fish length data were sampled randomly from the fish population. 

Together the three models critically evaluated the validity of age-abundance data. 

 

The annual variability of results between years (k) had implications for setting total 

allowable catches (TAC) for the T4 sector. Direct use of annual estimates of survival may 

cause the TAC to vary notably from year to year; an undesired behaviour for industry and 

export markets. Therefore, it is suggested that a mean survival rate ( S ) be calculated over 

the two most recent years to reduce variance. For the TAC harvest control rule: 
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the survival Starget reference point should be set at an average survival rate from years that 

best represented stable and profitable fishing. The use of a cube-root (x=3) or square-root 

(x=2) transformation can limit the scale of quota change; for no transformation x=1. 

Thresholds on quota change may also be applied to mitigate year-to-year variance in 

quota change (like for spanner crab in Appendix V). Gauging the annual standardised 

catch rate against the 25th and 75th percentiles of the historical time series can provided a 

further dimension to adjust TAC if required. 
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This study demonstrates the importance of fully accounting for year-to-year variation in 

fishery dependent samples. For stout whiting, the new catch curve procedure maximised 

the information on fish survival using the age data obtained by non-random sampling of 

fish length. The methodology is relevant to many fisheries with sampling issues associated 

with non-random patterns of fishing and aggregation of fishing effort associated with the 

schooling and movement dynamics of fish (Table 1). The data issues were not obvious 

prior to the study when simple cross-sectional catch curve models were employed. This 

analysis technique forms a suitable tool to assess rates of fish survival and data 

consistency before further analysis in detailed age-structure models; which may hide data 

inconsistencies under stochastic model components. Future focus on improved sampling 

procedures and control of random sampling from the stout whiting fishery is vital to ensure 

sound recommendations on sustainable harvests. 
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Spanner crab 
 

------------- 
Manuscript: O'Neill et al. (2010), 

Appendix V: Using catch rate data for simple cost-effective quota setting in the Australian spanner crab 

(Ranina ranina) fishery. 

------------- 

 

The Australian spanner crab fishery operates across the state waters of Queensland and 

New South Wales. It is the world's largest spanner crab fishery, with annual gross landings 

between 1500 and 2000 t. In Queensland, the annual spanner crab total allowable catch 

(TAC) was set historically using a control rule based on linear regression of fishery 

nominal average annual catch rates. A six-year increasing trend in catch rates (2000–

2005) resulted in the control rules recommending a 68% increase in TAC for the fishing 

years 2006 and 2007, mostly because the control rule method was not robust and nominal 

catch rates were at risk of being confounded by increasing fishing power. Management 

acknowledged the need for an alternative more comprehensive stock management 

methodology based on fishery standardised catch rates and using the fishery independent 

survey catch rate data. Figure 4 illustrates the fishery regions and the survey locations. 

 

In response to the need for an alternative method, a new management procedure was 

developed and tested with three precautionary approaches: i) quota increases enacted 

only when both catch rate indices were above their reference points; ii) quota increases 

limited to half the full ratio increase as indicated by the catch rate indices compared to their 

reference points; and iii) quotas reduced by the full ratio decrease when both catch rate 

indices were below their reference points (Table 1, Appendix V). Simulations were used to 

identify favourable sustainability, industry and management performance outcomes, using 

fishery-dependent and fishery-independent standardised catch rate indices together with 

carefully set reference points. The fishery dependent data were sourced from Queensland 

daily logbook records of commercial catches. The independent data were from annual 

surveys of spanner crab abundance conducted across Queensland and New South Wales 

waters (Brown et al., 2008). 

 

General linear models (GLM) were used to standardise commercial and survey catches of 

spanner crab. Notably for the commercial data, significant fishing power terms were 
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identified for each vessel operation, level of skipper experience and number of net lifts 

fished (Table 4, Appendix V). For the survey, a two-component GLM was used to model 

the presence or absence of crab in the fishing gear separately to modelling when crab was 

caught (Table 4, Appendix V). This allowed data regarding the proportion of net-lines not 

catching crab as well as catch data to be modelled for different survey locations and 

different lengths of fishing time. The use of these models standardised the spatial and 

fishing effects needed to reduce indicator variance. Indicator variance was further 

mitigated by averaging the commercial and survey indices. Ongoing review of the two 

indices is still required to gauge their correlation and level of agreement in case one is 

identified as being more reliable. If inconsistencies are identified, the management 

procedure can still operate using only one indicator. 

 

The management procedure followed a process of developing a baseline TAC and 

reference point targets for standardized catch rates with range intervals (Tables 1 and 3, 

Appendix V); no age data were available for spanner crabs. The target catch rates (fishery 

dependent and independent) and baseline TAC (Qbase) were set equal to their annual 

average between 2000 and 2007 and they were fixed. Upper and lower intervals of ±10% 

were set on target catch rate reference points to ensure that only significant changes were 

enacted on TAC. The stock performance indicators were the average fishery and survey 

standardized catch rates in the most recent biennial TAC period. Standardized catch rates 

from the fishery and the survey were compared in a decision matrix (Table 1, Appendix V). 

The spanner crab quota was calculated from the Qbase and was made no larger than the 

maximum tonnage allowed (Qmax). New TAC was compared with the tonnage set two 

years earlier. If the new TAC was within 5% of the previous TAC, then the TAC remained 

unchanged. TAC was calculated according to the equation: 

( )base
1, 2 max

base

, if 0.95 1.05
min ,

, otherwise
t t t

t t
Q Q Q Q

Q Q
Q

λ
λ+ +

  ≤ ≤ =   
      

where Q is the TAC tonnage for biennial setting in years t+1 and t+2 and λ was the catch 

rate adjustment factor of TAC (Table 1, Appendix V) which takes into account the 

comparison of fishery and survey catch rates with their respective reference points. 

 

The performance of the management procedure was dependent on the level of population 

size present when the reference points were set (Figure 4, Appendix V). Simulations 

identified that precautionary levels of Qbase and catch-rate reference points were required 
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to ensure robust performance of the management procedure. In choosing reference 

points, it was important to consider four key aspects: (i) lower-than-perceived stock sizes, 

(ii) biased fishery catch rates that result in lower biomass, higher TAC and less responsive 

TAC change, (iii) a Qbase of less than the average harvest and (iv) updating catch rate 

reference points to values that are higher than average. If reference points were set too 

generously, the rules could incorrectly set high quotas at low population sizes. 

 

The significant risk of using nominal catch rates and simple linear regressions in harvest 

control rules was not recognised until failure of the management process in 2006. The new 

procedures developed herein for standardised catch rates and their reference points 

established a consistent and modernised framework for using abundance indicators to 

inform changes in spanner crab harvest. This research outcome was positive and 

addressed concerns of fishing power confounding catch rate data (Table 1). The 

simulations of the management procedure allowed testing for the effects of different 

population biomasses, setting of reference points and adjusting for fishing power 

confounders (Figure 4, Appendix V). As noted above, the lessons of adequate control of 

indicator variance and use of precautionary reference points form the sound basis of the 

management procedure given unknown measures of actual spanner crab population size. 

 

Recent TAC analyses conducted in 2015 have emphasised the importance of 

precautionary reference points to ensure profitable fishing (Campbell et al., 2015). The 

2014–2015 average fishery catch rates for legal sized spanner crabs was down 24% 

below the reference point. In comparison, the average 2014–2015 survey catch rate for 

both legal and undersized crab was 22% above the survey reference point. The 

management procedure and analyses developed herein were used to adjust the TAC 

down to align with the baseline harvest of 1631 t. The TAC adjustment move correctly to 

ensure sustainability, but an updated review of the catch rate reference points may be 

required to move the fishery towards more profitable fishing. For this, new data on the 

economic cost of fishing is needed to be considered in line with recent levels of catch 

rates, as well as the more recent recommendations on economic reference points for 

single species fisheries (Pascoe et al., 2014). 
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Figure 4. Map of the New South Wales and Queensland  spanner crab fishery (map sourced from Campbell 

et al., 2015), showing the location of Queensland logbook fixed 30′ grids within fishery regions and fixed 6′ 

subgrids within grids for the extended monitoring survey.  
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Discussion 
 

Key findings across case studies 
 

As noted previously, the case studies were selected to contrast the use of age-abundance 

indicators across fisheries that differed operationally and by species characteristics. The 

results from the case studies demonstrate that the basis for improving the consistency and 

representativeness of the chosen fisheries indicators was not different between species 

life history traits. For all case studies, similar data types and structures can be 

implemented and analysed; more so for the abundance data as age data cannot be 

collected for some species like prawns and crabs (Appendix I, II and V). The key 

requirement in this context was for the data to be collected consistently across a number 

of areas through time. Unfortunately this cannot be fully controlled through fishery 

dependent sampling with fishing operations frequently changing their temporal-spatial-gear 

behaviour. Ideally the data could be improved if these behavioural changes could be 

captured practically within the current data recording systems. The need to standardise 

age-abundance is critical to mitigate over or under estimation of indicators that may cause 

incorrect changes to management. 

 

The statistical methodologies applied in each study significantly improved the validity of 

their fishery-dependent time series. As demonstrated in all case studies, the analyses 

identified significant spatial and fishing power adjustments to standardise and improve 

abundance indicators. It is not always possible to extensively standardise catch rate data 

in all fisheries because of missing data on fishing operation gears and technologies, but 

basic statistical accounting for different catching abilities between different vessels and 

their levels of fishing effort at different times and areas is achievable and essential. For fish 

age data, the use of the mixture modelling method overcame the problems of inconsistent 

data, estimated measures of fish survival directly from age-data across years and allowed 

for the assumptions of random or non-random sampling of fish. These points should be 

considered as standard components in the assessment of all fishery resources. 
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For all species the results highlighted the importance of using precautionary reference 

points to judge the meaning of age-abundance indicators because of possible 

unaccounted bias and variability. This aspect alone is the key management safe guard to 

mitigate the risks of over fishing and indicator uncertainty. If this process is employed, then 

the findings support the effective use of age-abundance indicators in management. 

 

Indicator uncertainty and management 
 

Uncertainty of a fishery's status is always present as populations cannot be easily counted 

or observed. Accordingly, any measures used as indicators of fishery status can contain 

significant sources of variance. For managers, a high level of variance can undermine the 

value of different types of management. Responsibility generally lies with scientists to use 

contemporary analyses to mitigate variance and clearly explain the meaning of indicator 

variance in the management process. 

 

So, how have indicator uncertainties and variance arisen? Inevitably, the errors are 

generated from components such as the variability in the natural fish population dynamics, 

the spatial and temporal patterns of fishing, the sampling processes, the data collection or 

sampling procedures, the choice of analyses, assumptions made and the inference beliefs. 

Normally all of these variance components cannot be simultaneously quantified. The 

significant variance components need to be identified and mitigated to step forward with 

positive management outcomes. 

 

For fisheries management, mitigation of variance and high risk management procedures 

rests with setting conservative reference points and decision rules or having a 

management rule that ensures the indicator be above reference points with high certainty 

(e.g. > 75% to 95%) to enable an active management framework. This is to ensure that 

results from either simple or complex analyses are interpreted cautiously to avoid 

overfishing and help promote more profitable and successful fishing. For the case study 

fisheries, the following mitigation strategies were identified for their age-abundance data 

sources: 

• For eastern king prawns, the combined approach of setting target fishing effort near 

the level for maximum economic yield (conservative lower level < EMSY) and a 

secondary in-season limit reference point on catch rates. 
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• For stout whiting, it is recommended to use a mean survival rate calculated over 

recent years and evaluated against a target rate from years that represent stable 

and profitable fishing catch rates. 

• For spanner crab, precautionary levels of base TAC set below average harvests 

and above average catch rate reference points were required to ensure robust 

performance of the management procedure. 

 

Alternatives to using age-abundance data may rely on technological investment into new 

data sources such as tagging or survey-based indices. They may provide less biased 

estimates, but management of their variance estimates will still be required using some 

form of conservative reference points; to recognise the need for precaution arising from 

uncertainty in the data and analyses (Garcia and Staples, 2000). In addition the use of 

decision rules is critical to avoid significant risks of overfishing and to form the necessary 

structure to evaluate age-abundance indicators. Further insights across the case study 

fisheries suggest that the success of the management framework relies on regulating the 

open access nature of fishing. If significant levels of fishing effort are available (not 

appropriately limited or known), then mitigation of variance and high risk management is 

difficult as demonstrated by the eastern king prawn case study (Appendix II). 

 

Improving age-abundance indicators 
 

Analytically, robust sampling and statistical procedures are required to minimise variance 

and bias. New methodologies and frameworks have been developed herein to quantify 

age-abundance indicators from the current fishery dependent and independent data 

sources (see case study fisheries Appendix I – V). However, if the collection of these data 

continues into the future, then changes in data or analyses may be needed to further 

improve the use of the age-abundance fishery indicators. 

 

For prawn catch rate indices, close monitoring of fishing power parameter estimates is 

required. The parameter estimates were closely examined for eastern king prawns and for 

the other trawl effort managed sectors, with consistent estimates found over the years 

analysed (O'Neill and Leigh, 2006). However, as adoption of different fishing gears 

stabilises over time, their parameter significance and magnitude fade in the statistical 

analysis of catch rates. This issue has been noted for longer time series analysis of tiger 
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prawn catch rates in north Queensland (unpublished PhD, N Wang, University of 

Queensland) and in Australia’s Northern Prawn Fishery (Dichmont et al., 2003). When this 

occurs, trends in fishing effort and fishing power may be underestimated and bias 

standardised catch rates. To overcome this problem, subsets of the time series when gear 

adoptions occurred (contrasting when vessels fished with and without different fishing 

gears) could be specifically analysed. From the subset analysis, gear parameter estimates 

could then be offset in the full time series analysis (Dichmont et al., 2003).  

 

In addition, further improvements in prawn abundance indicators could be achieved 

utilising vessel GPS location data to spatially map abundance densities and monitor 

spatial depletion effects. 

 

For stout whiting, higher effective sample sizes are needed to improve the accuracy of 

age-abundance indicators through more consistent and representative sampling of 

catches across time periods, areas and fishing operations. This is of priority, with improved 

monitoring and laboratory processes also needed to safeguard analysis procedures. 

Spatial-temporal age-abundance sampling needs to be consistent across the fishery.  

 

For spanner crab, review of catch rate reference points is required each assessment 

period. They may need to be updated to balance target levels of catch rates against the 

ever increasing costs of fishing. 

 

Overall, the data analysis procedures demonstrated that the new standardised age-

abundance indicators were superior and more representative than the old-style nominal 

measures. The procedural changes are summarised in Table 3 and show their general 

gains and limitations. Dealing with fishery dependent confounding issues (Table 1) and 

variance in age-abundance is the key to minimise type I error (the false-positive: no true 

change in fish stocks, but calculated age-abundance indicate increases or decreases) or 

type II error (the false-negative: no change in age-abundance calculated, but true 

increases or decreases in fish stocks were not detected). Decision tables for changing 

fisheries management could be utilised to extend the analysis procedures to show the 

probabilities of different outcomes or hypotheses (Walters and Martell, 2004). 
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Table 3. Some outcomes of changes (∆ ) in age-abundance indicators across case study fisheries. 

Aspect Brief 

  

∆  abundance indicators Nominal → Standardised catch rate; to address fishery dependent confounders (Table 1). 

∆  age indicators Mortality → Survival; conditioned for non-random sampling of fish. 

∆  management procedures New modernised frameworks with reference points to set harvests and fishing efforts, and 

assess the performance of each fishery. 

Limitations 

Possible statistical confounding of age-abundance signals and its variance; ever present 

issue for all types of analyses that needs ongoing monitoring and acknowledgment. 

Missing and inconsistent data that require complex change to analyses. 

Use of management procedures and reference points require ongoing cost and review to 

evolve for changing objectives, data and new ideas. 

Gains 

Use of quantitative measures to set target reference points and objectives. 

Age-abundance indicators calculated using contemporary methods, published and 

reviewed, and transparent to engage stakeholders. 

Analyses designed to account for current data variance and sampling uncertainties. 

Management procedures flexible to set variability in quota change. 

 

Recreational fisheries 
 

The case studies herein have demonstrated application of age-abundance indicators in 

managing commercial fisheries, where frameworks for altering fishing effort or harvest can 

be defined. But the question persists as to how age-abundance indicators can be used to 

manage open-access recreational fisheries. The answer is not clear or easy and is 

influenced by a range of complex social and economic factors. Open access fisheries have 

the ability to respond to increases in fish abundance with strong effort responses (Walters, 

2002). Therefore, based on the insights gained in this PhD study, the success of using an 

age-abundance indicator may depend on controlling fishing effort via licence systems. 

Design of such a management framework would need to consider regional scales that 

address fishing quality for both remote and non-remote areas. Failure to recognise the 

open access fishing is critical oversight in many fishery management plans (Walters and 

Cox, 1999). Direct effort control is needed where angling quality or sustainability of fish 

populations are the main objectives (Walters, 2002). If this is achieved, then age-

abundance indicators can be utilised in recreational fisheries with good outcome and 

decision-support potential. 
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Considerations for management 
 

Were the age-abundance indicators appropriate? 

 

A mix of statistical and population models were used in this study to analyse available data 

and construct indictors to explain variances and minimise fishing power bias. For each 

case study, the following indicators were developed – 

• Eastern king prawns: fishery standardised catch rate indicators were used in a 

population stock analysis to estimate abundance reference points for use in both 

empirical and model-based management procedures. 

• Stout whiting: fishery standardised catch rates and fish age frequencies were used 

to estimate fish survival indicators for use in empirical management procedures. 

• Spanner crab: two standardised catch rate indices from fishery dependent and 

independent sources were developed for use in empirical management procedures. 

 

The key dimension of the indicators was the standardised catch rates and it was not 

possible to validate the fishery dependent indices, except to verify trends against 

independent survey measures. Some minor discrepancies were noted comparing spanner 

crab indices (Figure 3, Appendix V) and strong correlations have been noted comparing 

prawn indices (O'Neill and Leigh, 2006). However, critical differences were hard to gauge 

as survey variances and spatial-temporal replications were limiting. Overall, the 

standardised catch rate indices appeared appropriate so that it could be assumed they 

were proportional to exploitable abundance. In this case, most of the drawbacks of using 

fishery dependent age-abundance data were accounted. 

 

How should the age-abundance indicators be used? 

 

The case studies have demonstrated frameworks for generating and using indicators in a 

modernised setting for managing fisheries in Queensland. The basis of indicator 

management was not different between species life history traits: short to longer lived; fast 

to slower growing. The analysis procedures and data scales adapt accordingly, but highly 

variable management responses should still be tempered. The key to successful use of 

indicators in fisheries management lies with a flexible, adaptable and operational 
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framework. The indicator frameworks should also not be used alone without effective 

regulation on fishing effort. For quota managed fisheries, harvest settings should not vary 

greatly above the long term average when faced with uncertainty; as per spanner crab and 

stout whiting – we don’t really know how many fish are in the sea! Quota processes also 

place significant load on the assessment framework and regulated fishing access is still 

required to avoid scenarios of over competitive fishing that may cause localised depletion, 

low catch rates and short seasons. Management by limiting fishing effort was successfully 

identified in the eastern king prawn fishery. Wider application of such a management 

process has merit, if the number of licences is limited to ensure profitability and changes in 

fishing power are accurately accounted for in data analyses. The benefits of spatial time 

closures also need to be evaluated for managing high fishing power practices. 

 

Concluding remarks 

 

The research used three case study fisheries to demonstrate how to develop and use 

appropriate age-abundance indicators in the management of Queensland's fisheries. 

Notably, it has highlighted procedures to reduce and manage indicator variance and bias. 

It has also highlighted approaches applying quantitative tools in setting decisions on 

fishing harvest or effort. The analysis and decision rules processes are not demanding and 

are cost effective to use on age-abundance data. The results highlight the basic principle 

that when stock status in uncertain, use precautionary reference points to judge age-

abundance indicator signals. The systems described can help improve and measure 

sustainable and economic outcomes of Queensland's fisheries and can be applied to other 

fisheries globally. 
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bstract

The Queensland east coast trawl fishery is by far the largest prawn and scallop otter trawl fleet in Australia in terms of number of vessels, with
04 vessels licensed to fish for species including tiger prawns, endeavour prawns, red spot king prawns, eastern king prawns and saucer scallops
y the end of 2004. The vessel fleet has gradually upgraded characteristics such as engine power and use of propeller nozzles, quad nets, global
ositioning systems (GPS) and computer mapping software. These changes, together with the ever-changing profile of the fleet, were analysed
y linear mixed models to quantify annual efficiency increases of an average vessel at catching prawns or scallops. The analyses included vessel
haracteristics (treated as fixed effects) and vessel identifier codes (treated as random effects). For the period from 1989 to 2004 the models

stimated overall fishing power increases of 6% in the northern tiger, 6% in the northern endeavour, 12% in the southern tiger, 18% in the red spot
ing, 46% in the eastern king prawn and 15% in the saucer scallop sector. The results illustrate the importance of ongoing monitoring of vessel
nd fleet characteristics and the need to use this information to standardise catch rate indices used in stock assessment and management.
rown Copyright © 2007 Published by Elsevier B.V. All rights reserved.
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. Introduction

Harvest landings from the Queensland east coast otter trawl
shery (ECOTF) are in the order of 10–13 kilo-tonnes annu-
lly and worth approximately $100–150 million (AUD) at the
harf. With 504 vessels licensed at the end of 2004, the ECOTF

s by far the largest prawn trawl fleet in Australia in terms of
he number of vessels. The fishery is complex in nature target-
ng several species of prawns (mainly Penaeus spp., Melicertus
pp. and Metapenaeus spp.) and one main species of scallop
Amusium balloti). The ECOTF is characterised by identifiable
ectors that are largely based on target species and geographic
egions (Fig. 1).

Vessel characteristics change through the adoption of new

nd better technologies and fishing gear, and individual license
olders are free to target any sector they choose. Consequently,
nterpretation of the catch and effort statistics, and the use

∗ Corresponding author. Tel.: +61 7 3817 9560; fax: +61 7 3817 9555.
E-mail address: michael.o’neill@dpi.qld.gov.au (M.F. O’Neill).
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f these statistics for monitoring the status of the fishery and
eviewing the suitability of management arrangements are more
ifficult.

Catch and effort statistics are used as the basis of stock assess-
ents and management in many Australian fisheries (O’Neill

nd Leigh, 2006). Predictions based on raw data can be biased
ue to changes in the efficiency of fishing effort through time
nd between fishing operations or sectors. There is, therefore,
need to standardise catch and effort data to reduce biases and
ariability. Standardisation, accounting for factors affecting both
elative abundance and fishing efficiency, results in time series
f catch and effort data that are more representative of trends in
opulation abundance.

Several studies have focussed on standardisation of catch–
ffort data (Bishop et al., 2000, 2004; Hall and Penn, 1979;
’Neill et al., 2003; Robins et al., 1998; Salthaug and Godø,
001). Generalised linear regression models (GLM) have been
sed to estimate changes in relative fishing power and to stan-
ardise average catches in the Queensland trawl fishery (O’Neill

t al., 2003). They have also been used to quantify the effects
f global positioning system (GPS) on average catches in Aus-
ralia’s northern prawn fishery (Robins et al., 1998). Bishop et
l. (2000) further developed the analysis of Robins et al. (1998)

. All rights reserved.
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ig. 1. Spatial distribution of normalised (log transformed) catch rates for: (A)
aucer scallop; the darker shades indicate high catching areas. The horizontal lin
ectors.

y using generalised estimating equations (GEE) to account for
patial and temporal correlations in the data. A linear mixed
odel (LMM) for catches from Australia’s northern prawn fish-
ry ‘produced consistent results when compared with . . . other
andom vessel models’ (Bishop et al., 2004).

In recent years, the Queensland and Australian governments
ave addressed Queensland’s trawl fishing power increases by

2
o
c
p

nd endeavour prawn, (B) red spot king prawn, (C) eastern king prawn and (D)
) at 16◦ S distinguishes the northern and southern tiger/endeavour prawn trawl

educing the total number of nights that vessels are allowed to
sh, through the use of penalties for vessel upgrades and sur-
ender provisions on licence and effort trading (Kerrigan et al.,

004). ‘Fishing power’ is the term used to describe the efficiency
f an average vessel at catching prawns or scallops. The con-
ept of reducing fishing time (measured in nights) according to
otential fishing power increases was implemented by fishery
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anagers to ensure that effective effort was capped in both the
shery and the Great Barrier Reef Marine Park (O’Neill and
eigh, 2006).

In this paper, linear mixed models are used to quantify fish-
ng power increases from 1988 to 2004. Since previous estimates
p to 1999 were published (O’Neill et al., 2003), a further com-
rehensive survey of fishing operators has been conducted and
everal more years of catch and effort data have been gathered.
ur methods and results further the application of linear mixed
odels in fisheries research and the calculation of annual fishing

owers for use in management.

. Methods

.1. Catch data

Analyses were based on compulsory daily logbook data
eported by individual vessels from 1988 to 2004 for their
atches of tiger prawn (Penaeus esculentus), endeavour prawn
Metapenaeus endeavouri), red spot king prawn (Melicertus
ongistylus), eastern king prawn (Melicertus plebejus) and
aucer scallop (Amusium balloti). The spatial resolution of
atches recorded was 30 × 30 min grids. All data were analysed
y vessel codes that identified the combination of vessel hull and
wner. Our analysis relates only to prawns recruited to offshore
sheries (i.e. greater than about 20 mm carapace length); this is
onsistent with stock assessments (O’Neill et al., 2005).

The fishing year for eastern king prawns and saucer scallops
as defined to start in November and end in October, to match

he cycle of fishing and recruitment to these fisheries (O’Neill
t al., 2005). The fishing year for tiger, endeavour and red spot
ing prawns was defined as a calendar year; this definition suited
he life-cycle and seasonal variation in fishing effort for these
pecies (O’Neill and Leigh, 2006). Estimates for the 2004 fishing
ear were based only on the months up to April; we consider
he results indicative for that year as the data covered the peak
shing months. O’Neill and Leigh (2006) describe the data in
ore detail.

.2. Vessel and fishing gear data

The analyses considered many different vessel characteristics
hought to affect fishing power. Information on when particular
shers adopted new devices and technologies was obtained from

wo purposely-designed surveys of past and present Queensland
COTF vessel owner/operators in 2000 and 2004. These data

epresented, from each trawl sector, a random set of vessels that
ad fished between 1997 and 2004. The surveys had participa-
ion rates of 85 and 84%, respectively, of the operators contacted
nd collectively covered about 60% of each sector’s harvest in
he later years (2002–2004). Further details on the survey ques-
ionnaire, coverage and sample sizes are given by O’Neill and
eigh (2006) and O’Neill et al. (2003, 2005).
Interviewees provided records of vessel characteristics dur-
ng personal (face-to-face) interviews. Changes in the following
haracteristics, and the date of each change, were recorded for
ach vessel; for the benefit of interviewees, the surveys used

e
i
c
o

s Research 85 (2007) 84–92

mix of metric and imperial measurement units, according to
revailing industry usage:

Engine power (HP), gear box ratio (reduction), average trawl
speed (knots), fuel capacity (litres), fuel consumption per
night (litres), propeller size (inches) and presence or absence
of a propeller nozzle.
Navigation equipment: presence or absence of global posi-
tioning system and plotters, computer mapping software,
sonar and colour sounder.
The use, position, type and size of try-gear; try-gear is a small
(1–3 fathom) net used for frequent 10–20 min sampling of
trawl grounds.
The type and use of by-catch reduction devices (BRD) and
turtle exclusion devices (TED).
Trawl net configurations: number of nets (single, double,
triple, quad or five nets), total net head rope length (fathoms)
combined for all nets, net mesh size (mm), type of ground
chain (fixed drop chain, drop chain with sliding rings, drop
rope and chain combined, looped chain or other less common
configurations), chain size (mm), type of otter board (Bison,
flat, Kilfoil, Louvre or other less common types) and size
(total board area = board length × width).

.3. Statistical analyses

Linear mixed models were applied using the method of
esidual maximum likelihood (REML) assuming normally dis-
ributed errors on the log scale (GenStat, 2005; Montgomery,
997). The response variable was the individual vessel daily
atch by species for a spatial area, measured in kilograms of
rawns or baskets of saucer scallops. The models included as
xplanatory variables the fishing year, month, spatial logbook
0 × 30 min grid square, lunar cycle, corresponding catches of
ther prawn or scallop species and the vessel’s gear character-
stics. Lunar variation in catches was modelled by a calculated
uminance measure ranging between 0 for new moon and 1 for
ull moon (Courtney et al., 2002). This luminance measure fol-
owed a sinusoidal pattern, and was also replicated and advanced
days (∼(1/4) lunar period) to provide an additional degree of

reedom for a potential time lag in the response of fisheries to
unar luminance. Together these patterns model a cyclic variation
n catches corresponding to new moon, waxing moon, full moon
nd waning moon phases, and allow the peak catch to occur in
ny one of these phases. The associated catches of other prawns
r scallops were included to adjust for catchability effects when
hey were caught with the main target prawn or scallop species.

The linear mixed model included both fixed and random
odel terms. Fixed terms were used for all of the explanatory

ariables described above. Random terms treat an attribute as
random selection from an overall population. Random terms

overed individual vessels in the trawl fleet. Mixed models mea-
ure multiple sources of variation in the data, thus providing

stimates of variance components associated with random terms
n the model. Mixed models have the advantage that the signifi-
ance of the fixed terms can be assessed considering more than
ne source of error, improving the accuracy of significance tests.
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he model was also able to measure changes in fleet profile not
overed by fixed effects, as vessels switched sectors or exited
he fishery; these were not modelled by O’Neill et al. (2003).

Definition of the model was as follows:

ogeC = X� + Z� + � (1)

where C is the vector of catches; � a vector of fixed terms
ncluding β0, �1, �2, �3 and �4, matrix-multiplied by data X
composed of X1, X2, X3 and X4); � a vector of random ves-
el terms with design matrix Z indicating which daily catches
elong to each vessel and � is a normally distributed error term.
arameter β0 is a scalar intercept, while �1, �2, �3 and �4 are
ector parameters for abundance, catchability, lunar phase and
ogarithms of corresponding catches of other species, respec-
ively. The abundance vector �1 consisted of categorical terms
or fishing grids, fishing years and months, and their two-way
nteractions. The catchability vector �2 included vessel charac-
eristics, navigation equipment, by-catch reduction devices and
rawl net configurations, of which some were categorical and
thers continuous; a log scale was used for the continuous terms.
he vector �3 consisted of a term for lunar luminance and one

or luminance advanced seven days. The fishing power com-
onents �2 and � were the exclusive focus of interpretation to
alculate annual changes in fishing power.

The statistical software package GenStat (2005) was used for
he analysis and provided asymptotic standard errors for all esti-

ates. Any influential correlations of parameter estimators were
ssessed and removed if necessary. The importance of individ-
al terms in the linear mixed model was assessed formally using
ald statistics. Wald statistics were calculated by dropping indi-

idual fixed terms from the full model. They have asymptotic
hi-squared distributions with degrees of freedom equal to those
f the fixed model terms (GenStat, 2005). Analysis of residuals
rom each model, and the importance of having multiplicative
rrors, supported the use of the normal residual distribution on
he log scale (O’Neill and Leigh, 2006).

For the eastern king prawn sector, annual changes in fish-
ng power were calculated for two management sectors: water
epths ≤50 fathoms (shallow) and waters >50 fathoms (deep).
et sizes were modelled by their log-residuals to adjust for man-

gement bias allowing larger nets in deep waters (O’Neill and
eigh, 2006). The log-residuals were calculated from the simple

egression of net size (log transformed) against depth category
shallow or deep). This was to ensure that catch variations with
et size were quantified according to vessel differences and were
ot due to management limitations on net sizes in the different
aters. Spatial weightings of 45% for shallow waters and 55%

or deep waters were applied to correct for the imbalance of shal-
ow (29%) versus deep water (71%) grid squares in which it was
ertain whether shallow or deep water fishing nets were used;
any predominantly shallow-water squares also contained some

eep water and therefore could not be classified with certainty.
.4. Estimating relative fishing power

Relative fishing power was calculated as a proportional
hange in average catch rates from fishing year to fishing year

i
�
f
b
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nder standard conditions. The expected catch on each day
shed by each vessel was calculated as

= exp(X� + Z�), (2)

here c is the vector of expected catches under standard condi-
ions for each vessel and day fished and X, �, Z and � are as in
q. (1). Within X�, the terms represented byβ0, X1�1, X3�3 and
4�4 were held constant to provide standard conditions of abun-
ance, lunar phase and catches of other species, thus enabling
rediction of changes in fishing power. Annual fishing power
ncreases due to trawling more on favourable lunar phases were
ot considered, because changes in the lunar pattern of fishing
n each trawl sector were negligible over the period 1988–2004
O’Neill and Leigh, 2006).

An average catch c̄ was defined for each fishing year as the
rithmetic mean of elements of c that were within the year. The
shing power was then defined as

y = c̄
c̄1989

(3)

here fy is the vector of proportional change in average catch rel-
tive to 1989 and c̄ is the vector of annual average catches under
tandard conditions. The reference fishing year was chosen as
989 because it was the first fishing year with complete catch
ecords across all sectors, and for consistency with previous
ork (O’Neill et al., 2003).
Confidence intervals on fishing power estimates from each

rawl sector were generated by a Monte Carlo routine of running
he model predictions for 1000 realisations of the parameter esti-

ates. The variations in fixed parameters were calculated using
he parameter estimates and their covariance matrix to construct
multivariate normal distribution of values. Realisations of the

andom vessel effects were calculated from normal distributions
ased on the means and standard deviations for vessels fish-
ng in each fishing year, month and grid square. Calculated 2.5
nd 97.5% percentiles on the fishing power distributions repre-
ented 95% confidence intervals. As the reference fishing-power
ear was 1989, the confidence intervals increase in size away
rom this fishing year. For more information on the Monte Carlo
outine see O’Neill et al. (2005).

. Results

.1. Analyses and parameter estimates

Table 1 lists the model statistics and parameter estimates for
he various gears and technologies for tiger prawns, endeav-
ur prawns, red spot king prawns, eastern king prawns and
aucer scallops. The statistics show that the fishing power
2 parameters (including different vessel characteristics, nav-

gation equipment, by-catch reduction devices and trawl net
onfigurations) were highly significant (***P < 0.001) after
ccounting for abundance �1 (parameterised as location, fish-

ng year, month and their two-way interactions), lunar phase

3 and catches of other species �4. Variance components
or the random vessel terms in the different sectors ranged
etween 0.0509 (equivalent to a coefficient of variation (c.v.) of
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Table 1
Summary of analyses, parameter estimates �2 and standard errors in parentheses from the mixed linear models for each trawl sector

Northern tiger
prawn

Northern endeavour
prawn

Southern tiger
prawn

Red spot king
prawn

Eastern king
prawn

Saucer scallop

Summary of analysis
Number of data (n) 84824 83621 59205 16098 82890 82062
Fishing power �2 d.f., deviance ratio 15, 13.787 19, 22.484 7, 31.686 12, 9.467 18, 64.556 17, 15.941
Remaining terms d.f., deviance ratio 498, 102.129 498, 78.996 718, 36.043 631, 22.101 562, 44.375 613, 61.974
Residual variance 0.307 (0.002) 0.449 (0.002) 0.336 (0.002) 0.314 (0.003) 0.306 (0.002) 0.397 (0.002)
Variance component 0.0509 (0.0053) 0.0788 (0.0085) 0.0741 (0.0085) 0.0636 (0.0100) 0.1951 (0.0219) 0.0656 (0.0066)

Parameter estimates
Engine rated power 0.141 (0.024) 0.211 (0.035) 0.135 (0.034) 0.404 (0.080) n.s. 0.240 (0.029)
Trawl speed n.s. 0.277 (0.085) n.s. −0.480 (0.148) n.s. −0.192 (0.064)
Propeller nozzle 0.027 (0.011) −0.071 (0.013) n.s. n.s. n.s. n.s.
Sonar 0.073 (0.012) −0.109 (0.015) n.s. n.s. 0.034 (0.013) n.s.
GPS 0.047 (0.01) 0.023 (0.013) 0.042 (0.014) n.s. n.s. −0.037 (0.012)
Computer mapping n.s. 0.071 (0.01) n.s. 0.034 (0.016) 0.028 (0.01) n.s.

Number of trawl nets
Single – – – – 0 –
Twin 0 0 0 (0) 0 (0) −0.445 (0.058) 0
Triple −0.238 (0.045) −0.402 (0.057) −0.249 (0.039) −0.329 (0.134) −0.401 (0.05) 0.248 (0.051)
Quad −0.127 (0.039) −0.192 (0.049) −0.089 (0.031) −0.217 (0.129) −0.221 (0.056) 0.301 (0.053)
Five – – 0.117 (0.164) – 0.022 (0.077) 0.564 (0.104)

Net size—combined n.s. 0.258 (0.104) 0.782 (0.073) 1.213 (0.215) 0.081 (0.005) 0.291 (0.065)
Mesh size n.s. 0.846 (0.281) n.s. n.s. −1.248 (0.084) −0.315 (0.112)

Ground gear n.s. n.s.
Drop chain 0 0 0 0 (0)
Sliding rings 0.047 (0.033) −0.079 (0.039) 0.040 (0.028) 0.006 (0.024)
Looped chain −0.185 (0.085) −0.129 (0.104) 0.002 (0.013) −0.010 (0.021)
Drop rope-chain 0.254 (0.048) −0.289 (0.06) −0.056 (0.016) 0.055 (0.035)
Other types −0.433 (0.328) 0.241 (0.4) −0.127 (0.016) −0.078 (0.029)

Chain size n.s. −0.229 (0.07) n.s. 1.028 (0.257) 0.290 (0.052) 0.285 (0.058)

Otter boards n.s.
Standard flat 0 0 (0) 0 (0) 0 0
Bison −0.028 (0.012) −0.024 (0.015) 0.183 (0.05) 0.056 (0.041) −0.088 (0.032)
Louvre/Kilfoil 0.003 (0.01) −0.044 (0.012) 0.032 (0.04) −0.012 (0.019) 0.072 (0.015)
Other types 0.067 (0.03) −0.187 (0.041) −0.006 (0.115) 0.193 (0.035) 0.026 (0.031)

BRD and TED −0.024 (0.011) 0.099 (0.013) n.s. 0.075 (0.025) 0.127 (0.01) 0.046 (0.015)
N
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et—try gear 0.082 (0.024) n.s.

.s. indicates the parameter was not significant (P > 0.05) and was excluded from
ariable and continuous explanatory variables were natural log transformed.

.05091/2 = 22.6%) and 0.1951 (c.v. 44.2%), thereby accounting
or a large part of the variation in vessels’ annual catches.

Fishing power estimates are listed in Table 2 and show, for
he period from 1989 to 2004, increases of 6% in the northern
iger, 6% in the northern endeavour, 12% in the southern tiger,
8% in the red spot king, 46% in the eastern king prawn and
5% in the saucer scallop sector. These results are described in
etail in Section 3.2 below.

Higher engine power was associated with higher catches in all
rawl sectors except eastern king prawn (Table 1). Examination
f predicted values from the model indicated that vessels with
0 HP extra engine power generally achieved 2–8% larger aver-
ge catches. The random vessel term (variance component) was
argest for the eastern king prawn sector. Slower trawl speeds

y (1/2) knot were associated with between 3 and 7% larger
verage catches of saucer scallops and red spot king prawns,
espectively. Vessels installed with sonar were associated with
aving 7 and 3% better average catches of northern tiger and east-

v
5
s
a

0.045 (0.016) −0.078 (0.026) −0.051 (0.01) n.s.

analysis. (–) Indicates the gear type was not used in that trawl sector. Response

rn king prawns, respectively. The effect of global positioning
ystems differed between trawl sectors. For tiger and endeav-
ur prawns, vessels with GPS achieved 2–5% larger average
atches, respectively. However, larger catches of red spot king
rawns, eastern king prawns and saucer scallops were not corre-
ated with GPS. Vessels fishing for endeavour, red spot king and
astern king prawns with computer mapping software, such as C-
lot, made on average 3–7% larger catches. Vessels using quad
ets achieved 5–23% better average prawn catches than vessels
sing triple gear. Generally, larger catches were associated with
arger net sizes and (for eastern king prawns and saucer scal-
ops at least) smaller mesh sizes. Drop-chain ground gear was
enerally used most and was associated with better than aver-
ge catches. Larger ground chains, typically made from 12 mm

ersus the smaller 10 mm diameter steel, were associated with
% better average catches of eastern king prawns and saucer
callops, and 20% better catches of red spot king prawns. Bison
nd Louvre otter-boards were generally associated with better
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Table 2
Mixed linear model calculated proportional change in fishing power from 1988 to 2004 (95% confidence intervals shown in parentheses), for (A) northern tiger
prawn, northern endeavour prawn, southern tiger prawn and red spot king prawn and (B) eastern king prawn (all waters, shallow waters and deep waters) and saucer
scallop

(A)

Fishing year Northern tiger prawn Northern endeavour prawn Southern tiger prawn Red spot king prawn

1988 0.956 (0.944, 0.961) 0.971 (0.954, 0.981) 0.928 (0.911, 0.937) 1.095 (1.044, 1.161)
1989 1 1 1 1
1990 0.949 (0.938, 0.958) 0.950 (0.929, 0.960) 1.074 (1.063, 1.098) 1.097 (1.026, 1.175)
1991 0.967 (0.954, 0.979) 0.983 (0.961, 0.997) 0.996 (0.984, 1.013) 1.045 (0.975, 1.108)
1992 0.963 (0.950, 0.977) 0.988 (0.971, 1.005) 1.012 (0.995, 1.034) 1.029 (0.964, 1.075)
1993 0.982 (0.967, 0.992) 0.992 (0.970, 1.007) 1.039 (1.023, 1.062) 1.144 (1.081, 1.196)
1994 0.967 (0.950, 0.979) 0.987 (0.964, 1.005) 1.054 (1.043, 1.084) 1.108 (1.055, 1.157)
1995 0.984 (0.967, 1.000) 1.013 (0.980, 1.029) 1.088 (1.079, 1.124) 1.047 (0.992, 1.093)
1996 0.975 (0.959, 0.994) 0.942 (0.912, 0.956) 1.101 (1.091, 1.144) 1.029 (0.978, 1.071)
1997 1.013 (0.992, 1.032) 1.014 (0.982, 1.033) 1.068 (1.050, 1.095) 1.045 (0.997, 1.091)
1998 0.997 (0.978, 1.015) 1.022 (0.993, 1.045) 1.046 (1.027, 1.072) 1.107 (1.050, 1.162)
1999 1.018 (0.996, 1.040) 1.065 (1.030, 1.096) 1.143 (1.121, 1.174) 1.074 (1.012, 1.124)
2000 1.041 (1.011, 1.070) 1.112 (1.061, 1.146) 1.098 (1.071, 1.125) 1.162 (1.085, 1.228)
2001 1.046 (1.018, 1.075) 1.094 (1.052, 1.135) 1.035 (1.013, 1.061) 1.089 (1.012, 1.155)
2002 1.059 (1.030, 1.088) 1.125 (1.081, 1.173) 1.089 (1.062, 1.118) 1.137 (1.059, 1.215)
2003 1.079 (1.049, 1.111) 1.132 (1.088, 1.182) 1.078 (1.052, 1.107) 1.168 (1.079, 1.256)
2004 1.060 (1.027, 1.093) 1.064 (1.023, 1.123) 1.118 (1.086, 1.158) 1.177 (1.073, 1.268)

(B)

Eastern king prawn:
depths combined

Eastern king prawn:
depths ≤50 fathoms

Eastern king prawn:
depths >50 fathoms

Saucer scallop

1988 1.028 (1.017, 1.053) 0.965 (0.948, 1.006) 1.012 (0.994, 1.028) 0.975 (0.958, 0.994)
1989 1 1 1 1
1990 1.053 (1.036, 1.073) 1.073 (1.047, 1.107) 1.018 (1.003, 1.032) 1.025 (1.012, 1.038)
1991 1.062 (1.054, 1.087) 1.111 (1.096, 1.152) 0.983 (0.970, 0.998) 1.036 (1.018, 1.051)
1992 1.064 (1.053, 1.086) 1.121 (1.100, 1.156) 0.978 (0.966, 0.991) 1.038 (1.021, 1.059)
1993 1.056 (1.043, 1.079) 1.128 (1.103, 1.162) 0.960 (0.947, 0.975) 1.036 (1.014, 1.055)
1994 1.092 (1.081, 1.117) 1.114 (1.091, 1.146) 1.035 (1.026, 1.055) 1.059 (1.039, 1.084)
1995 1.116 (1.103, 1.138) 1.149 (1.123, 1.182) 1.050 (1.039, 1.067) 1.037 (1.015, 1.061)
1996 1.168 (1.158, 1.199) 1.262 (1.247, 1.320) 1.045 (1.030, 1.062) 1.082 (1.059, 1.112)
1997 1.170 (1.158, 1.204) 1.257 (1.242, 1.314) 1.051 (1.033, 1.070) 1.031 (1.007, 1.058)
1998 1.157 (1.139, 1.186) 1.236 (1.215, 1.282) 1.050 (1.027, 1.068) 1.020 (0.995, 1.046)
1999 1.205 (1.183, 1.235) 1.290 (1.261, 1.340) 1.089 (1.063, 1.107) 1.014 (0.992, 1.045)
2000 1.298 (1.271, 1.340) 1.360 (1.328, 1.434) 1.195 (1.162, 1.221) 1.029 (1.003, 1.060)
2001 1.305 (1.275, 1.351) 1.353 (1.318, 1.439) 1.209 (1.173, 1.236) 1.065 (1.035, 1.104)
2002 1.384 (1.350, 1.436) 1.397 (1.351, 1.484) 1.295 (1.256, 1.334) 1.080 (1.041, 1.125)
2003 1.401 (1.364, 1.454) 1.403 (1.358, 1.484) 1.314 (1.273, 1.356) 1.054 (1.017, 1.103)
2004 1.457 (1.423, 1.524) 1.512 (1.467, 1.621) 1.357 (1.313, 1.403) 1.149 (1.102, 1.202)
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he proportion change represents the difference from the reference fishing ye
ovember through to October for eastern king prawns and saucer scallops, and

verage catches across the sectors. Vessels with a turtle excluder
evice and/or by-catch reduction device tended to have increased
atches of endeavour prawns (10%), red spot king prawns (7%),
astern king prawns (13%) and saucer scallops (5%), but 3%
maller catches of northern tiger prawns. Vessels using try nets
chieved 5–9% better catches of tiger prawns.

.2. Estimates of fishing power

Annual increases in average relative fishing power were cal-

ulated from the mixed linear model using Eqs. (2) and (3).
hanges in fishing power due to vessel upgrades were mea-

ured by the fixed effects �2. Changes due to evolution of each
rawl sector’s vessel profile were measured through the random

f
T

b

89, which was set at 1. The fishing years represent the months starting from
ry through to December for tiger, endeavour and red spot king prawns.

essel terms (�), and are illustrated on Fig. 2 by the difference
etween the overall fishing power estimate (solid line) and the
shing power estimate from the �2 fixed effects only (dotted

ine).
Overall the analyses showed consistent annual increases in

shing power. The prawn sectors were influenced mostly by the
hanging fleet profile and their vessel power (engine rated power
nd propeller nozzles) and technology (sonar, global positioning
ystems and computer mapping) factors. For the saucer scallop
ector, net configurations were more important than technology

actors. Annual rates of fishing power change are presented in
able 2.

Tiger prawn fishing power in northern waters increased by 8%
etween 1989 and 2003. The increases were driven by higher
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ig. 2. (A–F) Comparison of fixed and random terms effect on the proportional
ifference from the reference year 1989, which was set at 1. Error bars illustrat

ngine power, propeller nozzles, quad net gear, Bison or Lou-
re/Kilfoil otter-boards, sonar and global positioning systems,
ogether with a trend towards more efficient vessels (i.e. those
ith high �-terms). The latter effect is illustrated by the over-

ll fishing power (fixed + random effects; solid line) converging
nd then overtaking the fishing power corresponding to vessel
pgrades (�2 fixed effects; dotted line). The data for 2004 sug-
ested that fishing power had decreased about 2% due to lower
verage engine power and less use quad gear. The noticeable
989 spike in fishing power was due to greater than average
ffort by efficient vessels.

The increase in northern endeavour prawn fishing power
as calculated at 13% between 1989 and 2003. Most of

his fishing power increase occurred between 1996 and 2000.
ver these 5 years fishing power increased by 17%. The
shing power increases were mostly driven by higher engine

ated power, Bison otter-boards and computer mapping sys-
ems. The noticeable drops in the 1996 and 2004 fishing
ower were due to the more efficient vessels fishing fewer
ights.

b
e
b
e

ge in fishing power from 1988 to 2004. The proportional change represents the
5% confidence intervals.

The results show a trend towards less efficient vessels (lower
-terms) in the northern endeavour prawn sector (Fig. 2B, fall

n solid line relative to dotted line), as compared to a trend
owards more efficient vessels in the northern tiger prawn sector
Fig. 2A). These sectors are fished by similar vessels in similar
aters, but tiger prawns are much more valuable. The analyses

ndicate that efficient fishing vessels may target tiger prawns in
reference to endeavour prawns.

Tiger prawn fishing power in southern waters increased by
2% between 1989 and 2004. Increases in fishing power were
ssociated with improvements in vessels’ engine power, and
ncreased use of quad and try trawl nets. Overall there was no
rend towards more or less efficient vessels, but random vessel
ffects (�-terms) did contribute extra year to year variation in
shing power.

The analysis estimated increases in fishing power at 18%

etween 1989 and 2004, mainly associated with two major
ffects within definite time periods: arrival of more efficient
oats in this sector in 1990, and a substantial increase in average
ngine power from 2001 to 2003.
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The eastern king prawn sector experienced the largest
ncrease in fishing power. The analysis estimated increases in
verage annual fishing power of 51% in shallow waters, 36% in
eep waters and 46% across all waters between 1989 and 2004.
ost of the fishing power increases were measured through the

andom vessel effects (�), which absorbed the parameters for
ngine rated power, trawl speed and propeller nozzle (Table 1).
he results illustrate a large effect of change in fleet composition,
hereby less efficient vessels have left the trawl sector, while
ore efficient ones remained. Also, the vessels that fished both

orthern tiger and eastern king prawns had expended about 15%
ore effort towards eastern king prawns since 2000. The use of

omputer mapping, sonar, quad trawl gear and by-catch reduc-
ion and turtle excluder devices were also important variables
ontributing to increased fishing power.

Increases in saucer scallop fishing power were 15% between
989 and 2004. The random vessel term (�) absorbed the fishing
ower effects of propeller nozzle, sonar and computer map-
ing, but engine rated power (***P < 0.001) and quad trawl gear
***P < 0.001) were still significant in determining fishing power
ncreases (Table 1). The analysis also indicated that more nights
f fishing were expended by the efficient vessels during the high
atch years 1990–1996. Catch rates declined after 1996 and the
eet profile changed to less efficient vessels. Since 2000 fishing
ower increases have been driven by higher engine power and
se of quad and try nets.

. Discussion

Fishing power in the Queensland ECOTF increased substan-
ially between 1988 and 2004. Overall the analyses show that
nnual changes in prawn trawl fishing power were influenced
ostly by changing fleet profiles (vessels changing the number

f days they fish in each trawl sector, moving between sectors
r in some cases exiting the fishery altogether), upgrades to ves-
el power (engine power and propeller nozzles) and adoption
f new technology (sonar, global positioning systems and com-
uter mapping). Net configurations were more important than
echnology factors in determining saucer scallop fishing power.
he results demonstrate the importance of standardising average
atch rates according to changes in average annual fishing power.
or example, if 1989 catch rates were standardised to 2004 fish-

ng power they would be between 6 and 51% higher compared to
he observed nominal catch rates in 1989 (Table 2). This effect is
rucial for stock assessments using catch rates. It is important to
ote that fishing power estimates do not increase continuously
ut vary between years. Their influence on estimates of limit
eference points such as fishing effort at maximum sustainable
ield (EMSY) needs to be recognised, especially in the selection
f the past unit of fishing effort to use as the reference for effort
reep in future stock assessments.

Our results confirm that major changes have taken place in
essel characteristics, fishing gear, navigation and communica-

ion over the last 17 years. The adoption of global positioning
ystems, computer mapping software and turtle excluder and
y-catch reduction devices are nearing 100%. However, several
echnologies (e.g. new propeller designs) are yet to be adopted

T

o
fi
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niversally by the trawl fleet. Further upgrades in some fleet
haracteristics, such as engine power and use of trawl quad-nets,
an be achieved and are likely to contribute to further increases
n fishing power. We also expect new technologies to emerge
nd be adopted in the future. In addition, each trawl sector’s
eet composition will change, affecting its fishing power. Many
essels are currently exiting the fishery in the face of high fuel
osts and competition from imported seafood; we expect these
essels to be both less efficient and less powerful than those that
emain, contributing to an increase in the fleet’s average fishing
ower.

Global positioning systems, although positively affecting
atches in three out of the six sectors, had non-significant
P > 0.05) or slight negative effects in the red spot king prawn,
astern king prawn and scallop sectors. This may be due to spe-
ific features of these species and their fisheries. Red spot king
rawns occur near reefs, allowing visual identification of tar-
et areas. Eastern king prawns are much more migratory than
iger/endeavour prawns, occur at much greater depths and are
enerally fished along narrow depth contours (as illustrated in
ueensland waters in Fig. 1C). Skill to find patches of saucer

callop probably does not depend much on use of GPS.
Try gear had a positive effect on tiger and endeavour prawn

atches, where its use is widespread (90–100%). However, red
pot and eastern king prawn catches were negatively associated
ith try gear. Usage of try gear is variable and inconsistent for

hese species, and less common in deep water where eastern
ing prawns are found. Our finding of positive effects of BRDs
nd TEDs on catches of target species in four of the six sectors
grees with other studies (Rogers et al., 1997; Broadhurst and
ennelly, 1997; Steele et al., 2002; Courtney and Campbell,
003). The negative relationship between trawl speed and catch
n the red spot king prawn and saucer scallop sectors may show
he importance of trawling at a speed that allows the fishing gear
o function as designed.

Fishing power analyses can be affected by ‘confounding’,
hereby it is impossible to determine whether a change in catch

ate is due to variation in population abundance or changing
shing power. Confounding is a failing not of the analysis tech-
ique but of contrast in the data. It can happen, for example,
f all vessels in a fleet undergo identical upgrades at the same
ime. Confounding is a major problem in Australia’s Northern
rawn Fishery (NPF), where there are long seasonal closures
nd vessel ownership is concentrated in large corporations with
imilar economic motivation (Dichmont et al., 2003).

Confounding is less evident in our study of the Queens-
and ECOTF, which has comprised 400–900 active vessels, with
bout as many owners and a wide range of business strategies.
leet upgrades usually take place over periods of many years.
evertheless, ongoing independent data are desirable to ver-

fy abundance indices. Available data from fishery-independent
urveys show good agreement with the standardised catch rates
roduced by this study (O’Neill and Leigh, 2006; O’Neill and

urnbull, 2006).

Linear mixed models may also find beneficial applications to
ther fisheries with large data sets that have evolved from many
shing operations or vessels. In our analysis they have been
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specially useful in resolving changes in fleet profile that go
eyond physical characteristics of the vessels. Broader aspects
f their use include testing hypotheses of environment effects
uch as river flows or rainfall on catches (Tanimoto et al., 2006).
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Reduced economic circumstances have moved management goals towards higher profit, rather than maximum sustainable yields in several
Australian fisheries. The eastern king prawn is one such fishery, for which we have developed new methodology for stock dynamics, cal-
culation of model-based and data-based reference points and management strategy evaluation. The fishery is notable for the northward
movement of prawns in eastern Australian waters, from the State jurisdiction of New South Wales to that of Queensland, as they grow to
spawning size, so that vessels fishing in the northern deeper waters harvest more large prawns. Bioeconomic fishing data were standardized
for calibrating a length-structured spatial operating model. Model simulations identified that reduced boat numbers and fishing effort
could improve profitability while retaining viable fishing in each jurisdiction. Simulations also identified catch rate levels that were effective
for monitoring in simple within-year effort-control rules. However, favourable performance of catch rate indicators was achieved only when
a meaningful upper limit was placed on total allowed fishing effort. The methods and findings will allow improved measures for monitoring
fisheries and inform decision makers on the uncertainty and assumptions affecting economic indicators.

Keywords: Australia, catch rate standardization, economic indicators, management strategy evaluation, prawns, spatial stock assessment.

Introduction
In many fisheries globally, challenging economic conditions have
moved management agencies towards monitoring indicators for
profit alongside traditional indicators for biological sustainability.
The Australian eastern king prawn is one such fishery in which eco-
nomic performance has only in recent years become a concern.

The eastern king prawn (EKP, Melicertus plebejus or Penaeus ple-
bejus) is a major component of otter trawl fishing along the east coast
of Australia. The EKP is largely spatially separated from other target
species, exists primarily in subtropical waters and extends across two

jurisdictions belonging to the States of New South Wales (NSW) and
Queensland (Figure 1). The otter trawl fishery harvests � 3000 t of
EKP annually, with a landed value in excess of AUD$40 million.
In addition to EKP, licensed vessels within each jurisdiction are
free to direct their fishing effort towards other permitted species.

The jurisdictions currently manage their sectors independently
using a range of input controls including limited vessel entry,
boat-day/effort-unit allocations, vessel and gear size restrictions, and
spatial/seasonal closures. Separate management regimes operate
despite strong stock connectivity, whereby EKP travel large distances

#Crown copyright 2014.
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from New South Wales and inshore Queensland waters to deep waters
(.90 m) off Queensland as individuals grow to spawning size
(Montgomery et al., 2007; Lloyd-Jones et al., 2012; Braccini et al.,
2012b). In 2010, � 600 vessels were licensed to fish EKP and other im-
portant Penaeid prawns and saucer scallop. Of these vessels, about 150
did not fish or harvest EKP. Spatially restricted licences were also
granted to 24 New South Wales vessels to fish Queensland waters
north to Fraser Island (Figure 1).

Even with the trawl fishery input controls, recent years of higher
trawling costs and constant or falling product prices have reduced
both profit and fishing effort (Figure 2). Over the whole mixed-
species fishery, a substantial fraction of the fishing effort capacity
may be economically unviable (Ives et al., 2013).

The reduced economic conditions have focused EKP industry
and management on developing strategies to maximize economic
performance, rather than promoting maximum sustainable yield
(MSY) as suggested by an earlier evaluation of this fishery
(O’Neill et al., 2005). These economic conditions influenced the
Queensland 2010–2011 trawl management review of biological,
economic and social objectives (Pascoe et al., 2013; Dichmont
et al., 2013). In order to improve fishing profits, additional manage-
ment measures were discussed, including further effort control and
seasonal closures with options for in-season management based on
catch rate reference points.

Fishing for EKP has fared better economically than other trawl
species, and the EKP stock had experienced record levels of
harvest in Queensland waters (Figure 2). This is partly due to the
large size of mature EKP providing an export and domestic
market niche over smaller prawn species. Also EKP fishing in
Queensland occurs close to major markets and to saucer scallop
(Amusium balloti) grounds that the same vessels can pulse-fish for
some of the year. Finally, Queensland vessels may have benefited
from recent declines in EKP harvest and fishing effort in New
South Wales (Figure 2).

In this paper, in the light of current economic circumstances
and record harvests, we apply both a length-structured spatial
population model and an economic model to assess the fishing pres-
sure, quantify economic performance and update reference points
for the EKP fishery. We also use the models to evaluate stakeholder-
suggested management procedures through simulation.

Reference points are key tools for indicating the state of a
fishery. They can be based on measures such as catch rates or
modelled stock biomasses. But their development is often
complex, relying on numerical analyses and accurate data to
index population abundance (Hilborn, 2002). Model-based refer-
ence points such as MSY and the corresponding fishing effort for
MSY (EMSY) have been reported for many prawn fisheries in
Australia (Dichmont et al., 2001; O’Neill et al., 2005; O’Neill
and Turnbull, 2006). Empirical reference points, which are data-
based rather than model-based, have typically been used in
prawn fisheries for status reporting and not management (NSW
Department of Primary Industries, 2010; Fisheries Queensland,
2013). A notable exception was South Australia’s Spencer Gulf
Prawn Fishery, where fishery-independent survey catch rates
were used to adaptively change spatial and seasonal closures to
match resource availability (Dixon and Sloan, 2007). For EKP,
empirical catch-rate-limit reference points were implemented
for status reporting in Queensland in 1999 (O’Neill et al., 2005)
and in New South Wales in 2006 (NSW Department of Primary
Industries, 2006), but have not been validated and may be unre-
lated to sustainable stock levels or economics.

A reference-point policy of including vessel-based economics to
calculate maximum economic yield (MEY) as a preferred objective
to MSY was first introduced into Australian Government fisheries in
2007 (Australian Government, 2007). This was applied to the
Northern Prawn Fishery across tropical waters of the Northern
Territory and the Gulf of Carpentaria (Punt et al., 2010).

Figure 1. Map of the Australian eastern king prawn fishery zoned by
analysis regions 1 to 6. Queensland region 4 covered water depths less
than 50 fathom (≈90 m) and excluded pre-oceanic-recruits from
estuaries, Moreton Bay (adjacent to Brisbane) and Fraser Island north.
Queensland regions 5 and 6 covered water depths equal to or greater
than 50 fathom. Management and fishing gear were not defined by
water depths in New South Wales (regions 1 to 3); region 1 also included
minor harvests taken south of Sydney to about 378S.
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The current study is the first to quantify empirical reference
points for the combined New South Wales and Queensland EKP
fishery, and the first to quantify economic indicators for the com-
bined fishery. This study also demonstrates the benefits of model
testing of indicators and reference points in fisheries science, and
highlights important considerations for economic management.

Methods
Commercial harvest data
Data were stratified by six fishing regions across New South Wales
(NSW) and Queensland (Qld) State waters (Figure 1). From south
to north the regions were defined and labelled as (1) NSW South
(waters south of 308S), (2) NSW Central (between 298S and 308S),
(3) NSW North (between 288S and 298S), (4) Qld Inshore [, 50
fathom, (� 90 m), water depths, between 218S and 288S], (5) Qld
Offshore South (≥ 50 fathom water depths, between 24.58S and
288S), and (6) Qld Offshore North (≥ 50 fathom water depths,
between 218S and 24.58S latitude). Juveniles harvested from estuaries,
Moreton Bay and Fraser Island north were excluded. Fishing years
were defined and labelled from month November (1) to October(12).

Historical harvests of EKP date back to the early 1900s. Harvests
were small (, 200 t) until the 1950s, and we assumed year 1958 to be
the commencement of significant fishing mortality.

Monthly harvests from 1958–2010 were reconstructed from four
data sources: (i) NSW monthly fisher catch returns from 1958–
1983, (ii) NSW monthly commercial logbooks from 1984–2010,
(iii) Queensland Fish Board annual records from 1958–1980, and
(iv) Queensland daily commercial logbooks 1988–2010.

NSW prawn harvest records from 1958–1978 aggregated species
and regions. The proportion comprising EKP was separated based
on information presented in Annual NSW Fisheries Reports with
a base value of 20% given for the years from 1900–1957, and 42%
observed in 1979. Hence, EKP was separated assuming a 1%
annual increase starting from 21% in 1958 through to 41% in
1978. Regional harvests from 1958–1978 were disaggregated assum-
ing an historical split of 29% for region 1, 47% for region 2, and 24%
for region 3 based on the average for these regions between 1979 and
1989. All NSW regional EKP harvests were identifiable from 1979.

Queensland prawn harvests from 1958–1980 also aggregated
species, but provided a spatial breakdown by fishing port. We used
records from the port of Bundaberg south to the Queensland/NSW
state border. The harvests were partitioned into species by removing
Moreton Bay harvests (≈38% tonnage) and then assuming an EKP
species proportion of 80%. From 1989–2010, Queensland EKP har-
vests were tallied from compulsory commercial logbooks. Missing
records on total annual EKP harvest between 1981 and 1988 were esti-
mated from log-linear regression using 1958–1980 and 1989–2010

Figure 2. Summary fishery statistics for eastern king prawn (a) harvest, and (b) fishing effort from New South Wales (NSW) and Queensland (Qld)
waters. No records on total fishing effort were available before 1985 and 1989 fishing years from NSW and Qld, respectively.
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annual estimates (adjusted R2 ¼ 0.86). Queensland EKP landings
from 1958–1988 were expanded regionally and monthly based on
Poisson generalized linear modelling of harvest patterns using
1989–1994 data. A log link was used on catch weight, and dispersion
was estimated; the model terms were region × month + region ×
fishing year (adjusted R2 ¼ 0.64). Normal random uncertainty
error of 0.26 (standard deviation implied from GLM analysis) was
propagated monthly from 1958–1988.

Standardized commercial catch rates
Three catch rate analyses were conducted on New South Wales and
Queensland logbook data (Table 1). Analyses 1 and 2 were for
Queensland and analysis 3 for NSW. Analyses 1 and 3 were based
on whole-fleet compulsory catch reports. Analysis 2 was on
Queensland pre-1989 EKP catch rate data from voluntary logbook
databases (O’Neill et al., 2005; O’Neill and Leigh, 2006).

The analyses were linear mixed models (REML) with normally
distributed errors on the log scale (GenStat, 2011). They included
both fixed (Xb) and random (zg) terms, and followed the
methods and terminology of O’Neill and Leigh (2007) and
Braccini et al. (2012a). Where data X1,X2,X3,X4,X5,Z1,Z2( )
were relevant and available, the models were fitted to estimate the
following parameter effects:

† scalar model intercept b0,

† abundance b1 for data X1 (three-way interaction, fishing year ×
month × region),

† vessel gear b2 for data X2 (log engine rated power, propeller
nozzle, GPS, net type, log net length × region interaction, log
mesh size, ground gear type, otter board type, BRDs and TEDs,
and use of try-gear net.

† lunar phase b3 for data X3 (for luminance and luminance shifted
1/4 phase),

† fishing effort b4 for data X4 (log hours for Queensland daily
catches, log days for NSW monthly catches),

† by-catch b5 for data X5 (log of NSW school whiting catch +
0.001 kg),

† vessel efficiency random effects g1 for vessel identifiers Z1, and

† location random effects g2 for fishing logbook grid-square
identifiers Z2.

Analysis 1 was completed with fishing power data X2 for b2. For
analyses 2 and 3, the fishing power data X2 were not available.
Therefore the b2 fishing power effect was not estimated but was
inserted as an offset (Table 1). The offset was the estimated log
fishing power b2 for deep and shallow water EKP from analysis 1,
with linear trends hind cast for 1969–1988 (fishing power fixed
terms only; Braccini et al., 2012a). Because NSW catches were
reported monthly, no lunar b3 or location effects g2 could be
fitted in analysis 3. Also, the corresponding NSW school whiting
(Sillago robusta and S. flindersi) catch effect was estimated to
adjust for logbooks combining monthly effort for EKP and these al-
ternative target species; this targeting/logbook effect was not
present in Queensland waters (regions 4 to 6).

Standardized catch rates were predicted from the termb1, which
provided a relative abundance estimate for each fishing year, month
and region. No predictions were formed for missing month or
region terms. The GenStat procedure “vpredict” was used to calcu-
late monthly standardized catch rates equivalent to 2010 fleet fishing
power in each region. For NSW catch rate analysis 3, predicted catch
rates were scaled equivalent to when EKP was the primary target
species landed. Queensland EKP analysis 2 standardized monthly
catch rates were estimated only where 30 or more fishing days
were recorded in a month and region; lower numbers of fishing
records exhibited too much variability.

Standardized survey catch rates
Independent surveys of EKP recruitment abundance in region 4
were conducted in the fishing years 2000 and 2007–2010. The
surveys monitored juvenile EKP catch rates in Moreton Bay and
other prime coastal recruitment waters in Queensland. Between
200 and 300 beam trawl samples were conducted in each sampling
year (Courtney et al., 2002; Fisheries Queensland, 2007; Courtney
et al., 2012).

Individual beam trawl catches, measured in numbers of prawns,
were analysed using a Poisson generalized linear model with log link
and estimated dispersion (McCullagh and Nelder, 1989; GenStat,
2011). The explanatory factors were sampling area (two areas
within Moreton Bay, plus three ocean areas), month (September
to December) and fishing year. Within each sampling area,
the trawl swept area changed very little over the fishing years; it
was tested statistically, was non-significant and excluded from the
model. The mean standardized catch between fishing years was
used as a recruitment index.

Size composition data
Two datasets on size structure were used: (i) carapace length fre-
quencies and (ii) commercial size-grade frequencies. Together,
these two datasets quantified regional and monthly changes in
EKP size.

Carapace-length frequencies were recorded by scientists on
board commercial fishing vessels. Each prawn was sexed and mea-
sured to 1 mm length classes. From NSW, summaries of monthly
length frequencies were provided for a continuous 24-month

Table 1. Linear mixed models (REML) used to standardize catch
rates from New South Wales (NSW) and Queensland (QLD).

Analysis 1 QLD: regions 4– 6 and years 1989– 2010.
Response: log kgs boat − day−1

( )
Fixed terms: b0 + X1b1 + X2b2 + X3b3 + X4b4
Random terms: Z1g1 + Z2g2
Offset: —
Predictions: b1

Analysis 2 QLD: regions 4– 6 and years 1969– 1988.
Response: log kgs boat − day−1

( )
Fixed terms: b0 + X1b1 + X3b3 + X4b4
Random terms: Z1g1 + Z2g2
Offset: Backward linear extrapolation of deep and shallow

water EKP log fishing power from b2 in analysis 1.
Predictions: b1

Analysis 3 NSW: regions 1– 3 and years 1984– 2010.
Response: log kgs boat − month−1

( )
Fixed terms: b0 + X1b1 + X4b4 + X5b5
Random terms: Z1g1
Offset: Combined deep- and shallow-water EKP log

fishing power from b2 analysis 1, and
1984–1988 linearly hind casted.

Predictions: b1
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period (1991–1992, regions 1 to 3). Length frequencies from
Queensland waters were measured sporadically (region 4:
November and December 1990, and October 2001; region 5: June
and July 1993, and July 2002; region 6: January 2009).

Five vessels operating in Queensland waters provided at-sea EKP
size grading data. The grading data were recorded between
September 1997 and December 2008 from the deep northern
waters of the fishery (region 6). The grading categories classified
prawn sizes (number of prawns per pound; heads-on and sexes com-
bined), which were sorted into 5-kg boxes. In total, 136 monthly
size-grade frequencies were tallied from 329 612 boxes and 10 947
boat-days of fishing. Size grade had seven categories: (1) . 30 lb21 ≈
1–27 mm carapace length, (2) 21–30 lb21 ≈ 28–33 mm,

(3) 16–20 lb21 ≈ 34–37 mm, (4) 10–15 lb21 ≈ 38–43 mm,
(5) 8–10 lb21 ≈ 44–47 mm, (6) 6–8 lb21 ≈ 48–53 mm and
(7) ,6 lb21 ≈ 54–75 mm. Soft and broken prawns, classified as
an additional category, were infrequent and not analysed. No inde-
pendent data were available to assess the accuracy of the at-sea com-
mercial EKP size grading, but the same data were acceptable to
processors to determine price paid to fishers. Larger prawns
fetched a higher price for the same weight. Similar prawn boxes
(3 kg) have been validated as a reasonable measure for tiger prawn
lengths in the Northern Prawn Fishery (O’Neill et al., 1999).

Economic data
The mean landing prices for EKP by size-grade were sourced from
the NSW Sydney fish market and a Queensland processor represen-
tative. The price data were re-categorized by carapace length
(Figure 3). The average by-product value per boat day by region
(Table 2) was calculated using logbook harvests for the scyllarid lob-
sters, cephalopods and school whiting from New South Wales, and
scyllarid lobsters, cephalopods, portunid crabs and saucer scallop
from Queensland.

Vessel cost parameters (means and variances), other than fuel,
were based on questionnaire responses from 24 vessel owners
from the Queensland fishery (Table 2). The average fishing capacity
of the vessels in the economic sample was very similar to the whole
Queensland 2010 fleet as determined from vessel survey and
logbook data (O’Neill and Leigh, 2007; Braccini et al., 2012a). For
example, the average vessel length was 17.0 m for the sample vs.
17.5 m for the Queensland fleet. Average costs in NSW were adjusted
for the smaller average vessel size there.

Queensland fuel cost (cF) means and variances were calculated
using 2010 regional fuel use data (O’Neill and Leigh, 2007;
Braccini et al., 2012a) and average net diesel fuel price paid after sub-
sidies of $0.85 litre21 (ABARES, 2011). Fuel costs (cF) for New South
Wales were based on Queensland inshore vessels (region 4), again
adjusted down for the smaller average vessel size in NSW.

Table 2. Input parameter values and their 95% confidence intervals for the economic model.

Parameters New South Wales Queensland

Variable costs:
Labour (cL: proportion of catch $) 0.29 (0.2:0.39) 0.29 (0.2:0.39)
Packaging (cM: $ kg21) 0.41 (0.28:0.54) 0.41 (0.28:0.54)
Repairs (cK: $ boat-day21) 288.63 (201.26:415.74) 407.46 (320.82:520.1)
Fuel (cF: $ boat-day21) Reg. 1 526.79 (476.8:576.37) Reg. 4 546.35 (494.58:597.76)
Fuel (cF: $ boat-day21) Reg. 2 526.4 (476.99:575.11) Reg. 5 563.1 (512.04:615.42)
Fuel (cF: $ boat-day21) Reg. 3 526.11 (477:576.45) Reg. 6 760.19 (708.98:812.81)
Incidentals (cO: $ boat-day21) 44.26 (22.98:65.98) 44.26 (22.98:65.98)
Annual fixed costs:
Vessel costs (Wy: $ boat21) 28637 (23608:34769) 46170 (39403:53998)
Total investment (Ky: $ boat21) 255330 (191910:338710) 673590 (551810:817980)
Proportion allocated to EKP (r) 0.5 (0.4:0.6) 0.67 (0.57:0.76)
Revenue from by-product:
Catch value (�Bby

r : $ boat-day21) Reg. 1 195.91 (182.15:209.65) Reg. 4 221.89 (86.7:349.14)
Reg. 2 211.42 (177.06:244.26) Reg. 5 122.26 (52.08:192.01)
Reg. 3 112.87 (100.99:124.95) Reg. 6 62.91 (2.73:122.84)

Annual fishing effort:
Mean number of days boat-year21 �d

( )
42 (33:52) 74 (66:83)

Annual economic rates:
Interest rate (i) 0.05 (0.034:0.072) 0.05 (0.034:0.072)
Opportunity cost (o) ¼ i
Depreciation rate (d )* 0.02 (0.02:0.037) 0.02 (0.02:0.037)

*Uniform variation was assumed between lower and upper confidence intervals.

Figure 3. Mean eastern king prawn landing-prices (AUD$ kg21) by
prawn length and State. The minimum and maximum values indicate
monthly variation, with higher prices around December and lower
prices around June.
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Operating model
The population dynamic model had a monthly time step and
tracked numbers (N) and biomass (B) of prawns by their sex (s),
length (l ) and spatial region (r) (Tables 3 and 4), and included the
processes of mortality, growth, movement and recruitment in
every month (t). The model was run in two phases: (i) historical es-
timation of the EKP stock from 1958–2010, and (ii) simulations of
EKP parameter values and uncertainty to evaluate reference points
and management procedures.

Model parameters were estimated by calibrating the model to re-
gional standardized catch rates and size-composition data (Table 5).
Primary importance was placed on fitting the standardized catch
rates (Francis, 2011). Effective sample sizes for scaling multinomial
likelihoods were calculated within the model in order to give realistic
weighting to the size composition data. Due to the relatively unin-
formative (flat) annual trend in EKP catch rates from NSW
(regions 1 to 3), a penalty function was included to prevent unreal-
istically large population estimates and low estimates of harvest rate.
Likelihood functions were also used for stock-recruitment steepness
(h), natural mortality (M) and annual recruitment variation (h)
(Table 6). The estimation process was conducted in Matlabw

(MathWorks, 2013), and consisted of a maximum likelihood step
followed by Markov Chain Monte Carlo sampling (MCMC). The
MCMC used a multivariate vector-jumping Metropolis-Hastings
algorithm described by Gelman et al. (2004), with 110 000
samples run to estimate the parameter covariance matrix and cus-
tomize the vector jumping to ensure acceptance ratios of about

0.2 (Roberts et al., 1997). A further two million samples were run
with fixed covariance. Parameter distributions were based on 1000
posterior samples thinned from the last two million simulations.
The “coda” package of the software R was used to analyse and
confirm MCMC convergence (Plummer et al., 2012).

Economic model and parameters
The economic model calculated net present value (NPV) based on
total discounted profit theory (Ross, 1995). The NPV objective
function used geometric discounting that summed profits over
future model projections:

NPV =
∑1
y=1

aypy

where a = 1 + i( )−1, i wasthe annual interest (discount) rate andp y

was the profit during year y. To avoid model projections over many
years, the NPV was truncated to a terminal year T and equilibrium
was assumed thereafter:

NPV =
∑T−1

y=1

aypy + aT−1i−1pT .

This NPV function differs from formula (13) of Punt et al.
(2010), in that we have consistently discounted annual profits
back to the start of the first projection.

Table 3. Equations used for simulating EKP population dynamics (for notation, Table 4).

Monthly population dynamics Equations

Number of prawns:
Nl,r,t,s = exp −M( )

∑
r′

Tr,r′,t−1

∑
l′
Jl,l′,r′,t−1,s 1 − vl′,r′ ur′,t−1

( )
Nl′,r′,t−1,s + 0.5Rl,r,t

(1)

Recruitment number—Beverton – Holt formulation:

Rl,r,t =
Ey−1

ar + brEy−1
exp hy

( )
fr,tLl , where y indicated the fishing year.

(2)

Spawning index—annual number of eggs:
Ey =

∑
t

∑
r

∑
l Nl,r,t,sml,r flur

(3)

Recruitment pattern—normalized monthly proportion:

fr,t = exp k cos 2p(t − m)/12
{ }[ ]

/
∑12

t′=1
exp k cos 2p(t′ − m)/12

{ }[ ]
,

where t indicated time-of-year months 1. . .12.

(4)

Midmonth exploitable biomasses—forms 1 and 2:
B1

r,t =
∑

l

∑
s Nl,r,t,swl,svl,r exp −M/2

( )
B2

r,t =
∑

l

∑
s Nl,r,t,swl,svl,r exp −M/2

( )
1 − ur,t/2
( )

(5)

Harvest rate:
ur,t = Cr,t/B1

r,t , where C was a region’s monthly harvest kilograms.
(6)

Prawn vulnerability to fishing:

vl,r =
1

1 + exp d l50
r − l
( )( )

(7)

Fishery data indicators—catch rates:
Fishery (f; kg boat-day21):
cf

r,t = qf
r t( )Br,t exp 1f

r,t

( )
Survey (s; number trawl-shot21):
cs

r=4,y = qs
4
�R4,y 1,2( ) exp −M/2

( )
exp 1s

4,y

( )
for r ¼ 4, fishing months ¼ Oct and Nov

(8)
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Table 4. Definitions and values for the population model parameters.

Model
parameters Equations, values and errors Notes

Assumed The values and errors were calculated from published research or data.
T p4�6 = p4�5

exp r
( )

1 + exp r
( ), where r was an estimated

logit variable.

Transition probability matrix (6 × 6) for moving EKP between regions
r′ � r. The matrix was calculated by aggregating finer scale
probabilities to produce an approximate Markov process at the larger
region scale (Braccini et al., 2012b). Tag– recapture data was too
limited to quantify northern EKP transitions from region 4 to 6. This
probability was estimated to be proportional to the region 4 to 5
transition. Twelve matrices were used to vary movement by
time-month t.

J lat = −32.0,−29.5,−28.5,−26.5,−26.5,−23[ ]
smale = 2.069;sfemale = 2.277

Growth transition matrix allocated a proportion of EKP in carapace
length-class l′ at time t 2 1 to grow into a new length l over one
time-month t. The transitions varied with prawn sex s, region r and
month t, and assumed a normal probability density function (Sadovy
et al., 2007; O’Neill et al., 2010; Punt et al., 2010). The growth model
was based on the latitudinal and seasonal estimates of EKP
(Lloyd-Jones et al., 2012). Their k and u1 parameters were rescaled per
degree of latitude and month. The parameter “lat” specified the
degree latitude for each region and s were the standard deviations of
the monthly growth increment, in millimetre.

L Summary percentiles [2.5 25 50 75 97.5] ¼ 13,
18, 22, 27 and 35 mm.

Proportion of EKP recruitment in length class l (1. . .75 mm). The
proportions were calculated from a lognormal distribution for length
at recruitment, based on region 4 monitoring data in fishing years
2000 and 2007–2010. The frequencies were approximately equal for
male and female EKP (Courtney et al., 2002).

w wl,s = asl
bs/1000,

amale = 0.0017, bmale = 2.7005,

afemale = 0.0021, bfemale = 2.6333

Average EKP weight (kg) at length l for sex s (Courtney, 1997).

f fl = 10 al+b( ) a = 0.0199; b = 4.7528
Fecundity (egg production) at length per female EKP (Courtney, 1997;
Montgomery et al., 2007).

m Summary of maturity schedule:

l50 = 38; l95 = 45 for r = 3, 5, 6

l50 = 40; l95 = 45 for r = 1, 2, 4

Logistic maturity schedule by carapace length (mm) and region. The
schedule was estimated using binomial regression and logit link,
m � Constant + Year + Month + Region/Length; adjusted
R2 ¼ 0.746. The GenStat model terms Year, Month and Region were
factors, while Length was a variate.

u u ¼ [0.15, 0.33, 0.6, 0.6, 0.6, 0.75] Proportion of EKP spawning by region (Montgomery et al., 2007).

Estimated n ¼ 76 The values and their variances and covariances were estimated.
j and Yr ar = E0 1 − h( )/ 4hR0,r

( )
br = 5h − 1( )/ 4hR0,r

( )
R0,r = exp(Yr) × 108

h = exp j( )/1 + exp j( )

Five parameters for the Beverton–Holt spawner-recruitment equation 2
(Table 3), that defined a and b (Haddon, 2001). Virgin recruitment
(R0) was estimated on the log scale separately for regions 1 to 4 in
1958. One estimated logit value of steepness (h) was assumed for the
EKP stock, according to log-likelihood equation 12 (Table 6). E0 was
the calculated overall virgin egg production.

m and k mr for each region 1 to 4.
k1 for regions 1 to 3 (New South Wales).
k2 for region 4 (Queensland).

Six parameters for the estimated mode (m) and concentration (k) of
the monthly (time-months 1. . .12) recruitment patterns, equation
4 (Table 3); according to a von Mises directional distribution
(Mardia and Jupp, 2000).

l50 and d l50
1 for region 1.
l50
2 for regions 2 to 4.
l50
3 for regions 5 and 6.

Four parameters for the estimated logistic vulnerability, equation 7
(Table 3). d governed the initial steepness of the curve and l50 was the
length at 50% selection by region.

M Normal prior distribution One parameter for instantaneous natural mortality month21, according
to log-likelihood equation 13 (Table 6). The prior distribution allowed
for two to three years longevity (Lloyd-Jones et al., 2012), and values
around those used in previous EKP modelling (Lucas, 1974; O’Neill
et al., 2005). Ives and Scandol (2007) summarized estimates of EKP M
ranging from 0.13– 0.35, with values ≥0.24 possibly biased upwards
(Glaister et al., 1990).

r See variable T One parameter for calculating EKP movement from region 4 to 6.
z h = ze

e ¼ zeros(nparRresid, nparRresid + 1);
for i ¼ 1:nparRresid
hh ¼ sqrt(0.5 * i ./ (i + 1));
e(i, 1:i) ¼ -hh ./ i; e(i, i + 1) ¼ hh;
end; e ¼ e ./ hh;

Recruitment parameters to ensure log deviations sum to zero with
standard deviation s, equation 14 (Table 6). z were the 52 estimated
parameters known as barycentric or simplex coordinates, distributed
NID 0,s( ) with number nparRresid ¼ number of recruitment years –
1 (Möbius, 1827; Sklyarenko, 2011). e was the coordinate basis matrix
to scale the distance of residuals (vertices of the simplex) from zero
(O’Neill et al., 2011).

Continued
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Annual profit was calculated as the harvest value minus the vari-
able and fixed costs:

py =
∑

r

∑
t

∑
l

vr,t,lCr,t,l −VV
r,t

( )(

+ �B
by
r 1 − cL( )Er,y − VF

r,y

Er,y

�dr

r

( ))

where vr,l,t was the average price received by fishers for EKP in
region r, time-month t and length class l (Figure 3), Cr,t,l was

the EKP harvest weight, VV
r,twas the total variable costs, �B

by
r was

the average by-product value ($) taken each boat day, cL was the
share of the catch paid to crew members (a labour cost), Er,y was

the total annual boat days fished, VF
r,y the average annual fixed

costs, �d was the mean number of days fished per boat year and
r was the fraction of fixed costs allocated to the EKP fishery

(Table 2). The division by �dr allowed the annual number of vessels
to change based on profitability.

Variable costsVV
r,t were calculated by region r and time-month t.

This included the proportional labour cost (cL), cost of packaging
and marketing (cM) per unit weight of catch, cost of repairs and
maintenance per boat-day (cK), fuel cost per boat-day (cF), and
other incidental costs per boat-day (cO) (Table 2):

VV
r,t =

∑
l

cL,rvr,t,l + cM,r

( )
Cr,t,l + cK,r + cF,r + cO,r

( )
Er,t .

Average annual fixed costsVF
r,y were calculated using regional vessel

costs (Wr), and opportunity (o) and depreciation (d) rates on
average total investment value per vessel (Kr,y) (Table 2):

Table 4. Continued

Model
parameters Equations, values and errors Notes

qf
r t( ) and

qs
4

qf
r t( ) = exp log qf

r

( )
− 6 cos t( ) + qr sin t( )( )/

��������
1 + q2

r

√( )
t = 2p seqmonth/12

Fishery catchability was based on a sinusoidal function to model
monthly patterns using the variable ‘seqmonth’. As the maximum
water temperature was in February, seqmonth ¼ 1 in March
and ¼ 12 in February. The equation controlled the amplitude (6)
of catchability across regions, but allowed for different peaks (qr)
(7 parameters estimated). The equation was divided by a square root
term to ensure the parameters were not periodic. Each region’s
overall catchability qf

rwas calculated as closed-form mean estimates
of standardized catch rates divided by the midmonth biomass form2
(Table 3) (Haddon, 2001). Survey catchability was a single closed-form
mean of standardized survey catch rates divided by region 4
recruitment adjusted by exp (−M/2) .

Table 5. Negative log-likelihood functions for calibrating population dynamics.

-LL functions for: Theory description Equations

Log standardized catch rates (cf or cs):

n

2
log 2p( ) + 2 log ŝ( ) + 1
( )

, or simplified as n log ŝ( ),

where ŝ =
���������������������������∑

log c( ) − log ĉ( )
( )2
( )

/n

√
and n was the number of monthly catch rates.

Normal distribution
(Haddon, 2001)

(9)

Length (l) and box-grading (g) size-composition data:

−
∑

log n ñ−1( )/2
( )

− 1

2
ñ − 1( ) n

n̂

( )( )
, or simplified as

−
∑

1
2 ñ − 1( ) log n− n/n̂

( )
,

wherẽ n was the total number of size categories (l or g) with proportion-frequency . 0,
n̂ = ñ − 1( )/2

∑
p̂ log p̂/p

( )
, n = max 2, n̂( ) specified sample size bounds, p̂ were the observed

proportions . 0 and p were predicted.

Effective sample size
(n) in
multinomial
likelihoods
(O’Neill et al., 2011)

(10)

Preventing unrealistically large population estimates and low estimates
of harvest rate:

0.5
ũ − max CNy/Ry

( )
s

( )2

b, where ũ was the minimum annual harvest fraction 0.2, s was the user defined std

for penalty weighting (0.005), CNy was the annual total number of EKP caught over the regions, Ry the annual
recruitment, and b was a logical switch for max CNy/Ry

( )
, ũ. The penalty was applied between 1992 and

2010.

Optimization penalty
(Hall and Watson,
2000)

(11)
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VF
r,y = Wr + (o + d)Kr,y

( )
.

Annual vessel costs (Wr) were not related to fishing effort. They
were the sum of costs needed to support a vessel before fishing.

Simulation and management procedures
Model simulations were used to estimate management reference
points and evaluate proposed management procedures. The simu-
lations were driven by forward projection methodology similar to
Richards et al. (1998). To drive the simulations from 2011–2020,
1000 multivariate length-spatial parameter estimates were created
from the MCMC covariance matrix. For economics, 1000 random
variations on Table 2 were generated based on each variable’s vari-
ance. The parameters were used to simulate future uncertainties, in-
cluding stochastic recruitment.

Equilibrium reference points for MSY and MEY were calculated
by optimizing the population and economic models through mean
monthly fishing mortality proportional to fishing effort. All

parameter uncertainties as outlined above were included except sto-
chastic recruitment variation. The population dynamics were pro-
pagated to equilibrium using the mortality rates and monthly
fishing pattern calculated from data from the five years 2006–2010.

Nine management procedures were developed by consultation
with fishery managers and stakeholders (Table 7). They utilized one-
month trawl closures, a cap on total fishing effort, and within-year
catch-rate control rules. Management procedures 1 to 4 represented
status quo total fishing effort and compared alternative one-month
regional EKP closures. Procedure 5 contrasted procedure 4 with
reduced total fishing effort at EMEYfv (�d). Procedures 6 to 9 used re-
gional MSY and MEYv catch rate control rules to manage total
fishing efforts of EMSY and EMEYfv (�d).

In addition, the management procedures were replicated in two
scenarios: (A) 1–9 under 2010 fishing costs and fishing power, and
(B) 10–18 under 3% p.a. increased costs and power. In total, 18 cases
were simulated (nine management procedures by two economic
scenarios) to assess management performance over ten years.
Each case was evaluated using six performance measures grouped
into three pairs: (i) industry functioning: average annual harvest
and effort; (ii) economics: relative net present value (NPV) and
average catch rates; and (iii) 2020 population status: spawning egg
production and exploitable biomass. The NPV calculated over all
future years was used in order to record a long-term benefit for
fishing EKP after 10 years, whereas the other performance measures
were averaged over 10 years to provide a shorter-term perspective.

For management procedures 6 to 9 (Table 7), closures for differ-
ent areas were calculated based on catch rate thresholds:

mr = first month cf
r,m , climit

r,m

( )
+ 1,

where cf
r,m was the fishery standardized catch rate (kg) for region

r and month m, crlimit
r,m was the standardized catch rate reference

point for either MSY or MEYv, and +1 month provided industry
time to prepare for area shut down. The first two months of the
fishing year, November and December, were always open.

Simulated total fishing effort was split across regions and months
based on historical patterns. A beta distribution was assumed for

Table 6. Negative log-likelihood functions for parameter bounds
and distributions.

-LL functions for: Equation

Stock recruitment steepness h:

0.5
logit h( ) − logit 0.5( )

s

( )2

, where s ¼ 0.7 defined a

broad prior distribution.

(12)

Instantaneous natural mortality M month21:

0.5
M − 0.2

s

( )2

, where s ¼ 0.05 defined the prior

distribution � 28% CV.

(13)

Annual log recruitment deviates hy:
n

2
log 2p( ) + 2 log s( ) + ŝ/s

( )2
( )

, or simplified as

n logs+ 1
2 ŝ/s
( )2

( )
,

where s = min max ŝ,smin( ),smax( ), smin = 0.1 and

smax = 0.4 specified bounds, ŝ =
���������∑

h2
y/n

√
and n was

the number of recruitment years y.

(14)

Table 7. Eastern king prawn management procedures developed by consultation and simulated over ten future years.

Management brief

Management procedures

Total effort
(max boat-days) Regions closed

Month closed
(month number)

1. Status quo. Max last five years,
∑

≈ 30 000 Qld (area 4) Oct (12)
2. Close NSW southern and Qld inshore waters in January. Max last five years,

∑
≈ 30 000 NSW (area 1)

Qld (area 4)
Jan (3)

3. Close Qld waters in January. Max last five years,
∑

≈ 30 000 Qld waters
(areas 4 to 6)

Jan (3)

4. Close all NSW and Qld waters in January. Max last five years,
∑

≈ 30 000 All waters
(areas 1 to 6)

Jan (3)

5. Limit total effort to EMEYfv, and close all
waters in January.

EMEYfv ≈ 8000 All waters
(areas 1 to 6)

Jan (3)

6. Limit total effort to EMSY, and close regional
waters on MSY catch rate thresholds.

EMSY ≈ 38 000 Variable
mr to Oct (12)

7. Limit total effort to EMEYfv and close regional
waters on MSY catch rate thresholds.

EMEYfv ≈ 8000 Variable
mr to Oct (12)

8. Limit total effort to EMSY, and close regional
waters on MEYv catch rate thresholds.

EMSY ≈ 38 000 Variable
mr to Oct (12)

9. Limit total effort to EMEYfv and close regional
waters on MEYv catch rate thresholds.

EMEYfv ≈ 8000 Variable
mr to Oct (12)
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variation and implementation error below maximum Estatus-quo and
EMSY total fishing efforts; based on the ratio of 2006–2010 fishing
effort to Estatus-quo. If a region was closed to fishing, a proportion
of that fishing effort was reallocated to other regions based on prob-
abilities calculated from logbook tallies of each vessel’s regional
pattern of fishing.

Results
Model calibration and description
The length–spatial model predicted that historical EKP spawning
egg production and exploitable biomass, expressed as a median
ratio relative to 1958, had declined roughly 40–50% up to 1985
and remained steady through to 2006. The median ratios had
increased since 2006, and in 2010 were 60–80% of 1958 levels.

The model fitted the EKP fishery standardized catch rates rela-
tively well, although region 2 EKP catch rates were less seasonal
and less predictable (Figure 4). Standard deviations of log-residuals
were 0.34, 0.39, 0.24, 0.33, 0.18 and 0.16 for regions 1 to 6 respect-
ively; they were larger in NSW compared with Queensland, and
region 4 deviations were inflated by the more variable pre-1989
catch rates from voluntary logbook records. Model calibrations
were not influenced by the region 4 EKP recruitment indices due to
the limited 5-year time-series (standard deviation of log-residuals¼
0.21). Estimated effective sample sizes for the length- and grading-

frequency data were typical for fisheries data (Pennington and
Vølstad, 1994), and indicated that prawns within the samples were
correlated, not necessarily that the model didn’t fit the data
(Figures 5 and 6). For region 6 where large EKP were caught, the
model predicted the grading data very well (Figure 6).

Roughly 56% of EKP recruitment to the fishery was estimated to
enter region 4, 13% in region 1 and 30% in region 2, with little recruit-
ment occurring in region 3 (Table 8). Recruitment steepness was cali-
brated at 0.36. Typical recruitment modes were estimated in February,
December, October and December for regions 1 to 4 respectively.
No large yearly variation in catch rates was evident and annual log re-
cruitment standard deviation was estimated at 0.12. EKP mean cara-
pace length at 50% vulnerability was 21 mm in region 1, 25 mm in
regions 2 to 4 and 35 mm in regions 5 and 6. Instantaneous natural
mortality was calibrated to 0.184 month21.

Catchability was estimated to peak in January with a low in
July for regions 1, 3, 5 and 6. Region 4 catchability peaked in
March, with a low in September. The regional amplitude in catch-
ability in these regions was estimated at 20%. Region 2 catchability
was less seasonal.

Reference points for MSYand MEYare presented in Table 9. The
MEY results were highly dependent on the specified economic
parameters, listed in Table 2. The variability in MEY was tabulated
for the average number of days currently fished per boat per year

Figure 4. Eastern king prawn observed (standardized) and model-predicted catch rates for each spatial region and month.
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(�d, Table 2), twice this number (2�d) and for variable costs only
(Table 9). The level 2�d was included as a relevant illustration for
potential effort per boat if the fleet vessel numbers were
reduced to allow each vessel much higher fishing capacity. The
MEY effort estimates ranged between 7000 and 20 000 boat-days;
the lower estimates were applicable for lower values of �d, and
higher fishing costs and power. Fishing effort in 2010 was about
24 000 boat-days.

Mean catch rate reference points, corresponding to MSY and
MEY, are plotted in Figure 7. Two versions of MEY catch rates were
calculated: one maximized fishing profit against variable costs only
(labelled as MEYv), while the other maximized against both variable
and fixed costs (labelled MEYvf and dependent on �d). These reference
points were used as catch-rate thresholds for simulating management
procedures 6 to 9. Retrospectively, the catch-rate reference points sug-
gested consistent profitable catch rates in the last three years, 2008–
2010, across all regions.

Simulation of management procedures
The results of simulating management procedures were as follows
(see Figure 8 and the probabilities of catch-rate control rules
closing fishing regions, plotted in Figure 9):

Figure 5. Eastern king prawn observed and model-predicted harvest length frequencies for each region. The plot frequencies were summed over
sexes and by effective sample numbers for the months with available data. Mean number of prawns measured (n) and effective numbers (neff) per
sex and month are shown.

Figure 6. Eastern king prawn observed and model-predicted
frequencies of harvest size grading data from Queensland offshore
north waters (region 6). The plot frequencies were summed by effective
sample numbers over 136 monthly prawn-size-box frequencies. Mean
sample number of 5-kg boxes graded (n) and effective numbers (neff)
per month shown.
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Management procedures 1 to 4 (maximum Estatus-quo ≈ 30 000 boat-
days year-1)

† There were no significant changes in EKP performance measures
(cases 1–4 and 10–13), except that profit under increasing
fishing costs and fishing power (cases 10 to 13) declined about 20%.

† Expected annual harvests were � 3000 t, at a catch rate of 110 kg
boat-day21.

† Management by regional monthly closures, with status quo
fishing effort, resulted in no change in egg production or exploit-
able biomass.

Management procedure 5 (EMEYfv ≈ 8000 boat-days year21)

† Compared with procedures 1 to 4, there were 35–50% increases
in profit, catch rates, spawning and biomass (cases 5 and 14).

† Annual harvests were more than halved at � 1300 t.

† Reduced fishing effort provided larger overall profit but smaller
total harvest.

Management procedure 6 (EMSY ≈ 38 000 boat-days year-1 and
CPUEMSY control rules)

† Compared with procedures 1 to 4, there were no significant
changes in performance measures (cases 6 and 15).

† Annual harvests and fishing efforts were highly variable.

† The probability of closing fishing regions after April (half
way through the fishing year) was high. The region 4 closure
probability was over 50% after February. Increasing fishing
costs and fishing power did not significantly change the closure
probabilities.

† Catch rate control rules maintained the population status by
reducing the length of the fishing season.

Management procedure 7 (EMEYfv ≈ 8000 boat-days year21 and
CPUEMSY control rules)

† Results (cases 7 and 16) were similar to management procedure 5,
with 35–50% increases in profit, catch rates, spawning and
biomass compared with procedures 1 to 4.

† Annual harvests were more than halved at � 1300 t from 8000
boat-days.

† The probabilities of regional closures were substantially less com-
pared with procedure 6 using EMSY. Regions 1 and 4 had nearly a
20% chance of closure after June. The probabilities were , 5%
for regions 5 and 6.

† Reduced fishing effort together with catch-rate control rules
maintained higher and more profitable EKP population than
status quo. Spawning and biomass levels were not significantly
higher compared with procedure 5.

Management procedure 8 (EMSY ≈ 38 000 boat-days year21 and
CPUEMEYv control rules)

† Compared with procedures 1–4 and 6, there were significant
reductions in total fishing harvest and effort (cases 8 and 17).
Relative profit, catch rates, spawning and biomass levels were
all higher.

† Annual harvests were � 1600 t, and total effort was managed
at � 13 000 boat-days.

† The probability of closing fishing regions after February
(4 months into the fishing year) was high.

† Catch rate control rules maintained a higher EKP population
status by reducing the fishing year, resulting in a typical closure
from March to October.

Management procedure 9 (EMEYfv ≈ 8000 boat-days year21 and
CPUEMEYv control rules)

† This management resulted in the highest catch rates, spawning
and biomass (cases 9 and 18).

Table 8. Parameter estimates and standard errors for the model
calibration − log l = −3253.7;sr = 0.115

( )
.

Parameter Estimate Standard error Estimate transformed

j 20.568 0.089 0.362
Y1 0.289 0.206 1.335
Y2 1.171 0.103 3.225
Y3 22.713 0.48 0.066
Y4 1.772 0.083 5.884
m 1 4.361 0.141 4.361
m 2 1.918 0.153 1.918
m 3 21.165 0.259 21.165
m 4 1.949 0.112 1.949
k1...3 1.573 0.132 1.573
k 4 0.819 0.071 0.819
l50
1 20.671 0.661 20.671

l50
2...4 24.483 0.731 24.483

l50
5...6 35.551 0.193 35.551

d 0.921 0.027 0.921
M 0.184 0.005 0.184
r 0.939 0.281 0.719
6 0.196 0.012 0.196
q1 20.455 0.279 20.455
q2 1.261 0.236 1.261
q3 20.876 0.273 20.876
q4 0.521 0.307 0.521
q5 20.800 0.137 20.800
q6 20.356 0.179 20.356

Table 9. Estimated management quantities (95% confidence
intervals) for the model calibration.

Quantities
a) Constant 2010
fishing costs and power

b) 3% year-1 increased
costs and power

Harvest (t)
MSY 3100 (2454:3612) 3100 (2454:3612)
MEYvf

�d
( )

1253 (641:1854) 1453 (905:1949)
MEYvf 2�d

( )
1909 (1497:2273) 1962 (1564:2324)

MEYv 2521 (2176:2828) 2470 (2121:2806)

Annual fishing effort (boat-days)
EMSY 38 002 (27 035:50 754) 28 300 (20 110:37 663)
EMEYvf

�d
( )

7470 (3577:11158) 6667 (3970:9531)
EMEYvf 2�d

( )
12 869 (9425:16467) 9972 (7501:12565)

EMEYv 19 892 (15 552:24 049) 14 307 (10 977:17 676)

The estimates were replicated to describe two scenarios over future years:
a) constant 2010 fishing costs and fishing power, and b) 3% year21 increased
costs and power. Variation in maximum economic yields (MEYvf : including
both variable and fixed costs) are shown for the 2010 average number of days
fished per boat per year (�d, Table 2), twice (2�d) average number of days and
variable costs only (MEYv: fixed costs and �d cancelled from profit equation py).
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† Compared with procedures 1 to 4, relative profit was � 50%
higher.

† Annual harvests were the lowest of all management procedures, at
about 1100 t, with � 6000 boat-days effort.

† The closure probabilities were higher compared with procedure 7
with the same fishing effort.

† Despite the lower fishing effort, the catch-rate control rule still
reduced the fishing season, with a typical closure from March
to October.

Discussion
The results provide a major advance over the previous assessment
(O’Neill et al., 2005; Ives and Scandol, 2007), in that EKP has
been assessed as a whole stock transcending jurisdictional borders
and operational economics have become a research focus. The
results outlined management paths to keep EKP fishing sustainable
and more profitable.

Our stock steepness estimate of 0.36 (Table 8) was in line with
other Penaeid prawn analyses reported by Ye (2000). This is an im-
portant parameter describing the relationship between annual

spawning (egg production) and the following year’s recruitment
(number of new prawns entering the ocean fishery). In Australia,
estimates of steepness in the Northern Prawn Fishery have ranged
from 0.26–0.36 for the two species of tiger prawns (Dichmont
et al., 2001), and the estimate for tiger prawns in the Torres Strait
was 0.46 (O’Neill and Turnbull, 2006). Previous analyses of EKP
steepness compared values of 0.56, 0.4 and 0.37 and showed man-
agement implications of low steepness (O’Neill et al., 2005). The
longer assessment time-series, compared with O’Neill et al. (2005)
and Ives and Scandol (2007), allowed more accurate estimates of
EKP productivity.

Management procedures
In the simulations, management procedure 7, which used EMEY

and CPUEMSY, performed the best in the sense of increased fleet
profit and catch rates, and low probability of regional closures.
This was followed closely by management procedure 5 which used
EMEY with a January fishing closure. For these procedures, com-
bined fleet profit, catch rates, spawning egg production and
biomass were all significantly higher than status quo. They were
also robust to future increases in fishing costs and fishing power.
Management procedure 9 resulted in similar increased profit and

Figure 7. Mean monthly catch rate targets for maximum sustainable yield (MSY), maximum economic yield for variable costs (MEYv) and MEYvf

(d̄) for variable plus fixed costs by fishing region. Catch rates were standardized to 2010 fishing power.
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catch rate, but less predictability with potentially short fishing
seasons.

A major finding is that it is important to limit fishing effort to a
level less than EMSY: catch rate control rules were effective under
EMEY but much less so under EMSY, where they successfully
reduced effort but caused uncertain harvest and often closed
fishing regions midyear.

The setting of the catch-rate trigger required knowledge of where
and when EKP were abundant and information on profitable catch
rates (Figure 7). In general, EKP recruitment and movement dy-
namics were known (Braccini et al., 2012b). However, year-to-year
variation in timing of recruitment and movement dynamics may oc-
casionally reduce catch rates. No cost-effective monitoring was
available to guard against such circumstances, which produce mis-
leading abundance signals. We note that Walters and Martell (2004)
caution that in-season management procedures should be used with
care in managing total harvests and efforts.

Notwithstanding the above limitations, CPUEMSY, in combin-
ation with an effort limit of EMEY, was found to be an appropriate
trigger point given significant catch-rate observation error. This

trigger point minimized management mistakes due to data errors.
Even so, these controls alone may not always be a safeguard
against unpredictable situations or issues. Regional changes in
fishing effort should be monitored carefully given that hyperstability
bias can be caused by temporal changes in fishing power (catchabil-
ity) and where and how vessels fish.

Analysis showed that single-month fishing closures were not ef-
fective at improving industry harvests, economics or population
status. However, specific spatial or seasonal closures could still be
considered in order to provide vessel repair time for the fleet and
to reduce the harvest of small prawns.

An additional ability of the stockoperating model was to estimate
management procedures for optimal allocation of regional and sea-
sonal levels of fishing, assuming a single jurisdiction. At the time of
this research, such predictions were not desired. Fishery managers
and stakeholders tabled specific procedures to evaluate (Table 7),
with no major alterations to traditional fishing patterns; particularly
early-season fishing for Christmas markets. In addition, stakeholder
objectives included free movement of vessels, high catch rates, valu-
able licence units, and equitable access (Dichmont et al., 2013).

Figure 8. Performance measures over ten future years for nine different EKP management procedures (Table 7); boxes 1–9 are for scenario A (2010
costs and fishing power) and 10 –18 scenario B (3% increases in both costs and fishing power). The first row of plots (a) and (b) represented industry
functioning, the middle plots (c) and (d) indicated economic conditions, and the bottom plots (e) and (f) measured population change. The
relative measures in plots (c), (e) and (f) were scaled against status quo strategy 1 (median ¼ 1). The plots display the simulated distributions (1000
samples) around their medians (line in the middle of each box). The bottom and top of each “box” were the 25th and 75th percentiles. The whisker
length indicated �95% coverage of the simulations.
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Even though optimal-allocation procedures were not of current
interest for EKP, their governance design could be of future benefit
across fisheries; for hypothetical examples see (Dichmont et al.,
2013). Modelling of innovative patterns of regional and seasonal
fishing across fisheries may identify new ways of increasing profit
for the fleet as a whole, avoiding excess harvest of small prawns,
and improving efficiencies of management and monitoring.
Evaluation would require further model dynamics to allow for
vessels fishing other otter-trawl sectors in Queensland, including
Moreton Bay, saucer scallop, red-spot king prawn and tiger
prawn, and catching other valued species in New South Wales,
such as cephalopod, school whiting and school prawn.

Reference points
Simulation identified that spawning egg production (S) and exploit-
able biomass (B) ratios were above reference limits of 50% virgin
S1958 and 40% virgin B1958. MSY was estimated at � 3100 t.
Fishing effort estimates for EMSY ranged from 38 000 down to 28
000 boat-days, dependent on the trend in fishing power.
Considering decadal management and a potential strong upward
trend in fishing power, it would be safer to take EMSY as � 28 000
boat-days per year. These values were similar to those estimated
by O’Neill et al. (2005). The uncertainty surrounding the value of

EMSY was typical for a fisheries assessment, and confirmed that
target fishing efforts should not approach this limit due to risks of
overfishing and less profitable catch rates (Garcia and Staples, 2000).

Estimates of MEY for EKP were strongly influenced by the
reported high costs (variable and fixed) of fishing, the assumed
average number of days fished per vessel year (�d) and fishing
power. The ratio of MEY to MSY was especially influenced by the
high annual fixed costs (Table 2). The MEY ranged between 1300 t
and 2000 t and EMEY between 7000 and 13 000 boat-days.
A higher value of �d significantly increased profit, but reduced the
number of vessels, which may negatively impact social objectives
of the fishery (Wang and Wang, 2012; Pascoe et al., 2013).
Operationalizing MEY in a fishery requires an agreed set of rules,
assumptions and strong industry commitment (Dichmont et al.,
2010). For MEYv (estimate for MEY under variable costs only), esti-
mated tonnages were higher at � 2500 t and EMEYv between 14 000
and 20 000 boat-days per year.
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Appendix III: Integrating finite mixture and catch curve models for 
estimation of survival indicators of stout whiting (Sillago robusta) 
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Abstract 

A new catch curve methodology is described for estimating annual rates of fish 

survival. The method analyses individual fish age-abundance data such as length 

and age by using Gaussian finite mixtures. It was designed to overcome fishery 

dependent sampling issues, assuming only that fish ages within each length 

category were sampled randomly and that fish lengths themselves were not. The 

analysis quantified improved survival rates of stout whiting in waters along 

Australia’s east coast. Estimated survival rates stabilised at about 40-50% between 

2009 and 2012, compared to lower estimates below 40% prior to the year 2003.The 

catch curve mixture model applies naturally to monitoring data on fish age-

abundance and is applicable to many fisheries. 

 

Keywords: catch curve, finite mixture model, fish survival, fish mortality, stout 

whiting, Australia 
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Introduction 

Routine stock assessments are required to monitor indicators of fishing pressure to 

service management of many fisheries globally. Often a time series of age-

abundance data are used to quantify indicators of fish survival or mortality; where 

fish survival (S) refers to the ratio of abundance between older and younger age 

groups and the antonym is fish mortality and equal to ( )log S− . Fish survival can be 

quantified from age-abundance data using a range of methods from complex 

statistical population models (Maunder and Punt, 2013) to simpler catch curve 

methodologies (Smith et al., 2012). If commercial or recreational sectoral 

components of data are sampled inconsistently or missing, then estimation of 

reliable indicators of survival can be difficult. Issues of inconsistent or missing data 

are relevant for many fisheries and may limit assessments of fish survival from 

simple analyses of age-abundance data. 

Catch curve analysis is one of the most simple and fundamental tools commonly 

used to estimate fish survival or mortality. The catch curve literature is vast, with 

recent reviews, recommendations and updates published by Millar (2015) and Smith 

et al. (2012). Comparable methods for fitting equilibrium age-structured dynamics to 

time series of fish age-abundance data have also been applied (Fay et al., 2011). 

The methods analyse patterns of fish age abundance to assess the survival of fish 

from age a to age a+1 year-by-year (cross-sectional) or by cohorts (longitudinal). 

The historical use of these methods and their estimates in fishery management is 

mixed due to scientific concerns over their steady state assumptions of constant 

recruitment and mortality through time. 

These scientific concerns, together with issues of inconsistent and missing fishing 

data, have resulted in developing a modernised catch curve methodology to estimate 

annual survival fractions of stout whiting (Sillago robusta). The new method is 

described with application to real fish age-abundance data (not simulated) where the 

variability in sampling was dependent on fish retained by a small fleet of vessels 

(vessels identified with a Queensland stout whiting sector licence) and their 

individual spatial-temporal patterns of fishing. This complex but interesting case 

study fishery provides insights on a catch curve analysis modified to overcome 
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issues associated with the sample collection of fishery dependent age-abundance 

data and to evade steady state assumptions. The catch curve methodology was 

developed from earlier model versions described in Appendix IV (supplementary 

material). 

Stout whiting are small schooling demersal fish caught commercially using Danish 

seine and otter-trawl methods in subtropical waters along the central east coast of 

Australia. There are three fishing sectors catching stout whiting and each has 

different practises, fishing powers and data recording instructions. The sectors are: 

1) The Queensland stout whiting sector (T4) commenced target fishing in 

1981, with a maximum of five vessels and catch-at-age monitoring 

authorised each year since 1991. Annual assessments of total allowable 

catch (TAC) have been conducted since 1997 limiting harvests below 1300 

t and down from the peak harvest of 2400 t in 1994. 

2)  The Queensland eastern king prawn (Melicertus plebejus) shallow water 

sector (T1) commenced ~ 1958 and historically consisted of between 100–

300 vessels annually (O'Neill et al., 2014), where significant quantities of 

stout whiting are taken as non-target by-catch, discarded and not reported. 

Preliminary estimates of discards ranged 1000–2000 t in the years 2002–

2004 (unpublished data; M. F. O’Neill, G. M. Leigh and A. J. Courtney). 

3) The New South Wales fishing sector (TNSW) consisted of about 100 licences 

catching both stout whiting and eastern king prawns annually since 1958. 

Stout whiting annual harvests of 150–600 t were only identified and 

reported suitably since 1997. No age-abundance monitoring was 

conducted. 

Due to missing sectoral and time-series data, past assessments of stout whiting 

have focused on simple cross-sectional catch-curve survival indicators calculated 

from an annual time series of T4 catch-at-age proportions. The age proportions were 

determined by length-mediated estimation (Francis and Campana, 2004; Francis et 

al., 2005), with a random sample of fish length frequencies converted to an age 

distribution using an otolith based age-length key for each year. Over recent years 

inconsistent changes in the time series between sampled fish length frequencies and 
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age-length data had become more obvious once analysed in detail (Fig. 1). The 

patterns of age structure shifted to older fish from the year 2005 (Fig. 1c), which was 

not evident in the length of fish harvested (Fig. 1a). Much older fish were observed in 

the years 2002 and 2010 compared to their surrounding years (Fig. 1c). The lengths 

of fish harvested was generally similar between years, noting larger fish were caught 

in the 1995, 2006 and 2010 fishing years (Fig. 1a) without any clear change in the 

overall seasonal or spatial pattern of fishing. The narrow 50th percentile range of fish 

lengths sampled each year (Fig. 1a) suggested high sample correlation and small 

effective sample sizes from the wider fishery area. 

The inconsistencies between some years of sampled compositions of fish lengths 

and age-length data are attributed to high sample correlation, small effective sample 

sizes and subtle changes in patterns of fishing by fishers. These issues can result in 

a collection of data that are not random samples of the length composition of the fish 

population, thereby justifying the decision to not analyse the length composition data 

and develop a method that does not rely on the assumption that fish lengths are 

randomly sampled. 

Therefore the aim of this paper was to develop a new catch curve analysis to 

estimate fish survival directly from only the more informative individual age-length 

samples (without the length frequency data Fig. 1a). This was achieved by joining 

Gaussian finite mixture, von Bertalanffy growth and catch curve methodology. The 

new methodology demonstrated improved estimates of fish survival, which was less 

varied, compared with including other length and catch rate data (see Appendix IV 

supplementary material and results). For fisheries that monitor fish age-abundance, 

the data issues, methodology and results herein provide further options for 

estimating indicators of fish survival. 

Materials and methods 

Catch curve mixture model 

Catch curve analysis is the process to assess the survival of fish age a to age a+1 

using changes in catch-at-age data (Hilborn and Walters, 1992). The catch curve 
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mixture model does this using contemporary statistics without the steady state 

assumptions of constant recruitment and survival. The objective of the analysis was 

to estimate annual survival fractions from individual fish age-length samples. This 

was achieved so that the model analysis was conditioned on the assumption that fish 

ages within each length category were sampled randomly and no longer assumed 

that the lengths themselves were sampled randomly from the fish population. This 

assumption aimed to overcome fishery dependent sampling issues. 

For standard Gaussian finite mixture models, estimates of mixing proportions iπ , 

means iµ  and variance matrices iV  define the components i and posterior score 

probabilities τ  that form a multivariate normal distribution (McLachlan and Peel, 

2000). Expectation Maximization (EM) algorithm is often used to derive the 

maximum likelihood estimates ( iπ , iµ  and iV ), using software procedures like 

‘gmdistribution’ in Matlab® (MathWorks, 2014) and ‘EMMIX’ in R (McLachlan et al., 

2013), when grouping assignments for i are identifiable. However, for many fisheries 

data the sampled distributions of fish length usually appear with little contrast or 

separation (unimodal) to estimate the number of age components i freely and 

accurately. Therefore parametric adjustment to the model means iµ  is proposed so 

that 1i iµ µ +<  is logically maintained to help identify components i. 

For the stout whiting analysis, we had multiple years k of sequential mixed data jky  

(samples of matching lj: fork length mm and aj: age-group) for each fish j (Fig. 1b 

and c). The number of sampled aged fish in each year 1991–2013 is denoted kn , 

with mixing proportions kiπ  for each year k and fish age component i, mean length at 

age iµ , variance of mean length at age V  and individual posterior scores ijkτ  for 

each fish j; where age component label 1 9i =   corresponded to age groups 

0 8a =   years old and 1ijk
i
τ =∑ . Posterior scores for each fish are the probabilities 

(likelihood) of each age components i given the individual fish’s length lj. 

The following assumptions were required to enable the analysis herein and to outline 

the approach for stout whiting: 
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• Mean fish length at age and constant variance was and based on a externally 

estimated von Bertalanffy growth curve, 

• The number of age components was assumed known and fixed from the data, 

• The catch curve approach assumed constant selectivity and that fully 

recruited fish experience a constant survival rate within a cohort, and  

• Survival rates measured the combined effects of both fish mortality and cohort 

strength. It was not assumed that cohort strength was constant over years. 

The algorithm for finding maximum likelihood parameter estimates of fish survival 

was implemented in Matlab® (MathWorks, 2014) using the equations in Table 1 as 

follows: 

1. Calculate and set values for von Bertalanffy growth curve iµ  and V . 

2. Define the first fully recruited age component r for catch curve calculation; 

the peak-plus criterion was used for stout whiting r = 3 (Smith et al., 2012). 

3. Tally the observed numbers of aged fish kin  for each year k and age 

component i. 

4. For non-recruited fish i < r, calculate initial values ki ki ki
i

n nπ = ∑  and 

1

1
1

r

k ki
i

β π
−

=

= −∑ . 

5. Calculate initial values for survival fractions Sq for fully recruited fish i r≥  

(equation 1, Table 1). Here the subscript q replaces k to represent survival 

fractions that can also be calculated for years before k=1; from the kin  

diagonal cohort calculations. 

6. Calculate initial values ˆkiπ  for i r≥  (equation 2). 

7. EM algorithm (loop calculations until estimates ˆkiπ  and ˆ
qS  converge): 

a. Calculate ijkτ  from the mixture density function (equation 3). 

b. Calculate kin  (equation 4). 

c. Update ˆkiπ  for i r<  and kβ  (equations 5 … 8). 

d. Calculate ˆ
qS  (equation 9). 
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e. Update ˆkiπ  for i r≥  (equation 2). 

The calculation of annual fish survival ˆ
qS  followed cohort abundances (diagonals of 

the truncated ˆkin matrix for i r≥  ; equations 1 and 9, Table 1). In equation 1 initial 

values for ˆ
qS  were obtained by comparing two diagonal vectors of cohort 

abundance. Initial ˆ
qS  was the sum abundance of cohort q divided by the sum 

abundance of the next younger cohort q+1 in the same years for fully recruited fish. 

To obtain maximum likelihood estimates for ˆ
qS  the update calculations in equation 9 

were expanded across the truncated ˆkin  matrix so that the observed and fitted 

numbers match when summed over every diagonal. Equation 9 matched the fitted 

numbers to the observed ratio of the number of fish in cohort q to the number in all 

cohorts older than q, where the numbers are summed over all years in which cohort 

q occurs. The final estimated survival fractions ˆ
qS  applied to a cohort in the year 

between when it became fully recruited and when the next younger cohort became 

fully recruited. Therefore Sq cannot be calculated for the final year of data. For 

confidence intervals on ˆ
qS , the observed data were resampled at random with 

replacement to generate 500 separate data sets. Each data set was analysed and 

results stored. Simple 95% confidence intervals were calculated from the distribution 

of results. 

For this model analysis of stout whiting the direct estimation of von Bertalanffy 

length-at-age parameters and variance was not considered feasible. This was 

because the model was conditioned on the assumption that fish ages within each 

length category were sampled randomly and no longer assumed that the lengths 

were randomly sampled; the conditional model contained no information on length at 

age (as opposed to age at length). Therefore survival results were compared for 

three growth settings: a) 022.622, 0.293, 2.342, 3.429l t Vκ∞ = = = − = ; b) 

020.579, 0.321, 2.668, 3.429l t Vκ∞ = = = − = ; c) 020.579, 0.321, 2.668, 1.647l t Vκ∞ = = = − = . 

The growth parameters for setting a) were estimated separately outside the catch 

curve model using the same age-length data (Fig. 1b and Fig. 1c). Settings c) were 

estimated from catch curve mixture model 2, which included all length frequency and 
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otolith age data (Appendix IV: supplementary material). Settings b) were a 

combination of a) and b). 

Age data 

Stout whiting length and age sampling from the T4 sector was conducted in 1993–

2013 following long term monitoring protocols (Department of Primary Industries and 

Fisheries, 2007). The sampling was ‘fishery-dependent’, with two 5kg boxes of fish 

collected from each T4 vessel’s fishing trip. The provision of boxes-of-fish was 

dependent on each vessel’s pattern of operation with one box typically from a night-

time catch and the other from a day-time catch. The sample times and locations 

were not controlled, but ungraded (random) fish were supplied from the catch. Any 

fisher processes of sorting, packing and discarding fish were specified to be 

separated from the monitoring sample. All fish from each box sample were 

measured as fork-lengths (mm) for length frequency. From each box, 1 to 3 fish from 

every 5mm size class were dissected to extract otoliths for aging until a subsample 

of about thirty fish per size class per year was achieved (length stratified sampling). 

Historically, the number of fish sampled each year ranged between 300–500 for 

aging and 3000–20000 for length frequencies dependent on the amount of fishing 

and catch (Fig. 1). For fish age determination, both otoliths were removed and 

cleaned, with only the left otolith sectioned. All otolith reading was done without 

knowledge of fish size, date or location of capture. Age estimates were counts of 

complete opaque rings. In 2004, fish otoliths from the 1993–2000 years were re-

aged independently by Australia’s Central Aging Facility (unpublished report; C. P. 

Green and K. Krusic-Golub). This was done to standardise fish aging protocols to 

ensure otolith aging was consistent in time and completed by qualified staff as tested 

against a reference otolith collection (O'Sullivan, 2007; O'Sullivan and Jebreen, 

2007). Final age frequencies were adjusted to age–groups (cohorts) based on fish 

capture dates, margin widths of the sectioned otoliths and an assumed birth date of 

1st Janurary (O'Sullivan and Jebreen, 2007). Verification of a single annual cycle in 

ring formation, coinciding with spring months in 0+ to 3+ age groups, had been 

demonstrated for stout whiting otoliths with clear banding (Butcher and Hagedoorn, 

2003). 
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T1 and TNSW fish age data were not collected historically, so these sectors data were 

not able to be used to calculate survival indicators. 

Results 

The patterns of stout whiting length and age by year are displayed in Fig. 1. For the 

reasons noted in the introduction of this paper, the analysis focused on patterns in 

the age data (Fig. 1c). The age data suggested a shift to higher survival as shown by 

the older fish present in 2005–2008. Compared to other years, the cohort 

frequencies for fully recruited fish (≥ 2 years old) were stronger in 2005–2008. The 

strength of cohort frequencies as marked for 2–4 year old fish in Fig. 1c, show a 

marginal decline in strength from 1993–2003, increase to 2008 and then decline and 

stabilisation thereafter. 

The estimated trend in stout whiting survival fractions followed the patterns in cohort 

strengths (Fig. 2). Survival fractions were lowest between 1993 and 2003. The low 

survival estimates in these years, particularly 2002, suggest weak recruitment. 

Higher rates of survival were estimated after 2002, with strong recruitment identified 

in 2004. Estimated survival stabilised at higher fractions between 2009 and 2012 

compared to the low estimates before 2003. 

The annual pattern of estimated survivals was not sensitive to the assumed growth 

curve and variance parameters (Fig. 2). The patterns were in parallel (ρ = 0.98), but 

the scale of the estimates reduced marginally for smaller maximum fish size ( l∞ ) and 

variance (V). 

Overall, the catch curve mixture model fitted the age frequencies well (Fig. 3). Figure 

3 complemented Figure 1c, illustrating that higher survival fractions for cohorts 

between 2004 and 2006 were driven by the stronger presence of older fish between 

2005 and 2008. The age frequency for 3 year old fish in 2008 was unusually strong 

and did not align with the catch curve prediction. In contrast the low survival fraction 

calculated in 2002 resulted from fewer older fish prior to 2005. 
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Discussion 

The catch curve mixture model provides an advance over standard catch-curve 

methodology (Smith et al., 2012). The model analysed the raw individual fish data 

directly and was focused on estimating survival parameters of fish in the exploited 

population. The model scaled annual catch-age-proportions ( kiπ ) to follow catch 

curve age abundances in order to calculate survival fractions ( ˆ
kS ). The model 

requires only input of a representative time series of age-abundance data. 

The model solved ˆ
kS  iteratively using the EM algorithm by updating age-abundances 

to satisfy catch-curves in equations (2) and (9) (Table 1). The inclusion of the 

parametric von Bertalanffy growth function allowed for separation of age-

components i, via maintaining the logical sequences 1i iµ µ +<  for mean fish lengths. 

Like in simple catch curve analyses, the age component at full recruitment r was 

assumed in order to quantify the catch curve process. This setting followed the 

“Peak Plus” criterion for age of peak abundance (Smith et al., 2012); r can be 

changed as required for different species or fishing selectivity. 

The model measurements of fish survival were not restricted by broad steady state 

assumptions like in a traditional catch curve. This was because the methodology was 

free to extract cohort-based information from the age-abundance matrix ˆkin . The 

model behaviour was only restrictive in that the survival fractions ˆ
qS  were applied 

equally within each fully recruited cohort q. This still allowed key changes in fish age-

abundance and survival to be identified, but the estimated fractions combined effects 

of both fish cohort strength and mortality. This type of confounding is common in 

fishery indicators and not essential to separate for application in management. 

However, comparison of ˆ
qS  results against harvest or standardised catch rate trend 

data will assist to clarify inferences. 

A number of inferences were of note from the analysis of stout whiting. First were the 

low estimates of fish survival 1993–2003. It appeared the high T4 harvests of 1300–

2400 t taken in 1994–1999 pushed survival rates down (together with catches by 

other sectors), with the low 2000 and 2002 year estimates driven more by low 
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recruitment given the corresponding lower harvests of 200–800 t (Fig. 4). The higher 

fish survivals estimated for the years 2003–2006 indicated stronger recruitment. This 

correlated from the reduced T4 harvests and the adoption of by-catch reduction 

devices by T1 prawn trawl sector since the year 2000 (Braccini et al., 2012). The 

estimated survival fractions for the years 2007–2012 had stabilised for those years of 

harvest (Fig. 4). The catch curve analysis identified significant changes in fish age-

abundance and the analysis corrected inconsistent results noted in the two previous 

models (Appendix IV). Representative and consistent sampling of age data is 

important for the methodology in order to critically evaluate the validity of age-

abundance data. 

The annual variability of data and influences of cohort strengths had implications for 

setting total allowable catches (TAC). For the T4 sector harvest control rule, direct 

use of annual estimates of survival fractions in the 1kθ +  adjustment factor may cause 

the TAC to vary notably from year to year. This is an undesired behaviour for 

industry and export markets. Therefore, thresholds on quota change (like for spanner 

crab, O'Neill et al., 2010) or use of a cube-root or square-root transformation on 1kθ +

may be required to mitigate year-to-year variation in TAC: 

( )
1

T4, 1 T4, 1 T4,max 1
target

TAC min TAC ,TAC 1363t ;
x

k k k k
S

S
θ θ+ + +

 
= = =   

 
. The survival target 

reference point should be set at an average survival rate from years that best 

represented stable and profitable fishing catch rates (Little et al., 2011). It should be 

noted that for a transformation on 1kθ + , where x=2 or x=3, it may take the fishery 

longer to achieve target levels of survival. 

The value of applying the catch curve mixture model to other fisheries will depend on 

the objectives to be achieved. Like the methods and analyses by Francis and 

Campana (2004) and Francis et al. (2005), the finite mixture method herein 

estimated fish age-proportions but extended this to provide a formal stock 

assessment tool to estimate fish survival. It can be of particular use for complex 

fisheries with many fishing sectors. The methodology is of value to compare 

alongside existing stock assessment routines, and no assumption on natural 
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mortality is required. The catch curve mixture model applies naturally to fisheries 

monitoring data on fish sizes, ages and abundance. 
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Table 1. Catch curve model equations for the EM algorithm. Example calculations 

are illustrated in the manuscript appendix, Table 2. 

Equations Notes 

(1) 

1
1

1 1
1

1

2 1

for years 1ˆ
for years 1

end end
q q
ki ki

m m
q end end

q q
ki ki

m m

n n
k

S
k

n n

−
+

= =

−
+

= =


 < ==  ≥ =


∑ ∑

∑ ∑
 

Initial survival rates Sq of fish in 
cohort year q. The notation 
represents cohort q diagonals of the 
truncated matrix kin  for fully recruited 
ages i r≥ . m indicates the elements 
that are summed in the cohort 
diagonal vectors q and q+1. 

(2) 
1 1

ˆ ˆˆ
k k

ki k q q
i rq k i r q k i r

S Sπ β
− −

≥= − + = − +

= ∑∏ ∏   

Updating equation for kiπ age 
proportions, relative to the 
abundance of the youngest fully 
recruited age group in year k. The 
proportions satisfy the catch curve 
for i ≥ r, calculated as the cumulative 
product of age-based survival. 

(3) ( ) ( )ijk ki i jk ki i jk
i

f y f yτ π π= ∑ 

 f  is a normal density function for lj. 

(4) 
1

kn

ki ijk
j

n τ
=

=∑  Estimated number of fish in each 
year k and age component i. 

(5) (int) (old)
ki ki ki kin nπ π=   

Equations 5 … 8 are maximum 
likelihood updates for kβ  and kiπ  for 
i < r. The superscript (int) denotes an 
intermediate value that still needs to 
be scaled. The scaling of these two 
equations ensures that the sum of 
the new updated values of kiπ  over i 
equals to 1. 

(6) (int) (old)
k k ki ki

i r i r
n nβ β

≥ ≥

= ∑ ∑   

(7) (new) (int) (int) (int)
ki ki ki k

i r
π π π β

<

 = + 
 
∑  

(8) (new) (int) (int) (int)
k k ki k

i r
β β π β

<

 = + 
 
∑  
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*

*

(new) (old)ˆ ˆ

q

q

M
q q
ki ki

i r k q i r
q q M

q q
ki ki

i r k q i r

n n
S S

n n
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≥ = ≥

  
     =
  
     

∑ ∑ ∑

∑ ∑∑





 

The notation represents cohort q 
diagonals of the truncated matrix kin  

for fully recruited ages i ≥ r. The 
double ∑∑  terms sum over the kin  
values for fully recruited cohort 
diagonals q* positioned to the right 
(upper side) of cohort q in the same 
years as cohort q. Mq indicates the 
final year of data from each cohort q*. 
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Fig. 1. Summary of the stout whiting samples by year from the T4 fishing sector for 

a) fish lengths recorded from random catch samples, b) fish lengths selected for 

aging and c) the resulting fish age frequency with cohorts linked for 2–4 year olds. 

Box plots a) and b) show the respective number of fish sampled each year. The 

central mark on each box plot is the median, the edges of the box are the 25th and 

75th percentiles and the whiskers extend to outline the range of approximately 99% 

of the data. The fish age frequency in subplot c) is also displayed separately by year 

in Fig. 3. 

 



87 

 

Fig. 2. Estimates of stout whiting survival fractions ˆ
qS  by year for growth settings a) 

022.622, 0.293, 2.342, 3.429l t Vκ∞ = = = − = , b) 020.579, 0.321, 2.668, 3.429l t Vκ∞ = = = − =  

and c) 020.579, 0.321, 2.668, 1.647l t Vκ∞ = = = − = . 95% confidence interval error bars are 

shown on all estimates. 
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Fig. 3. Comparison of the observed and fitted age frequencies by year. 
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Fig. 4. Stout whiting annual harvest (tonnes) taken by T4 licensed vessels in 

Queensland waters. 
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Appendix 

Table 2 demonstrates example calculations for the catch curve model equations 

from Table 1. For simplicity, the example assumed that all fish were fully recruited, 

using hypothetical data for five age groups 0…4 and only one iteration of Table 1 

equations; the EM algorithm would iterate this many times to seek convergence. 

Example cohort q is highlight in dark grey for year 1 and age 1. This diagonal vector 

has 4 elements, m = 1…4. Example cohort q+1 is highlighted in light grey for year 1 

and age 0. This diagonal vector has 4 elements for the same years as cohort q, with 

m = 1…4 (end-1 = 5 - 1). Some example cell calculations are highlighted with blue 

lines tracing cell precedents. For demonstration only, the calculations in Table 2 

were structure as follows: 

• The first matrix structured the data year x age. 

• N-twiddle ( kin ) calculated the number of fish at age component i in each year. 

• As named, the matrices ‘Diag sum’ are the diagonal sums of each cohort 

relative to each column’s position (fish age). 

• The matrix ‘InitialS’ are the initial estimates of S (equation 1, Table 1). 

• The matrix ‘S adj fac’ contains the adjustments to be iterated from Sold to Snew 

(equation 9, Table 1). 

• The matrix ‘S’ contains the estimates Snew after adjustment. 

• The matrices ‘Product S’ and ‘Pi’ illustrate the equation 2 (Table 1). 
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Table 2. Example calculations demonstrating the catch curve model equations from Table 1. 

 

Age Row sum
Year 0 1 2 3 4 N-twiddle Diag sum Initial S Product S Pi

1 106 53 32 8 3 202 115.5171 54.7474 23.4632 6.0162 2.2561 222.1061 101.8303 40.4206 8.3297 2.2561 0.47393 0.42857 0.25641 0.37500 1 0.473934 0.203114 0.052081 0.01953 0.571867 0.271027 0.116154 0.029783 0.011169
2 71 40 30 7 2 150 73.1896 44.4214 21.0528 9.0226 2.3135 183.6973 106.5890 47.0829 16.9574 2.3135 0.60694 0.47393 0.42857 0.25641 1 0.606936 0.287648 0.123278 0.03161 0.487931 0.296143 0.140352 0.060151 0.015423
3 105 76 56 15 3 255 125.1205 64.3649 39.0654 18.5144 7.9347 223.7808 110.5077 62.1676 26.0301 7.9347 0.51442 0.60694 0.47393 0.42857 1 0.514423 0.312222 0.147973 0.063417 0.490669 0.252411 0.153198 0.072606 0.031117
4 115 63 18 9 2 207 106.7074 50.7909 26.1280 15.8580 7.5157 214.9998 98.6602 46.1428 23.1022 7.5157 0.47598 0.51442 0.60694 0.47393 1 0.475983 0.244856 0.148612 0.070432 0.515495 0.245367 0.126222 0.076609 0.036308
5 87 54 18 8 0 167 75.8731 48.7453 23.2019 11.9356 7.2441 171.8026 108.2924 47.8694 20.0148 7.2441 0.64246 0.47598 0.51442 0.60694 1 0.642458 0.305799 0.15731 0.095477 0.45433 0.291888 0.138934 0.071471 0.043378
6 119 47 48 22 5 241 132.8617 51.3583 32.9956 15.7053 8.0792 255.5385 95.9296 59.5471 24.6675 8.0792 0.38655 0.64246 0.47598 0.51442 1 0.386555 0.248345 0.118208 0.060809 0.551293 0.213105 0.136911 0.065167 0.033524
7 141 89 34 12 6 282 149.0851 75.8168 29.3073 18.8287 8.9621 241.2301 122.6769 44.5713 26.5515 8.9621 0.50855 0.38655 0.64246 0.47598 1 0.508547 0.196581 0.126295 0.060114 0.52867 0.268854 0.103927 0.066769 0.031781
8 115 76 28 11 1 231 119.0104 61.1490 31.0971 12.0207 7.7228 179.3361 92.1451 46.8601 15.2639 7.7228 0.51381 0.50855 0.38655 0.64246 1 0.513812 0.261298 0.101006 0.064892 0.515196 0.264714 0.13462 0.052038 0.033432
9 111 31 15 2 0 159 98.7597 32.1091 16.4980 8.3900 3.2432 185.5473 60.3257 30.9961 15.7630 3.2432 0.32512 0.51381 0.50855 0.38655 1 0.325123 0.167052 0.084954 0.032839 0.62113 0.201944 0.103761 0.052767 0.020397

10 139 92 35 2 0 268 131.1247 86.7876 28.2167 14.4981 7.3729 131.1247 86.7876 28.2167 14.4981 7.3729 0.66187 0.32512 0.51381 0.50855 1 0.661871 0.215189 0.110567 0.056228 0.489271 0.323834 0.105286 0.054097 0.027511

Iteration Diag sum N-twiddle Diag sum S adj fac S Product S Pi
1 211 100 42 10 3 202 109.4169 55.3585 26.0509 7.8946 3.2791 208.8712 102.8489 45.1891 10.9871 3.2791 1.0675 1.0980 1.1819 1.1076 0.50594 0.47059 0.30305 0.41536 1 0.505941 0.238089 0.072152 0.029969 0.541668 0.274052 0.128965 0.039082 0.016233

178 105 47 10 2 150 72.1583 42.8601 21.6847 10.2045 3.0924 173.6298 99.4544 47.4904 19.1381 3.0924 0.9786 1.0675 1.0980 1.1819 0.59397 0.50594 0.47059 0.30305 1 0.593974 0.300516 0.141418 0.042856 0.481055 0.285734 0.144565 0.06803 0.020616
214 107 65 17 3 255 126.3882 63.1717 37.5223 18.9841 8.9336 209.7359 101.4715 56.5942 25.8058 8.9336 0.9716 0.9786 1.0675 1.0980 0.49982 0.59397 0.50594 0.47059 1 0.499823 0.296882 0.150205 0.070684 0.49564 0.247732 0.147146 0.074447 0.035034
230 109 31 9 2 207 118.5796 45.4158 22.6999 13.4831 6.8217 223.9563 83.3477 38.2998 19.0719 6.8217 0.8046 0.9716 0.9786 1.0675 0.38300 0.49982 0.59397 0.50594 1 0.382998 0.191431 0.113705 0.057528 0.572848 0.2194 0.109661 0.065136 0.032955
179 115 46 13 0 167 84.0259 49.1514 18.8249 9.4091 5.5888 182.2998 105.3767 37.9319 15.5999 5.5888 0.9105 0.8046 0.9716 0.9786 0.58496 0.38300 0.49982 0.59397 1 0.584955 0.224037 0.111979 0.066512 0.503149 0.29432 0.112724 0.056342 0.033466
238 92 61 28 5 241 134.7978 55.2857 32.3397 12.3860 6.1908 243.6222 98.2739 56.2254 19.1070 6.1908 1.0610 0.9105 0.8046 0.9716 0.41014 0.58496 0.38300 0.49982 1 0.410138 0.239912 0.091886 0.045927 0.559327 0.229401 0.134189 0.051394 0.025688
234 119 45 13 6 282 154.5865 73.1448 29.9994 17.5483 6.7210 229.9930 108.8244 42.9882 23.8857 6.7210 0.9304 1.0610 0.9105 0.8046 0.47316 0.41014 0.58496 0.38300 1 0.473164 0.194063 0.113518 0.043477 0.548179 0.259379 0.106381 0.062228 0.023833
181 93 30 11 1 231 131.5863 55.8270 26.4153 10.8339 6.3374 177.7358 75.4065 35.6796 12.9888 6.3374 0.8257 0.9304 1.0610 0.9105 0.42426 0.47316 0.41014 0.58496 1 0.424262 0.200745 0.082333 0.048161 0.569638 0.241676 0.114352 0.0469 0.027434
203 66 17 2 0 159 114.3149 26.1723 11.1039 5.2540 2.1549 201.5706 46.1495 19.5795 9.2643 2.1549 0.7042 0.8257 0.9304 1.0610 0.22895 0.42426 0.47316 0.41014 1 0.22895 0.097135 0.045961 0.01885 0.718962 0.164606 0.069836 0.033044 0.013553
139 92 35 2 0 268 148.2813 87.2557 19.9772 8.4755 4.0103 148.2813 87.2557 19.9772 8.4755 4.0103 0.8891 0.7042 0.8257 0.9304 0.58845 0.22895 0.42426 0.47316 1 0.588447 0.134725 0.057159 0.027045 0.553288 0.325581 0.074542 0.031625 0.014964
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Appendix IV: Stout whiting catch curve mixture models: supplementary 
material to Appendix III 
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Stout whiting catch curve mixture models 1 and 2: supplementary 
to Appendix III 
 

Michael F. O’Neill 

Abstract 
A Hierarchical Generalised Linear Model (HGLM) was used to standardise catch 

rates of stout whiting in Queensland and quantify a learning curve for new vessel 

operations entering the fishery. New operations were estimated to have 15% higher 

fishing power after their first cumulative at-sea year. Vessels fishing with the use of 

sonar technology were estimated to have 10% higher fishing power. The 

standardised annual catch rate index completed the set of age-abundance indicators 

for use in monitoring and management of stout whiting. Input of the standardised 

catch rate into a catch curve mixture model (Model 1) resulted in extremely variable 

estimates of stout whiting survival between years. This variability was considered 

implausable and a 2nd model was developed without using the catch rate index 

(Model 2). The 2nd model analysis suggested low fish survival in years 2000 and 

2002. This analysis also highlighted inconsistency of fish length and age data 

between some years. The reporting of the catch curve results verified the test-

application of models 1 and 2 methodology that guided the design of a subsequent 

model (Appendix III). The methodology for models 1 and 2 provide further analysis 

options for other fisheries which may have better data. 

Introduction 
 

This paper reports on developmental analyses for estimating stout whiting survival 

(or mortality). The developmental analyses (called model 1 and 2) describe initial 

theory and results that guided the final model design and outputs as published in 

Appendix III. Models 1 and 2 aimed to improve accuracy of survival estimates by 

analysing all fishery monitoring data. This included analysing all fish age and otolith 

weight data, length frequency data and catch rates. The model contexts are 

described in the following paragraphs. 
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Model 1 was designed first to connect the stout whiting standardised catch rate 

directly with the separate fish-length frequency and age-length-otolith data. In this 

model the standardised catch rate was used to represent stout whiting abundance 

and to scale the patterns of age-abundance (from the sampled fish length 

frequencies and age-length-otolith data). This linkage allowed for the variation in 

cohort strength (recruitment) and survival fractions to be estimated year by year; i.e. 

mitigate confounding by separating the signals for recruitment versus survival. The 

problem of estimated survival or mortality being confounded by cohort strengths is 

inherent in traditional cross sectional (year-by-year regression) catch-curve 

methodology, where estimated low survival in a year can imply high rates of fishing 

mortality or it can imply high recruitment (more new younger fish compared to old). 

Only repeated annual measures of fish survival or methodology that accounts for 

variable cohort strengths can resolve this confounder to provide clearer inferences. 

Unfortunately, the advantages of model 1 and the flexibility of model parameters 

were concluded to be unsuitable due to the year-to-year variation in the stout whiting 

data. 

 

Model 2 was designed without catch rates, but still used the same fish-length 

frequencies and age-length-otolith data to scale age-abundances. As for model 1, 

the analysis structure assumed the data were sampled randomly from the population 

in each year. What this means is that the fish length composition data were required 

to be random samples of ungraded/unsorted landed catches, of which sub-samples 

of fish age and otolith measurements were taken. The model assumed this fishery-

dependent sampling was conducted each year in a consistent and representative 

pattern between fishing seasons, areas and vessels. Model 2 estimates of survival 

fractions were still estimated for each cohort. The fractions compared the ratio of 

fully recruited cohort abundances to the next younger cohort in the same years. By 

comparing the same years, the survival estimates can be obtained but may be 

affected by strong or weak recruitment of new fish. The model estimates of survival 

identified inconsistency between some years of sampled fish-length frequency and 

age-length-otolith data. Samples where fish length frequencies were measured but 

not aged were highly correlated and judged to contain little information on survival 

compared to the age-length samples. 
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The survival estimates of stout whiting from both model versions 1 and 2 were varied 

between years. Overall, the scale and trend of survival fractions were comparable to 

the results in Appendix III, but had higher year-to-year variance. Adjustments to 

Model 1 (regularisations outlined in Table 6) were applied and noted in the discussion 

to reduce the variability in cohort strength. The reporting of the results below verified 

the test-application of models 1 and 2, but also provided the basis for use in other 

fisheries which may have better data. 

 

Methods 

Model versions 1 and 2 
 

The model terminology follows from Appendix III. Stout whiting survival fractions 

were estimated by joining Gaussian finite mixture, Von Bertalanffy growth and catch 

curve methodology. Model estimates were solved iteratively using the expectation-

maximisation algorithm, by estimating differences in fish abundances by age. 
 

For stout whiting catch curve models 1 and 2, the data consisted of multiple years k of 

sequential mixed data jky  (lj: fork length mm, oj: power transformed otolith weight o
jW  , and 

aj: age-group) for each fish j. The data were sampled in two parts for lj and separate sub-

sampling of matching lj–oj–aj (Figure 4). The number of all sampled fish in each year 1991–

2013 is denoted kn . The Gaussian finite mixture distributions were defined by the mixing 

proportions kiπ , means ,l o
iµ  and covariance matrix ,l oV , in order to calculate the posterior 

scores ijkτ ; where age component label 1 9i =   corresponded to age groups 0 8a =   years 

old. As the aj data related directly to model predicted posterior scores ijkτ  and was not 

available for all fish, it was used to set 1ijkτ =  where a fish was aged i and not used directly 

as a third dimension in the mixture model; noting 1ijk
i
τ =∑ . The posterior scores are the 

probabilities of each age component i for each individual fish’s data (lj, oj and aj). 

 

The following assumptions were required to enable the analyses: 

• Mean fish length at age and variance was assumed constant in time and based on 

an internally estimated von Bertalanffy growth curve, 
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• The number of age components was assumed known and fixed from the data, 

• The catch curve approach assumed constant selectivity and that fully recruited fish 

experience a constant survival rate within a cohort, and  

• For model 2, survival rates measured the combined effects of both fish mortality and 

cohort strength. It was not assumed that cohort strength was constant over years. 

Model 1 seperated these effects by using catch rate data. 

 

The overall algorithm for finding maximum likelihood parameter estimates was implemented 

in Matlab® (MathWorks, 2014) using the equations in Table 1 and Table 2 as follows: 

1. Linearize otolith weight with length using the transformation: ( )
1bo

j jo W
−

= , where 

parameter b was estimated from the power function o b
j jW al= . 

2. From the data calculate initial values for the EM algorithm: , ,, ,l o l o
i kiVµ π . 

3. Define the first fully recruited age component for catch curve calculation; for model 

1 the peak criterion r = 2 was used and the peak-plus criterion was used for model 

2 with r = 3 (Smith et al., 2012). 

4. EM algorithm (Table 1 or Table 2): 

a. Calculate derivatives iµ
θ

∂
∂



  for the matrix of growth curve parameters θ


. 

b. Calculate ijkτ  using mixture density functions and set 1ijkτ =  where a fish 

had been aged. 

c. Calculate ˆkin . 

d. Calculate θ̂


 and ,ˆ l oV . 

e. Calculate ˆ
kS . 

f. Calculate ˆkiα . 

g. Calculate ˆkiπ . 

h. Replace all initial values by their estimated updates: , ,ˆˆ ˆ, ,l o l o
i kiVµ π . 

i. Return and loop until parameter estimates converge. 

 

For the predicted means ,l o
iµ  (l and o at age) to be calculated from the Von Bertalanffy 

growth curve ( )( )( ), , , ,
0ˆ 1 expl o l o l o l o

i il t tµ κ∞= − − −  (Haddon, 2001), each iteration in the EM 

algorithm followed a single step of the Gauss-Newton algorithm (θ  and φ  in model 1 or 2). 
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The derivatives iµ
θ

∂
∂



  were a 6 2×  dimensional matrix for each age component i. The matrix 

cells (1:3,1) were for the fish length derivatives 
l
i
ll

µ

∞

∂
∂

, 
l
i
l

µ
κ
∂
∂

, and 
0

l
i
lt
µ∂
∂

 and matrix cells (4:6,2) 

for otolith weight derivative 
o
i
ol

µ

∞

∂
∂

, 
o
i
o

µ
κ
∂
∂

, and o
0

o
i

t
µ∂
∂

 (Table 2, equations 1…3). The cross 

derivatives between l and o were assumed all zero; matrix cells (4:6,1) and (1:3,2) = 0. 

 

For model 2 the calculation of annual fish survival ˆ
kS  followed cohort abundances ( ˆkin  matrix 

diagonals; equation 8, Table 2). The structure of model 2 equation 8 was based on 

truncation of matrix ˆkin  for fully recruited fish (Table 2). ˆ
kS  compared two diagonal vectors of 

cohort c and c+1 abundance. ˆ
kS  was the sum abundance of cohort c divided by the sum 

abundance of the next younger cohort c+1 in the same years for fully recruited fish. The ˆ
kS  

ratio therefore represented fish survival in year k. 

 



99 

 

Table 1. Catch curve model 1 equations. 

Equations Notes 

(1) ( ) ( )ijk ki i jk ki i jk
i

f y f yτ π π= ∑   
f  is a d-dimensional multivariate 

normal density function, for 
univariate lj or multivariate lj - oj. 

(2) 
1

ˆ
kn

ki ijk
j

n τ
=

=∑  Estimated number of fish in each 
age component i and year k. 

(3) 

1

1

1

1

1 1

ˆ k

k k

Tn
i i

ijk i
i k j

TTn n
T i

ijk jk ijk i i
i k j k j

V

y V

µ µθ θ τ
θ θ

µτ τ µ
θ

−

−

=

−

= =

   ∂ ∂  = + ×    ∂ ∂    

      ∂  −    
∂       

∑ ∑∑

∑ ∑∑ ∑∑

 

 

 



 



 

Updating equation for parameters 
of the a-l and a-o growth curves; 
2 3×  matrix for , , ,

0, ,l o l o l ol k t∞ . 
Derivatives are listed in Table 2. 

(4) ,

1

ˆ ˆˆ ( )( )
kn

l o T
ijk jk i jk i i k

k j i k
V y y nτ µ µ γ

=

 
= − − 
 
∑∑∑ ∑     

The 2 2×  covariance matrix for l 
and o, which can form the 
parametric relationship i iV Vγ=  
for each age component i. 

(5) 

1

1
3

1

1
2

1

ˆ ( ) ( )

1 ( ) ( )

k

k

Tn
ijk T i i

jk i i jk i
k j i i

Tn
T i

ijk jk i i jk i
k j i i i

y V y

d y V y

τ γ γφ φ µ µ
γ φ φ

γτ µ µ
γ γ φ

−

−

=

−

=

  ∂ ∂
= + − − ×  ∂ ∂   

  ∂
− − −  ∂  

∑∑∑

∑∑∑

dd

dddd  

dd

dddd  

d

 

Updating equation for φ , that 
determined the variance scaling 
factor ( )1 1i iaγ φ= + − ; φ  can be 
scaled relative to the first fully 
recruited age group (r). 

(6) 
max

1
1

1

ˆˆ ˆ ˆˆ
k k

k ik ik
i r i i rk k

nS n n
n

λ
λ

+
+

> > ≥+

= ∑ ∑  

Survival rates Sk of fish in year k 
across all fully recruited ages, 
based on annual abundance 
measure kλ . 

(7) 
1

,

ˆ
ˆˆ ˆ .

i r
i r

i r

i r i ri r
i r i r

k a a
k a a

k i k a a m
a a a a m kk a a

k a a K k a a K

H n S
n
λ + − −

+ −
+ −

≥ ≥ =+ −
+ − ≤ + − ≤

= ∑ ∑ ∏  

Cohort strength parameters Hk for 
fish that reach age ar in year k. 
The calculation follows matrix 
diagonals of ˆkin . The denominator 
is the sum of the cumulative 
product of age-based survival, 
with S1 =1. 

(8) 
1

ˆˆ
i r

i r

k

ki k a a m
m k a a

H Sa
−

− +
= − +

= ∏  

Age group abundance ikα  is 
calculated to satisfy the catch 
curve for fish that reach ar, using 
the cumulative product of age-
based survival. 

(9) 1̂ ˆ ˆˆ 1
r

g
k

ki ki km
m ak

n
n

π aa
=

 
= − 
 

∑ , 1
1

ˆˆ k
k

k

n
n

π =  Updating equation for ikπ age 
proportions for recruited aged fish.  
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Table 2. Catch curve model 2 equations. 

Equations Notes 

(1) ( )( )
,

, ,
01 exp

l o
l o l oi

it t
l
µ κ
∞

∂
= − − −

∂
 

Derivative for asymptotic maximum 
average length l∞ . ti is the specified 
mid-year age of fish in component i. 

(2) ( ) ( )( )
,

, , , ,
0 0, exp

l o
l o l o l o l oi

i il o l a t t tµ κ
κ ∞

∂
= − − −

∂
 Derivative for annual growth rate 

labelled κ . 

(3) ( )( )
,

, , , ,
0,o

0

exp
l o

l o l o l o l oi
il l t t

t
µ κ κ∞

∂
= − − −

∂
 Derivative for the fish age (t0) at zero 

length. 

(4) ( ) ( )ijk ki i jk ki i jk
i

f y f yτ π π= ∑ 

 
f  is a d-dimensional multivariate 

normal density function, for 
univariate lj or multivariate lj - oj. 

(5) 
1

ˆ
kn

ki ijk
j

n τ
=

=∑  Estimated number of fish in each year 
k and age component i. 

(6) 

1

1

1

1

1 1

ˆ k

k k

Tn
i i

ijk
i k j

TTn n
T i

ijk jk ijk i
i k j k j

V

y V

µ µθ θ τ
θ θ

µτ τ µ
θ

−

−

=

−

= =

   ∂ ∂  = + ×    ∂ ∂    

      ∂  −    
∂       

∑ ∑∑

∑ ∑∑ ∑∑

 

 

 



 



 
Updating equation for parameters 

, , ,
0, ,l o l o l ol k t∞ of the a-l and a-o growth 

curves. 

(7) ,

1

ˆ ˆˆ ( )( )
kn

l o T
ijk jk i jk i k

k j i k
V y y nτ µ µ

=

 
= − − 
 
∑∑∑ ∑     The 2 2×  covariance matrix for l and 

o. 

(8) 

1
1

1 1
1

1

2 1

for years 1ˆ
for years 1

end end
c c
ki ki

m m
k end end

c c
ki ki

m m

n n
k

S
k

n n

−
+

= =

−
+

= =


 < ==  ≥ =


∑ ∑

∑ ∑
 

Survival rates Sk of fish in year k. The 
notation represents cohort c diagonals 
of the truncated matrix kin  for fully 
recruited ages (i>r). m indicates the 
cohort vector elements that are 
summed. kin  contains information on 
Sk prior to thr 1st year of data k=1. 

(9) 
1

ˆˆ
k

ki m
m k i r

Sα
−

= − +

= ∏  

Scaled abundance of age group kiα  
relative to the abundance of the 
youngest fully recruited age group in 
year k. The abundances satisfy the 
catch curve for fish age components ≥ 
r, calculated as the cumulative 
product of age-based survival. m 
indicates the ˆ

kS  used. 

(10) ( ),1 1 , ,1 1
ˆˆ ˆ ˆ; 1

g
ki

k r k r g k r ki ki
i rk

n
n

π π π α α− −
=

= = −∑ ∑
  

 Updating equation for kiπ age 
proportions. 
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Length and age data 

 

Stout whiting length and age sampling from the T4 sector was conducted 1991–2013 

following long term monitoring protocols (Department of Primary Industries and Fisheries, 

2007). The sampling was ‘fishery-dependent’, with two 5kg boxes of fish collected from each 

T4 vessel’s fishing trip. The provision of boxes-of-fish was dependent on each vessel’s 

pattern of operation with one box typically from a night-time catch and the other from a day-

time catch. The sample times and locations were not controlled, but ungraded (random) fish 

were supplied from the catch. Any fisher processes of sorting, packing and discarding fish 

were specified to be separated from the monitoring sample. 

 

All fish from each box were measured as fork-lengths (mm) for length frequency. From each 

box, 1 to 3 fish from every 5mm size class were dissected to extract otoliths for aging until a 

subsample of about thirty fish per size class per year was achieved (length stratified 

sampling). Historically, the number of fish sampled each year ranged between 300–500 for 

aging and 3000–20000 for length frequencies dependent on the amount of fishing and catch. 

 

For fish age determination, both otoliths were removed and cleaned, with only the left otolith 

sectioned. All otolith reading was done without knowledge of fish size, date or location of 

capture. Age estimates were counts of complete opaque rings. In 2004 historical 1993–2000 

fish otoliths were re-aged independently by Australia’s Central Aging Facility (unpublished 

report; C. P. Green and K. Krusic-Golub). This was done to standardise fish aging protocols 

to ensure otolith aging was consistent in time and completed by qualified staff as tested 

against a reference otolith collection (O'Sullivan, 2007; O'Sullivan and Jebreen, 2007). Final 

age frequencies were adjusted to age–groups (cohorts) based on the fish capture dates, the 

width of sectioned otolith margins and an assumed birth date of 1st January (O'Sullivan and 

Jebreen, 2007). Verification of a single annual cycle in ring formation, coinciding with spring 

months in 0+ to 3+ age groups, had been demonstrated for stout whiting otoliths with clear 

banding (Butcher and Hagedoorn, 2003). 

 

Standardised catch rates of stout whiting 

 

For the Queensland T4 sector 1991–2013, mandatory shot-by-shot recordings of 

catches from each vessel were analysed on a daily basis including the number of 
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hours fished and number of catches (number of deployments or shots of fishing 

gear) in the day. Target fishing effort where no stout whiting were caught was 

included. The T4 catch data were stratified by five fishing zones w33…w38 (Figure 

1). Data for vessel and skipper identification, fishing depth and date and associated 

fishing gears were considered in the statistical modelling. 

 

Commercial catch data reported from New South Wales (TNSW) were collated for the 

period 1997–2013. The TNSW logbook data represented monthly harvest per vessel 

in which the number of days of effort was available. No fishing depth or gear data 

were available. Vessel identification and fishing zone (Figure 1) factors were 

included in the statistical modelling. 

 
Figure 1. Map of the East Australia stout whiting fishery zoned by analysis regions. Queensland 

fishing zones (w33…w38) cover offshore water depths between 20 and 50 fathoms. New South 

Wales fishing zones (nsw1…nsw3) cover offshore water depths up to 50 fathoms. 
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Two catch rate analyses were conducted separately on T4 and TNSW catches, due to 

the different logbook recording systems. The analyses were completed using the 

statistical software GenStat (VSN International, 2013) and standard errors were 

calculated for all estimates. Analysis of residuals supported their structures and 

transformation of catch responses. The importance of individual model terms was 

assessed formally using Wald (Chi-squared; 2χ  ) statistics by dropping individual 

terms from the full model. 

 

The T4 data were spatially unbalanced and incomplete, with only 2–5 vessels fishing 

per year in various months and zones between 1991 and 2013. As the T4 fleet is 

small, the data potentially contained sources of error variation that may influence 

standardisation of catch rates. To allow for unequal variances (dispersion) between 

vessels and the random occurrence of zero catch, a Hierarchical Generalized Linear 

Model (HGLM) was used assuming normally distributed errors (Lee and Nelder, 

2001; Lee et al., 2006; VSN International, 2013). The model response data consisted 

of the cube root transformation of the daily catch (kg1/3 boat-day-1) and the expected 

bias corrected mean followed the Normal distribution third moment 3 23µ µσ+  

(Wikipedia, 2015), with variance ( )2 Vσ φ µ=  (VSN International, 2013). The cube root 

transformation and HGLM was employed to normalise residuals and account for 

heterogeneity of the data. The optimal box-cox (power) transformation for model 

normality was about 0.35, suggesting the cube root transformation. The HGLM 

included fixed (µ = 1 1Xβ ) and dispersion ( ( )expφ = 2 2Xβ ) model terms, where 1X  and 

2X  were the relevant data. The fixed explanatory model terms ( 1β ) included the 

model intercept, interactions between fishing year × zone , vessel × effort (hours1/3), 

zone × water-depth (fathoms1/3) and the main effects of seasonality, 

presence/absence of sonar and computer mapping and vessel experience. 

Seasonality (s) was modelled by four trigonometric covariates, which together 

modelled an average monthly pattern of catch (Marriott et al., 2013): 

( )1 cos 2 y ys d Tπ= , ( )2 sin 2 y ys d Tπ= , ( )3 cos 4 y ys d Tπ= , ( )4 sin 4 y ys d Tπ= , where dy 

was the cumulative day of the year and Ty was the total number of days in the year 

(365 or 366). As some vessel ownerships had changed over time, a covariate for 

fishing experience was calculated to follow an exponential learning curve. This 
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covariate was linear on the natural logarithm scale: ( )( )log 1y yv v+ , where vy was 

the cumulative number of at-sea fishing days divided by 365.25. The increase in 

experience was assumed sharpest in the initial fishing years, then levelling out to a 

limit. The dispersion model terms ( 2β ) included the main effects for vessels and the 

incidence of zero catch. Summary of analysis and model terms are in Table 4. 

 

The stout whiting TNSW monthly data were spatially unbalanced but recorded for all 

zones 1997–2013. No zero catches were evident and lesser covariate data were 

available. The selected TNSW analysis was a linear mixed model (REML) with 

normally distributed errors on the log scale (VSN International, 2013). The model 

included both fixed ( Xβ ) and random ( Zγ ) terms. Where data ( X , Z ) were relevant 

and available, the model was fitted to estimate the following fixed terms (β ): model 

intercept, interaction between fishing year × zone and the main effects of fishing 

month and effort (logarithm of number of days fished). The random term ( γ ) 

quantified the variance and efficiencies between 256 vessels. 

 

The prediction of annual standardised catch rates across the fishery (1991–2013) 

involved three steps: 1) predict mean catch rates from the models year × zone terms; 

2) impute missing year × zone predictions; 3) spatially average predictions across 

zones in each year. These steps followed the spatial standardisation methods of 

Campbell (2004), Carruthers et al. (2011) and Walters (2003). Mean year × zone 

catch rates were calculated using GenStat ‘HGPREDICT’ and ‘VPREDICT’ 

procedures for the T4 and TNSW models respectively (VSN International, 2013). The 

procedures formed standardised predictions by fixing the season, effort, depth, 

experience and sonar model terms to their average values. Mean catch rates were 

imputed for year × zone strata with less than 20 boat-days of fishing (Figure 2d and 

Table 3). The final predictions were averaged across zones in each year using the 

area weights (0.16, 0.20, 0.18, 0.09, 0.14, 0.08, 0.08, 0.08) for each zone 

w33…NSW3 (Figure 1). Standard errors for year × zone predictions were 

propagated to produce 95% confidence intervals on the standardised whole-of-

fishery annual catch rates. This included calculating standard errors for missing year 

× zone means (VSN International, 2013). 
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Table 3. List of imputed catch rates. The following year × zone means were imputed similar to the 

methods of Walters (2003) and Carruthers et al. (2011) 

w33.2003 = mean(w33.2002 to w33.2004), 

w33.2013 = mean(w33.2012 to w33.2013), 

w35.2002 to w35.2007 = mean(w35.2001 to w35.2008), 

w35.2011 = mean(w35.2010 to w35.2012), 

w36.2003 to w36.2006 = mean(w36.2002 to w36.2007), 

w36.2011 to w36.2012 = mean(w36.2010 to w36-.2013), 

w38.1991 to w38.1992 = mean(w38.1993 to w38.1995), 

w38.2000 to w38.2008 = mean(w38.1999 to w38.2009) and 

TNSW 1991 to 1996 = mean 1997 to 2013. 
 

Results 
 

Stout whiting catch rates were analysed for all vessels and areas to estimate the 

standardised annual abundance indicator for each year k ( kλ ). Table 4 lists the 

model terms used to standardise catch rates for each fishing sector. For the T4 

sector, significant fishing power terms were detected for each vessel operation, at-

sea fishing experience, sonar use and hours fishing (Table 4). Fishing using sonar 

technology increased average catch rates by 10.4% (s.e. = 2.3%). Fishing 

experience increased average catch rates about 15% after one cumulative at-sea 

year (≈  3 calendar years in time; parameter estimate = 0.429, s.e. = 0.083; Figure 

2). Average catch rates peaked in the month of May (Figure 2). The 2013 T4 and 

TNSW combined catch rate index was equal to 1.02 and up 18% compared to 2012. 

The 2013 index was about equal to the long term average catch rate 1991–2013 (=1; 

Figure 2). Inclusion of non-fished zones inflated confidence intervals on the catch 

rate index (Figure 2). 

 

The standardised annual catch rate kλ  was then input into catch curve model 1. For 

the analysis the 1+ age group (not 2+ as in model 2) was assumed the age at full 

recruitment. This was done to make more use of the age data given the extra model 

parameters for cohort strength. From the analysis the variation in annual estimates 

of stout whiting survival was deemed large (Figure 3, with Table 6 regularisations 
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applied). The low estimate of ˆ
kS  was correlated with the decline in catch rates ( kλ ) in 

2000 (Figure 2a). The variability in estimates between years was considered not 

reasonable given the expected fish longevity (4–8 years) and inertia in the age-data. 

 

Model 2 estimates of fish survival for most years were more stable and consistent 

from year to year compared to model 1 (Figure 3). Of note were two very-strong 

cohort-survivals estimated in 2001 and 2009. These estimates deviated markedly 

from the overall trend of reduced survival from 1991–2000 and 2002 and then 

increased thereafter. The higher 2001 survival estimate resulted from a sudden 

change to older fish aged in 2002 compared to 2001 and 2003 (Figure 4d). This was 

inconsistent with marginally smaller fish suggested by the length frequency samples 

in 2002 (Figure 4a). In 2009 the very high survival estimate resulted from larger and 

older fish present in 2010 samples (Figure 4). The 2001 and 2009 survival fractions 

suggest strong survival events (low mortality and/or high recruitment event) or 

highlight data inconsistencies. The low survivals in years 2000 and 2002 suggest 

diminished recruitment after previous years of high harvest (Figure 5). The estimated 

growth curves and constant covariance matrix are detailed in Table 5. 
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Table 4. Summary of statistical analyses of stout whiting catches. 

Analysis and components Statistics 
  
HGLM on T4 catches  
Number of data 10 812 
Response variable kg1/3 boat-day-1 

Residual variance 4.387 
Fixed model terms ( 2χ  statistics, d.f., p-value) 
   Year × Zone 396.7, 76, <0.001 
   ( )1f day  197.9, 1, <0.001 

   ( )2f day  50.6, 1, <0.001 

   ( )3f day  97.9, 1, <0.001 

   ( )4f day  51.3, 1, <0.001 
   Vessel × Hours1/3 5 963.9, 17, <0.001 
   Zone × Depth1/3 63.8, 5, <0.001 
   ( )experiencef   25.8, 1, <0.001 
   Sonar 9.9, 1, 0.002 
Dispersion model terms 1184, 17, <0.001 
   Vessel term 396.7, 16, <0.001 
   Zero catch term 762.5, 1, <0.001 
  
LMM (REML) on TNSW catches  
Number of data 13 802 
Response variable log(kg) boat-month-1 

Residual variance 1.964 
Fixed model terms ( 2χ  statistics, d.f., p-value) 
   Year × Zone 141.43, 32, <0.001 
   Month 101.64, 11, <0.001 
   Log(number of days fished) 988.88, 1, <0.001 
Variance component  
   Vessels (n =265) 1.134 (s.e. = 0.125) 
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Figure 2. Summary of stout whiting catch rates and data for: (a) final imputed standardised catch 

rates, scaled proportional to the overall annual mean; (b) seasonal catch rate scaled proportional to 

the mean; (c) learning curve for at-sea fishing experience showing proportional increases in fishing 

power relative to the limit; and (d) data frequency boat-days for the year × zone strata, with white 

grids identifying less than 20 boat-days of fishing and that imputation in (a) was required. 
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Figure 3. Estimated survival fractions ˆ
kS of stout whiting as calculated from model versions 1 and 2. 

Error bars show the 95% confidence intervals of model 2 estimates. 
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Figure 4. Summary of stout whiting age-abundance samples recorded from the T4 fishery for a) length 

frequencies, b–d) matched samples of individual fish length-otolith-age measures. Subplots a) and b) 

show the annual numbers of fish measured. 
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Figure 5. Stout whiting annual harvest (tonnes) taken by T4 licensed vessels in Queensland waters. 

 
Table 5. Model 2 estimated growth curve and covariance parameters; 95% confidence interval and/or 

standard error shown in parenthesis. 

Parameter estimates L∞   κ   
0t   

Fork length l   20.579 (19.905:21.147; 0.308) 0.321 (0.288:0.372; 0.021) -2.668 (-2.873:-2.395; 0.123) 

Linearised ototlith 

weight o   
0.568 (0.551:0.587; 0.009) 0.197 (0.179:0.215; 0.009) -2.942 (-3.145:-2.754; 0.097) 

Covariance matrix 
,l oV   

( ) ( )
( ) ( )

1.647 0.023  0.002 0.00004  
 

0.002 0.00004 0.0000547 0.00000091
 
 
 

 

 

Discussion 
 

The catch curve mixture models 1 and 2 provided an advance over standard catch-

curve methodology (Smith et al., 2012). The models focused directly on estimating 

growth and survival parameters of a fish population. The model’s methods tested 
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data with and without an annual abundance index ( kλ ) to estimate annual survival 

fractions ( ˆ
kS ).The inclusion of the parametric von Bertalanffy growth function allowed 

for separation of age-components i, via maintaining the logical sequences 1i iµ µ +<
   

for fish length and otolith-weight means. The use of Gaussian finite mixture theory 

allowed for estimation of survival without all fish being explicitly aged. 

 

For all stock assessments, the use of a reliable trend in standardised catch rates is 

important to indicate changes in the exploitable population. In model 1 low catch 

rates correlated with low survival fractions. However, high year-to-year variabilityof 

the abundance indicator did affect model performance and obscure estimates of 

survival. Given the catch rate variability, the internal mechanics of model 1 were 

tested using restrictions on the annual change in survival (Table 6). The model 1 

restrictions (Table 6) were used if the change in estimated fish survival between 

years exceeded the specified limit of ±30%. If exceeded the catch rate abundance 

index 1kλ +  was adjusted using equations 2, 3 or 4 (Table 6), where equation 4 

specified a upper biological bound on survival ( )exp 0.59− . The equations were 

applied at step 4e of the EM algorithm. The application of these restrictions was not 

successful or desirable and added unwanted complexity. If such model adjustments 

are required, then the simpler model versions are preferred. 

 

The type of catch curve mixture model to apply in other fisheries will depend on the 

objectives to be achieved and data quality. Like the methods and analyses by 

Francis and Campana (2004) and Francis et al. (2005), the finite mixture method 

herein estimated fish age-proportions but extended to be a formal stock assessment 

tool to estimate fish survival. It can be of particular use for complex fisheries with 

many fishing sectors that lack comprehensive catch-effort reporting. The catch curve 

mixture model applies naturally to fisheries monitoring data on fish sizes, ages and 

abundance. For stout whiting, the survival estimates were sensitive to the year-to-

year variation in the data. 
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Table 6. Equations for catch curve model 1 regularisation, when age-abundance data have high 

variance; used for years k. 

Equations Notes 

(1) ( )( )1
1 1

ˆ ˆ ˆ ˆmax min , ,k k k kS S S Sε ε −
− −=   ε  specified the limit in annual 

change in survival from year k-1 to k. 

(2) ( )1 1 1
ˆ ˆ

k k k kS Sλ λ ε+ + −=   Adjust 1kλ +  if the upper bound was 
exceeded in equation (12). 

(3) ( )1 1 1
ˆ ˆ

k k k kS Sλ λ ε+ + −=   Adjust 1kλ +  if the lower bound was 
exceeded in equation (12). 

(4) ( )1 1 lim lim
ˆ ˆ;k k k kS S S Sll + += =  

If lim
ˆ

kS S>  , an upper bound on 
survival can be set as desired (e.g. 
based on an assumed natural 
mortality). 

 

Stout whiting catch rates were standardised for both fishing power and spatially 

unbalanced fishing effort. A Hierarchical Generalised Linear Model (HGLM) was 

applied to the T4 catch data to capture heterogeneity of variance in the small fleet 

(Lee et al., 2006; VSN International, 2013). The HGLM estimated fixed model terms 

and analysed the dispersion of the errors according to model factors for different 

vessels and occurrence of zero harvests (Table 4). The cube root transformation 

was appropriate to normalise catch rates as skewness lay between natural logarithm 

and square root transformations; Poisson and Gamma log link models did not 

satisfactorily account for the heterogeneity. For TNSW, many more vessels reported 

harvests, with a simpler linear mixed model (REML) of log transformation harvests 

used to standardise catch rates (Table 4). 

 

Two main fishing power effects were identified from the statistical analysis of T4 

harvests. Vessels searching for schools of fish with sonar had 10% higher average 

catches. This was significantly higher than the 3% estimate for eastern king prawn 

vessels working the same waters (O'Neill and Leigh, 2007). The estimated at-sea 

learning curve illustrated how new vessel ownership (new crew operations) improved 

their fishing power in time (Figure 2c). When new vessel operations commenced in 

the T4 sector, they did so with some starting knowledge of spatial fishing areas and 

techniques. The at-sea learning curve would expect to have greater magnitude if 

inexperienced operations had commenced fishing. 
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Appendix V: Using catch rate data for simple cost-effective quota 
setting in the Australian spanner crab (Ranina ranina) fishery 

 



Using catch rate data for simple cost-effective quota setting
in the Australian spanner crab (Ranina ranina) fishery
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For many fisheries, there is a need to develop appropriate indicators, methodologies, and rules for sustainably harvesting marine
resources. Complexities of scientific and financial factors often prevent addressing these, but new methodologies offer significant
improvements on current and historical approaches. The Australian spanner crab fishery is used to demonstrate this. Between
1999 and 2006, an empirical management procedure using linear regression of fishery catch rates was used to set the annual total
allowable catch (quota). A 6-year increasing trend in catch rates revealed shortcomings in the methodology, with a 68% increase
in quota calculated for the 2007 fishing year. This large quota increase was prevented by management decision rules. A revised empiri-
cal management procedure was developed subsequently, and it achieved a better balance between responsiveness and stability.
Simulations identified precautionary harvest and catch rate baselines to set quotas that ensured sustainable crab biomass and favour-
able performance for management and industry. The management procedure was simple to follow, cost-effective, robust to strong
trends and changes in catch rates, and adaptable for use in many fisheries. Application of such “tried-and-tested” empirical
systems will allow improved management of both data-limited and data-rich fisheries.
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Introduction
For many fisheries globally, there continues to be a basic need to
develop appropriate indicators, analytical methodologies, and
rules for sustainably harvesting marine resources. Complexities
of scientific, financial, and practical nature often pose barriers to
addressing these needs of management. However, new method-
ologies offer significant improvements on current and historical
approaches. The need to prove the sustainability of fishery
stocks requires the development of formalized methods of evalu-
ation and assessment for planning and strategy success
(Butterworth and Punt, 1999; Smith et al., 1999). This is a
global issue, so approaches are needed to accommodate different
species as well as the operational realities of a fishery (Punt
et al., 2002; Plagányi et al., 2007). These issues are particularly rel-
evant to the Australian spanner crab (Ranina ranina) fishery.

The Australian spanner crab fishery operates across the jurisdic-
tional waters of Queensland and New South Wales between �22
and 308S. It is the largest spanner crab fishery of its kind, with
annual gross landings between 1500 and 2000 t (Kennelly and
Scandol, 2002). Spanner crabs are large, growing to �15 cm
rostral carapace length (�0.75 kg), living in water depths
between 10 and 100 m on sandy substrata. They are caught by
entangling their legs on tightly strung 32-mm mesh over a flat
square or rectangular metal frame enclosing an area of �1 m2

(Figure 1). In Queensland, the annual spanner crab quota (total

allowable catch, TAC) was set historically using an empirical (data-

based) management procedure. Since 2002, 90% of the harvests

were taken commercially from Queensland waters, and the man-

agement procedure has limited tonnages to ,2000 t, much less

than the harvests that increased exponentially to 3000 t in the

early 1990s before the introduction of output controls (Figure 2).
Recently, formal management procedures have been adopted

by Australian and international fisheries policy. These procedures

contain indicators that measure the state of the fishery (Seijo and

Caddy, 2000) and use them in control rules to alter fishing

pressure so as to achieve target goals in a fishery (Rademeyer

et al., 2007; Smith et al., 2008). They are typically complex,

based on theory, and designed for commercial fisheries serviced

by quantitative assessment models (such as maximum economic

yield: Grafton et al., 2007; Dichmont et al., 2008). Management

procedures can also be developed using simple indicators

derived from catch or survey data. However, their performance

can be uncertain without simulation testing and consideration

of uncertainty, conservative management, and data-gathering

principles (Dowling et al., 2008; Smith et al., 2008).
Technical reports and government legislation contain many

examples of empirical indicators in fisheries management. Most
are defined without control rules and response mechanisms or
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procedures to modify fishing. Notably, few have been published in
peer-reviewed journals detailing their performance in manage-
ment procedures. Examples of published theoretical and applied
systems include the following.

(i) Data-based procedures using averaged recent catches of
sablefish (Anoplopoma fimbria) were smoothed with a
research survey index of abundance in Canada to provide a
practical means of setting annual catch limits in the
absence of an acceptable model-based approach (Cox and
Kronlund, 2008).

(ii) For data-limited estuarine fisheries in New South Wales,
Australia, simulations and control charts were used to

identify important changes in annual time-series of harvest
and limit trigger points that detected both recruitment and
survival failure; accepting a high rate of false triggers
(Scandol and Forrest, 2001; Scandol, 2003).

(iii) Quota management procedures for the South African west
coast rock lobster (Jasus lalandii) fishery were first
implemented in 1997 and later modified in 2000 and 2003
(Johnston and Butterworth, 2005; Plagányi et al., 2007).
Notably, the empirical components used catch rates of
lobster from the commercial fishery and a fisheries-
independent monitoring survey. The rules altered quota
directly from that of the previous year based on a weighted
average of fishery and survey catch rates divided by their
fixed baselines. The maximum change in annual quota was
restricted to 10%. The latest management procedures were
simulated to show positive trade-offs between resource
recovery and future catch objectives, with the ability to
adapt to changes in lobster growth.

(iv) For Australia’s southeastern scalefish and shark fisheries,
linear regression of commercial catch rates without any
benchmarks was found to keep quotas at their current
levels and failed to rebuild resources when needed (Smith
et al., 2008). It has been proposed to replace the regression
method with a new control rule that compared average
catch rates directly against limit and target baselines (Little
et al., 2008), with the ability to increase or decrease stock
sizes.

As in the fourth example above, the Queensland spanner crab
commercial quota was operated by a control rule using linear
regression of fishery non-standardized catch rates (Dichmont
and Brown, 2010). Between 2002 and 2007, the annual TACFigure 1. Entangled spanner crabs (Ranina ranina).

Figure 2. Commercial spanner crab harvest from Queensland and New South Wales waters, overlaid with average catch rates (+2 s.e.) from
Queensland waters.
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was assessed every 2 years in relation to performance over the
six most recent years. For each of five assessment regions, a
regression was fitted to the trend in annual catch rates
(Brown, 2006). The proportional difference between the
regression’s initial and final fitted catch rate was calculated.
The proportions were weighted by fishing effort, then averaged
across regions to produce a pooled index of proportional
change. A 6-year increasing trend in catch rates (2000–2005;
Figure 2) resulted in the control rules calculating a 68% increase
in harvest quota for the fishing years 2006 and 2007, but the
existing management procedure did not accommodate a
change of this magnitude. The spanner crab Stock Assessment
Group agreed that applying such a large change would have a
destabilizing influence on the fishery. The special circumstances
Rule 7 provided an “out clause” in cases where additional infor-
mation indicated that the application of the rules may not be in
the best interest of the fishery. In that case, such a large increase
in quota would have attracted a great deal more fishing effort,
which would later have had to be removed as the quota
declined, catch rates would have eventually decreased to unsus-
tainable levels, and landing prices would have declined because
the market appeared to be saturated at the then existing quota
cap of 1727 t (Brown, 2006; Dichmont and Brown, 2010).
Therefore, for the 2006 and 2007 fishing years, a lower quota
than calculated by linear control rules was set (1923 t), with
the strong support of industry; this was significantly less than
the 2901 t calculated.

After failure of the linear harvest control rule, the scientific
method for calculating quota was reviewed in 2007 and 2008.
Some oversights in the mechanical elements of the linear rules
were noted. Comparing initial and final regression catch rates
would overestimate the changes in quota when the catch rates
were increasing or decreasing, the common “one-way trip”
phenomenon in fisheries data (Hilborn and Walters, 1992).
The process of comparing the initial and the final catch rates
assumed a maximum length of cycle of 5–7 years in the catch
rates (Dichmont and Brown, 2010). Increasing trends in non-
standardized fishery catch rates are commonly confounded by
rises in fishing power (O’Neill and Leigh, 2007). The methods
focused on achieving reliable regression fits across too many
years. Statistically, this seemed sensible, but the basic mechanism
of measuring proportional change between 6 years would result
in quite large differences. This was a simple oversight, especially
when new quota was being adjusted directly from that of the
previous 2 years. Also, full proportional adjustments to quota,
compared with unbalanced half-up and full-down arrangements,
were applied to preclude the rules progressively driving the
quota down in times of the stable or the cyclic change in
catch rates (Dichmont and Brown, 2010); statistically, the
regression approach would produce non-optimal results at
such times.

In response to the need for an alternative approach, we here
describe a new management procedure robust to trends in
fishing power and cyclic environmental change. Management
strategy evaluation (MSE) was used to identify favourable sus-
tainability, industry, and management performance outcomes,
using fishery-dependent and fishery-independent standardized
catch rate indices together with carefully set baselines. The man-
agement procedure and simulation testing further support the
application of empirical approaches in fisheries science and
management.

Material and methods
Three components were developed to construct and test the per-
formance of empirical indicators in the management procedure.
The first component was the standardized catch rate indicators
for classifying the status of the spanner crab fishery from (i) the
Queensland commercial fleet, and (ii) an independent monitoring
survey. The second component was the procedures using the catch
rate indicators to set harvest quotas, and the third the simulation
dynamics used to evaluate the performance of the management
procedure and empirical indicators. In the MSE, the three com-
ponents were linked in each simulated annual time-step by updat-
ing the biological calculations for the spanner crab population,
then the standardized catch rates from the exploitable population
were calculated, and finally the control rules and the harvest to be
taken from the population during the next time-cycle were
applied.

Standardized catch rates
Spanner crab standardized catch rates were predicted from gener-
alized linear models (GLMs). The models were fitted using the
statistical software package GenStat (2008), and asymptotic stan-
dard errors were calculated for all estimates. Stepwise regression
was used to select optimal model parameters (p , 0.05).
Analysis of residuals from each model supported their structure
and the use of statistical distributions. The importance of individ-
ual model terms was assessed formally using Wald (Chi-squared)
statistics by dropping individual terms from the full model
(GenStat, 2008).

Commercial data analyses
Commercial catch rates of spanner crabs obtained from industry
logbooks between 2000 and 2007 were standardized through a
GLM assuming normally distributed errors on a log scale
(McCullagh and Nelder, 1989). The model response variable (h)
consisted of the log of the daily catch (kg) from each vessel (n ¼
51 166 catches). Explanatory model terms included the three-way
interaction between fishing years, regions, and months, as well as
the main effects of individual vessels, their log-transformed fishing
effort (the number of net lifts, which was a function of the number
of groundlines used, nets per groundline, and lifts per groundline),
the spatial resolution of catches based on 30 × 30 min latitude and
longitude grids, and the lunar cycle. The regions represented five
latitudinal assessment zones between 23 and 28.178S (Brown
et al., 1999), with the 30-min square grids nested within regions.
Lunar cycle was represented by two covariates: (i) a calculated
luminance measure that followed a sinusoidal pattern, and (ii)
the same lunar data replicated and advanced 7 d (O’Neill and
Leigh, 2007). Together, these patterns modelled the cyclic variation
in catches corresponding to the moon phase.

The final inclusion in the model was the spanner crab fleet’s
evolving fishing power. An annual offset schedule (log scale) was
derived from a subset of vessel catches with recorded vessel/
fishing characteristics (n ¼ 32 422 catches). Through another
GLM with equivalent terms to those above, the effect of increased
skipper experience in the spanner crab fishery was quantified at
three categorical levels of experience, ,5, 5–10, and .10 years.
The parameter estimates (b) were combined with the categorical
skipper experience data (X) in a simple linear equation to calculate
relative changes in catches, under standard conditions, attributable
to increased skipper experience: log(c) ¼ b1X1 + b2X2 + b3X3
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(Bishop et al., 2004; O’Neill and Leigh, 2007). The logarithm offset
(annual schedule) of change in skipper experience was made rela-
tive to the year 2000 and calculated by the annual averages minus
the average for 2000.

Other fishing-power (catchability) information on which
fishers adopted new devices and technologies, and when they
were adopted, was considered in the GLM for the subset of
vessels. The data were obtained from a purpose-designed survey
of past and present Queensland spanner crab vessel owner/
operators in 2007. The survey was carried out via a questionnaire,
with 60 respondents to the mail-out survey and 48 from the tele-
phone interviews, a total response rate of 83% of the 130 selected
spanner crab licence holders. Changes in the following character-
istics, and the date of each change, were recorded for each vessel:

(i) vessel: length, engine rated power, cruising speed, fuel
capacity, fuel consumption;

(ii) on-board technologies: global positioning system, radar,
seabed discrimination system, colour sounder;

(iii) fleet cooperation and communication: radio and mobile
telephone;

(iv) skippering: number of crew and number of years in the
fishery;

(v) winching capacity: line-hauler used and type;

(vi) fishing effort: soak time, fish at night, overnight trips,
number of groundline lifts per day, number of groundlines,
number of net frames per groundline;

(vii) gear: net area, mesh size, thread ply;

(viii) bait: pilchard or other.

Given little change in these fishing characteristics between 2000
and 2007, their use in the GLM was limited.

The final average annual catch rates were predicted from the
full offset model. Predictions were standardized to the mean log
offset, log effort, and lunar cycle. Across model factors, predictions
were standardized using GenStat’s marginal weights policy of aver-
aging over the factor levels for month, region, grid, and vessel
(GenStat, 2008). Predicted log-means were rescaled using a
common bias-corrected back-transformation of adding half the
model variance (McCullagh and Nelder, 1989): m ¼ exp(h +
s2/2). The back-transformed means were converted to kg per
net lift by dividing by the overall median number of net lifts per
day (228.5).

Survey
Since 2000, annual fishery-independent surveys of spanner crab
have been conducted in Queensland waters during May, except
for 2004 (Brown et al., 2008). Catch rate measures of abundance
were collected from 25 areas (6 × 6 min grids) across the
Queensland fishery. In all, 15 individual groundlines (the sampling
units), each consisting of ten nets, were set in each area. The net
soak times with the number of spanner crabs caught, their
gender, and size (rostral carapace length) were recorded. In May
2005, the survey was extended south into northern New South
Wales, with the placement of four new areas (Kennelly and
Scandol, 2002; Brown et al., 2008).

Survey catches of spanner crabs across the years exhibited a sig-
nificant component of zero values (26%). As no single statistical
distribution can accommodate this inflated zero class, catches

were standardized through a two-component approach,
combining mean predictions from binomial regression of zero/
non-zero catch and general linear regression on the conditionally
distributed log-transformed non-zero catches (McCullagh and
Nelder, 1989; Myers and Pepin, 1990; Mayer et al., 2005). The
first component relates to the binary response of zero or
non-zero catch per groundline, modelled using a logistic trans-
formation with a linear function of the covariates survey area, log-
transformation of total net hours per groundline, and year. The
second component was for just those catches where the number
of crabs caught was not zero. The model response variable (h)
consisted of the logarithm of the number of crabs caught per
groundline. Explanatory model terms were the same as in the
binary analysis. Predicted catch rates from the lognormal model
were adjusted using a common bias-corrected back-
transformation of adding half the model variance. These catch
rates were then multiplied by the binary predicted proportions
for non-zero catch to predict the overall standardized average
number of spanner crabs per groundline equivalent to the
median net hours of fishing.

Management procedure
A management procedure, including harvest control rules, was
developed through a series of working group meetings with scien-
tists, managers, and stakeholders between November 2007 and
March 2008. From those meetings and initial analyses, certain
requirements were defined for the management procedure.
These were:

(i) the need to incorporate catch rates from the fishery and the
independent monitoring survey;

(ii) the need to maintain average catch rates around current
profitable (target) levels;

(iii) the need to maintain quotas around an agreed annual
tonnage and set every 2 years;

(iv) that quota rules were able to perform in strong up and
down cycles in catch rates;

(v) the need to incorporate the flexibility to change target catch
rate trigger points;

(vi) to minimize the frequency of the “crash rule” triggering;

(vii) the need to minimize trivial changes in quota tonnages.

To meet these requirements, the management procedure fol-
lowed a process of developing a baseline quota and performance
targets for standardized catch rates with range intervals. The
base quota (Qbase) and target catch rates ( fishery = �cf ,target and
survey = �cs,target) were set by the working group equal to their
annual average between 2000 and 2007, and they were fixed.
Upper and lower intervals of +10% were set on target catch
rates. The stock performance indicators were the average fishery
(�cf ) and survey (�cs) standardized catch rates in the most recent
biennial quota period. Standardized catch rates from the fishery
and the survey were compared in a decision matrix (Table 1). As
no prior evidence was available that either catch rate source was
more accurate or reliable than the other, the two indices of
spanner crab abundance were given equal weight in the assessment
process. The spanner crab quota was calculated from the base
quota (Qbase) and was made no larger than the maximum
tonnage allowed (Qmax). New quota was compared with the
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tonnage set 2 years earlier. If the new quota was within 5% of the
previous quota, then the quota remained unchanged. Quota for
Queensland and New South Wales was calculated according to
the equation

Qt+1,t+2

= min
Qt, if (0.95Qt ≤ lQbase ≤ 1.05Qt)

lQbase, otherwise

{ }
,Qmax

[ ]
,

(1)

where Q is the quota tonnage for biennial setting in years t + 1 and
t + 2, and l was from Table 1 (see Dichmont and Brown, 2010, for
an extended plain English version of the decision rules).

Simulation
The performance of the management procedure was tested by
simulating spanner crab population dynamics, catch rate
indices, and harvest. The algorithm driving the simulation used
forward-projection methodology similar to that described by
Richards et al. (1998). The population model tracked annual
(time-step t) numbers of spanner crabs by their gender (g),
length (l ), and age (a) classes (Table 2), using a sample of par-
ameter values (Table 3). Of the population parameters, moderate
recruitment productivity (steepness h) and long-lived dynamics
(natural mortality and growth) were assumed for testing the per-
formance of the procedure (Table 3). Previous population
modelling had failed to identify reliable scenarios of high
stock-growth rates for spanner crabs (Brown et al., 1999;
Kennelly and Scandol, 2002). Further, juvenile length-at-age
data revealed that spanner crabs grow slowly (Kirkwood et al.,
2005). Historical harvests from Queensland and New South
Wales were tallied between 1960 and 2007 and fed into the
model to tune hypotheses for stock status in 2007. The model
was then projected forward 50 years to cover three life cycles of
spanner crabs and to quantify long-term management perform-
ance over the periods of cyclic recruitment and fishing-power
increase. After every 2 years, catch rates were simulated
(Table 2) and the management procedure was invoked to calcu-
late commercial quota tonnages and harvests taken from
Queensland and New South Wales waters. The 50-year projection
process from selecting sample parameters to drive the spanner
crab stock, to quota management and harvest, was repeated
1000 times in MATLABTM (2008).

As in most MSE exercises, many modelling scenarios were
identified. They covered key uncertainties relating to spanner
crab dynamics and the management process. In all, five factor
combinations (48 scenarios) were investigated to assess the

performance of the management procedure: (i) three exploitable
biomasses to start the projections in 2007 (B2007/B0 ¼ 0.2, 0.4,
or 0.6), (ii) two baselines of catch rate and quota targets
(average Qbase, �cf,target, and �cs,target; compared with 0.7 Qbase,
1.3�cf ,target, and 1.3�cs,target to assess stock rebuilding), (iii) two
methods of fixed or updated target catch rates through time,
(iv) two states of catch rate (proportional to abundance; compared
against hyperstable commercial catch rate biased by 2% annual
fishing-power increase), and (v) two intervals on target catch
rates to alter the frequency of quota change (+10 and 20% on
�cf ,target and �cs,target, respectively). Simulation results show the
sequential interactions of the five factors.

Three approaches were used to assess the effects of the five
factors on the management procedure. First, to identify the
average effects, the outputs from 50 random simulations for
each of the 48 scenarios (simulation parameters were common

Table 1. Decision matrix for setting l in quota calculation (1), with subscripts u and l indicating upper and lower catch rate thresholds,
and u an average ratio of fishery and survey catch rates from the last 2 years divided by their target (for notation, see Table 3).

Mean catch rates (c̄)
Commercial fishery (f)

Survey (s) �cf ≤ �cf,target,l �cf,target,l , �cf , �cf,target,u �cf ≥ �cf,target,u

�cs ≥ �cs,target,u 1 1 uhalfup

1 or u 1 1
u or 0 1 or u 1

⎡
⎣

⎤
⎦�cs,target,l , �cs , �cs,target,u

�cs ≤ �cs,target,l

Matrix cell 2,1: if �cs , �cs,target, then l ¼ u, else l ¼ 1. Matrix cell 3,1: if u ≤ 0.5, then l ¼ 0, else l ¼ u. Matrix cell 3,2: if �cf , �cf,target, then l ¼ u, else l ¼ 1.
Matrix cell 1,3: l ¼ uhalfup ¼ (u 2 1) / 2 + 1.

Table 2. Equations for simulating spanner crab population
dynamics and catch rate indicators of abundance (for notation, see
Table 3).

Population dynamics Equation

Number of spanner crabs:

Nl,a,g,t+1

=
0.5Rt+1Ll for a = 0

Nl′,a−1,g,t exp(−Ma−1)
(1 − vl′ dl′ ut)Jl′,l for a = 1, . . . , 16

⎧⎪⎨
⎪⎩ (2)

Recruitment:

Rt+1 = Et/(a+ bEt) exp(1R)
(3)

Spawning index—eggs:

Et =
∑

l

∑
a Nl,a,g,tmlfl for g = female

(4)
Start-year exploitable biomass:

Bt,g =
∑

l

∑
a

Nl,a,g,tvlwg,l (5)

Midyear exploitable biomass:

Bmidt,g =
∑

l

∑
a

Nl,a,g,tvl exp(−Ma/2)
���������
1 − utdl

√
wg,l (6)

Fishery data indicators—catch rates
Commercial fishery (f):

cf,t = qf qincBmidg
t t exp(1f )

(7)
Survey (s):

cs,t = qsBmidt exp(1s)
(8)
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Table 3. Parameter definitions and uncertainties in simulation.

Modelling
components Equations and values Notes

Mortality
Ma z ¼ 0.3; MH ¼ 0.277; Ma = ([a + 1]−z/a−z

max)MH Instantaneous natural mortality (Ma) declined exponentially with age based on assumed shape
parameter (z); for constant M, z ¼ 0. Natural mortality MH was calculated from the Hoenig (1983)
equation for maximum longevity. This was set at 16 years (Kirkwood et al., 2005); amax ¼ 16 +1,
where a ¼ 0, . . ., 16

vl l50 ¼ 7 cm; l95 ¼ 8 cm Logistic selectivity equation (Haddon, 2001). Full selection attained at minimum legal size, i.e. 10 cm

dl
0.2 for l , 10 cm
1 for l ≥ 10 cm

{ Discard mortality proportion (Brown et al., 1999). All crabs of legal size are retained

Ct (Qt,Queensland + Qt,New South Wales)1ie + Crec, where
Crec ¼ 2 × N(11 476,2 051)wrec/1000 and wrec ¼ 0.225 kg

Spanner crab harvest (t). A recreational (rec) harvest of 2.6 t for Queensland and New South Wales was
included as twice the Queensland average over survey years 1999, 2000, 2002, and 2005 (Higgs, 2001;
Henry and Lyle, 2003; Higgs et al., 2007; McInnes, 2008)

1ie B(40.316, 6.794) Beta distribution fitted for implementation error on quota (MATLAB, 2008). Median of historical
harvest divided by quota limit between 2000 and 2006 was 0.86

ut Ct/Bt Model calculated annual harvest rate

Growth
Ll l1,male ¼ 15.6 cm; l1,female ¼ 12.2 cm; kmale ¼ 0.23; kfemale ¼ 0.26;

t0,male ¼ 20.25; t0,female ¼ 20.24; s ¼ 1 cm
Proportion of crabs in length class l for age category 0 (a ¼ 0.5) individuals. Calculated from the

normal probability density function, with m and s from the von Bertalanffy growth curve for slow
growth (Kirkwood et al., 2005)

Jl′ l For growth parameters see Ll; E(l ) ¼ l1(1 2 exp(2k)) + l′exp(2k) Growth transition matrix allocating a proportion of crabs in length category l′ to grow into length l
over 1 year. Calculated using the normal probability density function [E(l ) and s] (Sadovy et al.,
2007)

wg,l wg,l = aglbg , g ¼ gender; amale ¼ 0.00011; afemale ¼ 0.00022; bmale ¼ 3.234;
bfemale ¼ 3.075

Average crab weight (w, kg) at length (Brown, 1986)

Recruitment
a, b h ¼ 0.4; R0 ¼ optimized for B2007/B0 Assumed parameters for Beverton– Holt spawner–recruitment [Equation (3); Table 2], defined by

steepness (h; Haddon, 2001). Virgin recruitment (R0) was optimized to three exploitable biomass
ratios in 2007 (0.2, 0.4, and 0.6)

1R exp(N[mt, s]); mt ¼ sin(pt)A; pt ¼ (p/2:2p/13:2.5p); A ¼ 0.1; s ¼ 0.25 Lognormal recruitment error with cyclic bias. The bias was set with a 14-year cycle and amplitude (A),
as suggested by autocorrelations from commercial standardized catch rate residuals between 1988
and 2006

ml 100% for l ≥ 7 cm, else zero Maturity schedule (Brown, 1986)
fl f ¼ 5.524(l × 10) 2 403.94 Fecundity schedule measured in thousands of eggs (Brown, 1986)

Fishery

qf

∏n

t=1
�cf,t/Bmidt

( )1/n
Commercial catchability, calculated as the geometric mean of standardized catch rates divided by the

modelled midyear biomass
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across factor interactions, n ¼ 2400) were analysed through a
GLM. For the GLM, analysis of all 1000 simulations was unnecess-
ary (Dichmont et al., 2006c) and would add unrealistically high
statistical power (deflating the variance) for comparing meaning-
ful differences between averages. Three performance measures
were used as the response variables in GLM: (i) exploitable
biomass ratio at the end of the 50-year future projection, (ii)
average harvest across the 50-year future projection, and (iii) fre-
quency of setting new quota tonnages across the 50-year future
projection. The interaction of assumed exploitable biomasses in
2007 [Factor (i) above] and target baselines [Factor (ii)] rep-
resented clearly different states for the analyses. The three-way
interaction of these terms with Factors (iii), (iv), and (v) were
the focus of interpretation. Second, all 1000 simulations were
used for graphic presentation of means and to construct appropri-
ate 95% prediction intervals for annual variation in performance
measures. To finish, regressions of mean predictions for the 48
scenarios were used to assess the impact of recruitment and obser-
vation errors on conclusions over the 50-year projection. Three
random error terms 1R, 1f, and 1s were compared at zero, half,
and full variance (Table 3) over 10, 25, and 50 years. Definition
of the regression analyses were

�miyv1
= y + by �miyv2

y + b�miyv2

{
,

where �miyv1
was the mean performance measure for scenario i,

year y, and full variances v1; �miyv2
was the mean performance

measure for scenario i, year y, and half or zero variances v2; b
represented the slope parameters to be estimated. Non signifi-
cant F-tests comparing full and reduced models and b coeffi-
cients were used as statistical measures of no impact of
random noise on performance measures.

Results
Establishing target catch rate indicators
Commercial catches of spanner crabs between 2000 and 2007
were standardized from two statistical analyses (Table 4).
The first explored the standardization of a number of potential
fishing-power covariates from a subset of 103 commercial vessel
operations. The covariates covered data representing fishing
experience, vessel specification (e.g. vessel size, total engine
power, fuel capacity), use of navigational aids (such as a global
positioning system, radar, echosounder, and mobile telephone/
radio), and fishing practices (such as overnight trips, use of
line-haulers, gear soak time, number of net lifts per day, net
area, number of crew). For the years analysed, there was little
change in the use of many of these covariates (Table 5), and
their inclusion in the linear model was not significant and
excluded (p . 0.05). Significant fishing-power terms were
detected for each vessel operation, three levels of skipper experi-
ence, and the logarithm of the number of net lifts (Table 4). The
parameter estimates showed that fishers with .5 years experience
had at least 8% better average catch rates than fishers with ,5
years experience (log parameter estimates for fishing experience:
,5 years ¼ 20.1341, s.e. ¼ 0.0172; .10 years ¼ 20.0458,
s.e. ¼ 0.0152; fishers with 5–10 years of experience were set at
the reference level of 0).

For the second analysis of all commercial catches, the logar-
ithm of the number of net lifts was the most significant modelTa
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term (parameter estimate ¼ 0.851, s.e. ¼ 0.007; Table 4), indi-
cating that daily catch and effort were not covered by a simple
1:1 relationship. Average net lifts per vessel day declined by
15% between 2000 and 2007, with the coefficient mitigating
the standardized catch rate for the reduction in net lifts.
Catches of crabs were significantly different between vessels,
years, months, regions, and fishing grid within regions

(Table 4). The logarithm offset (annual schedule) of change
in the fleet’s fishing power attributable to changing skipper
experience was small, just a 2% increase between 2000 and
2007. Also of minor significance was the effect of lunar cycle,
with average catch rates 3% higher over the waxing crescent
and first quarter of the phases. Figure 3 illustrates the relative
standardized annual average catch of crabs per net lift. The

Table 4. Summary of the analysis from each GLM.

Parameter

Commercial catches Survey catches

Subset of data All data Zero/non-zero Non-zero

Summary of analysis
Number of data 32 422 51 166 2 804 2 085
Regression mean deviance 20.94 27.043 17.246 33.498
Residual mean deviance 0.312 0.335 0.912 1.048
Regression d.f., residual d.f. 628, 31 793 751, 50 414 39, 2 764 39, 2 045
Adjusted r2 0.562 0.539 0.2 0.367

Wald statistics, d.f.
Vessel 3 361.92, 102 7 262.04, 219 – –
Number of net lifts (log) 10 365.38, 1 14 547.97, 1 – –
Fishing year.region.month 1 638.56, 304 1 969.92, 304 – –
Fishing area (grid) 911.72, 46 1 414.8, 54 – –
Luminance 3.49*, 1 5.34, 1 – –
Luminance advance 7 days 7.05, 1 7.37, 1 – –
Skipper experience 83.5, 2 Offset – –

Location – – 384, 32 1 091.5, 32
Number of net hours (log) – – 5.2, 1 35.2, 1
Year – – 15, 6 93.3, 6

– , Model term not applicable to the analysis.
*Model term significance p ¼ 0.062, otherwise p , 0.05. For the commercial and survey (non-zero) analyses, F statistics can be derived by dividing the Wald
statistics by their degrees of freedom (d.f.).

Table 5. Summary of average spanner crab fleet characteristics (covariates) weighted by the number of days fished by each vessel between
2000 and 2007.

Covariate Mean Median Minimum Maximum Std deviation

Vessel length (m) 9.288 8.5 5.5 21.3 2.771
Engine rated power (hp) 288.2 250 60 751 120.2
Fuel capacity (l) 977.5 600 150 8 500 1 451
Fuel use per day (l) 220.7 180 70 550 120.2
Cruising speed (knots) 16.33 15 7 36 4.46
GPS (p) 1 1 1 1 0
Radar (p) 0.343 0 0 1 0.475
Sounder (p) 1 1 0 1 0
Seabed discrimination system (p) 0.0364 0 0 1 0.187
Mobile phone/radio (p) 1 1 1 1 0
Overnight trips (p) 0.311 0 0 1 0.463
Fish at night (p) 0.0902 0 0 1 0.287
Line hauler (p) 1 1 1 1 0
Lifts of groundlines (n) 6.656 6 4 16 1.726
Groundlines (n)* 3.122 3 2 4 0.345
Nets per groundline (n)* 14.18 15 10 30 1.904
Soak time (min) 65.33 60 30 120 17.91
Net area (m2) 0.879 0.88 0.196 1 0.131
Mesh size (mm) 33.05 31.75 25 50.8 4.854
Mesh ply rating 9.23 9 3 12 2.297
Crew (n) 0.622 1 0 4 0.544
Skipper experience (years)* 9.835 9 0 34 5.919
Bait, pilchard (p) 0.829 1 0 1 0.377

p, proportion; n, number.
*Significant change in covariate between fishing years (p , 0.05).
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overall average fishery catch rate was 1.043 (s.e. ¼ 0.085) kg of
crab per net lift.

Survey catches of spanner crabs showed that 74% of ground-
lines caught crab. These proportions changed significantly with
location and year (Table 4). The proportions increased signifi-
cantly with logarithm of net hours of fishing (parameter
estimate ¼ 0.527, s.e. ¼ 0.231). Analysis of non-zero catches also
showed differences between location and year (Table 4), and
catches increased significantly with logarithm of net hours of
fishing (parameter estimate ¼ 0.576, s.e. ¼ 0.097). The relative
product of predicted probabilities of catching crab and average
non-zero catches of crab are illustrated in Figure 3. The average
survey catch rate was 13.971 (s.e. ¼ 1.307) crabs per groundline,
standardized to a total soak time of 8.811 net-hour.

Simulations that support lower quota and higher
catch rate targets
Simulations were structured to describe five possible effects on the
performance of the management procedure (the five factors listed
in the “Simulation” section above). Results were very dependent
on the projection starting biomass in 2007 and the target baselines
associated with the biomass levels between the years 2000 and 2007
(p , 0.001). After adjusting for these terms through three-way
interactions (Table 6), significant differences were identified
between the methods of calculating target catch rates and their
states over all three performance measures. For catch rate
thresholds, only the frequency of quota change demonstrated a
significant difference.

Figure 4 illustrates the differences in average performance
statistics (for exploitable biomass, harvest, and frequency of
quota change) between the 48 scenarios examined. The differences
were not influenced much by the number of projection years or the
extent of simulation random error (Table 7). For the average quota
and catch rate baselines selected by management, the exploitable
biomasses at the end of the 50-year projection were lower when
the starting biomass ratios in 2007 were 0.2 and 0.4 (scenarios
1–8 and 17–24; Figure 4). The declines were greatest when
fishing power/hyperstability biased the commercial catch rates.
Biennial updating of average baselines resulted in lower biomasses
when comparing scenarios 1–8. In contrast, biomass ratios
increased when average baselines were adjusted up conservatively
by 30% (scenarios 9–16, 25–32, and 41–48), and biennial
updating of adjusted baselines resulted in further increases
especially from low biomass (B2007/B0 ¼ 0.2) scenarios 13–16.
Average biomass ratios were only the same at the beginning and
the end of the simulations when starting biomasses were high
(B2007/B0 ¼ 0.6) and baselines were set at their average (scenarios
33–40). No significant differences in average biomass resulted
between using either 10 or 20% intervals on catch rate triggers
(Table 6 and Figure 4).

The harvest outcomes shown in Figure 4 show that tonnages
were only maintained at their average (�1532 t) when starting
biomass ratios were at 0.4 or 0.6 in 2007 and average baselines
were used (Figure 4, scenarios 17–24 and 33–40); otherwise,
average harvests were ,1532 t. Average harvests were generally
lowest when updating 30% adjusted baselines, marginally higher

Figure 3. Standardized and unstandardized annual catch rates of spanner crabs relative to their mean (¼1) for the (a) commercial fishery and
(b) the fisheries-independent monitoring survey. Error bars indicate 95% confidence intervals on standardized catch rates.

Table 6. Summary of the GLM three-way interactions for the three performances measures: the Wald statistics and probabilities of no
significant difference between two methods of calculating target catch rates, two catch rate states, and two catch rate thresholds for each
simulated performance measure.

Three-way interaction terms: Factor (i) (biomass ratio 2007) 3 Factor (ii)
(target baselines) 3 ċ

Exploitable
biomass Harvest

Frequency of quota
change

Factor (iii): method for calculating �cf,target and �cs,target (fixed or updating through
time)

36.742*, 0.001 18.519*, 0.001 72.35*, 0.001

Factor (iv): catch rate states (proportional to abundance or biased) 6.242*, 0.044 8.871*, 0.012 20.47*, 0.014
Factor (v): catch rate thresholds (10 or 20%) 0.522, 0.770 3.731, 0.155 37.23*, 0.001

Number of simulations ¼ 2400. F-statistics equal to the Wald statistics divided by their degrees of freedom (d.f. ¼ 2).
*Significant model term.
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Figure 4. Exploitable biomass, harvest, and quota performance measures (means and 95% prediction intervals for a simulation outcome) for each scenario. The top row of subplots represents
the exploitable biomass at the end of the 50-year projection, the middle row the harvest across the 50-year projection, and the bottom row the probability of having to change quota every 2
years. The legend identifies scenarios with different catch rate assumptions [Factor (iv)] and intervals [Factor (v)]. As annotated in the top left subplot, every group of four means and intervals
from left to right corresponds to alternating the fixed and updating setting [Factor (iii)] for target catch rates (�c f ,target and �cs,target), and every group of eight corresponds to alternating the two
baselines [average and 30% adjusted; Factor (ii)] settings. Each column of subplots corresponds to the three different biomass ratios assumed in 2007 [B2007/B0 ¼ 0.2, 0.4, and 0.6; Factor (i)].
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when commercial catch rates were biased, and not significantly
different between 10 and 20% intervals on catch rate triggers
(Table 6 and Figure 4). Large harvest variances were associated
with the low biomass (B2007/B0 ¼ 0.2) and average baselines scen-
arios 1–8. For these scenarios, Figures 5 and 6 scenario 1 illustrated
erratic setting of quota and no biomass rebuilding even with 12% of
the quotas set to zero and 69% of the non-zero quota set below base.
For the 30% adjusted baselines, quota tonnages increased with
rising biomass; more so when rebuilding from the lower B2007/B0

ratio (scenarios 9, 25, and 41; Figure 5).
Significant differences in the probability of varying the quota

were detected across all factors (Table 6). For all low-biomass scen-
arios (1–8), the probability of quota change every 2 years was
highest at �80% (Figure 4). The probability of varying the
quota was lowest when biomass was high, updating average base-
lines, fishing power and hyperstability-biased commercial catch
rates, and 20% intervals were set as catch rate triggers
(Figure 4). Overall, the probability of varying the quota every
2 years was �60%.

Interestingly, the management procedure resulted in a large
range of quota tonnages across stock sizes, the scatterplot and
probability statistics showing the chances of setting the quota
correctly or incorrectly (Figure 6). For scenario 1, base and
above-base quotas were being set incorrectly at low stock sizes,
even assuming no hyperstability or fishing-power biases. For
the other scenarios in Figure 6, most quotas were set at base
tonnage, with larger quotas generally set at higher biomasses.
There was a small probability of setting quota tonnages at the
maximum cap of 2200 t.

Discussion
The results here using the Australian spanner crab fishery have
provided significant insight into how the approach taken to this
and other fisheries requires certain core attributes to maximize
the chances of sustainable stock management. These include
aspects of the procedure, from appropriate standardization of
fishery and independent monitoring data, to setting baseline indi-
cators and numerical models for MSE. These components are per-
tinent to science and management globally. For Australian spanner
crabs, the components were successfully brought together in a
quantitative assessment tool that permits simple, rapid, cost-
effective quota setting. The findings related to the management
procedure are discussed further below.

When faced with uncertainty, do not set generous
baselines
Simulations that identified precautionary levels of quota and catch
rate baselines were required to ensure robust performance of the
management procedure. This resulted in higher simulated bio-
masses and catch rates of crabs with less variable total harvests.
This outcome was demonstrated to be consistent and robust
against assumptions on uncertain crab population dynamics and
biases on catch rate indicators. Importantly, the baseline settings
were critical, because the rules operated towards target catch and
catch rates. In a typical data-limited fishery, this would require bal-
ancing knowledge of the fishery, the life-history characteristics of
the species, and political opinion on sustainable harvest. When
set too generously, the rules incorrectly set high quotas at low
population sizes (e.g. scenario 1; Figure 6) and overruled the
three precautionary behaviours in the management system: (i)
quota increases above baseline only if both catch rate indices are
above their target; (ii) a “half-up” principle restricts quota
increases above baseline to half the full proportional increase;
(iii) quota reductions are by the full proportional decrease. In
choosing baselines, it was important to consider four key
aspects: (i) lower-than-perceived stock sizes, (ii) biased fishery
catch rates that result in lower biomass, higher quota, and less
responsive quota change, (iii) a base quota of less than the
average harvest, and (iv) updating baseline catch rates towards
targets that are higher than average. No risks to the population
of choosing between simple 10 or 20% catch rate intervals were
found. When large population size or high productivity of the
stock was assumed, average baselines proved sustainable, as illus-
trated by biomass scenarios 0.4 and 0.6 B2007/B0 (Figure 4).

MSEs through simulation models have been used internation-
ally to investigate the appropriate levels of fishing and the use of
reference points in many fisheries (Dichmont et al., 2006a; Little
et al., 2007). Monte Carlo methodology is often used to allow
for adequate model parameter and process uncertainties
(Richards et al., 1998). Here, we generally followed these conven-
tional procedures, but differed in that the operating model for
spanner crabs was not conditioned to abundance indices or
stock assessments. Instead, the stock–recruitment parameter for
virgin recruitment, with steepness and other biological parameters
fixed, was tuned to hypothetical stock sizes in 2007 (B2007/B0 ¼

0.2, 0.4, or 0.6) using the time-series of total harvest from
Queensland and New South Wales. The simulation approach pro-
vided flexibility to examine a number of uncertainties about the
spanner crab population, allowing a robust set of indicators and
quota rules to be selected.

Keep management procedures practical and simple
and use the available data
The management procedure was developed as a co-management
approach between managers, scientists, and the fishing industry.
The rules met predefined requirements and provided transparency
to the quota-setting process. They were built from industry sugges-
tions to use a baseline quota, baseline catch rates, and half-up/full-
down principles to increase/decrease quota, respectively.
Importantly, the use of quota and catch rate baselines allowed suf-
ficient flexibility to allow for adaptation to the reasons for change
(e.g. stock rebuilding), but they still operated under the overall
principles.

Table 7. Statistical measures for comparing 50-year projections
against shorter 25- and 10-year projections.

Performance measure and variance
F-statistics;

p-value
Correlation

estimate (s.e.)

Bend/B0 × 0.5(hr, hf, and hs) 2.33; 0.101 0.926 (0.010)
Bend/B0 × 0(hr, hf, and hs) 1.77; 0.175 0.836 (0.017)
Harvest × 0.5(hr, hf, and hs) 1.37; 0.258 0.930 (0.017)
Harvest × 0(hr, hf, and hs) 1.44; 0.241 0.813 (0.025)
Quota change × 0.5(hr, hf, and hs) 0.11; 0.899 0.684 (0.022)
Quota change × 0(hr, hf, and hs) 1.12; 0.328 0.457 (0.036)

The F-statistics conclude that there was no significant difference in the
performance of the management procedure (as illustrated in Figure 4)
between projections of 10–50 and 25–50 years. Linear regression
coefficients illustrate significant (p , 0.001) correlation between results
with full variance against 0.5 and zero variance on simulation recruitment
(hr) and observation (hf and hs) errors.
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As with all quotas, the setting process followed multiple rules.
Decisions were applied to select the base-quota multiplier (l)
depending on whether the standardized catch rates fell inside or
outside the thresholds (Table 1), testing if the calculated new
quota was within +5% of previous quota, and capping to the
maximum allowed tonnage. Although there were multiple steps
to follow, they were simple and relatively quick to run, easy to
understand, transparent to industry, responsive to changing popu-
lation indices, and inexpensive (except for the cost of a
fishery-independent abundance survey). Another advantage was
that the process removed the need to run time-consuming stock
assessment models and avoided the uncertainties associated with
dynamics of spanner crabs (Kirkwood et al., 2005). Although
quotas were set every 2 years, the rules could be run annually.
Also, the system would allow discrete responses of setting quotas
into categories to be achieved. This would appeal to stakeholders
and management because it minimizes unnecessary quota

change and administration compared with continuous mathemat-
ical functions (Dichmont et al., 2006b; Cox and Kronlund, 2008;
Little et al., 2008).

A limitation of the quota process was that population status
would not be known. The empirical rules could not set fishing
effort or harvest accurately to obtain target biomasses above
those that support maximum sustainable yield (.0.35–0.4B0;
Figure 6). This was because of the multiplicative effect of more-
variable recruitment and catch rate sampling (observation) error
at larger population sizes. In those cases, a range of tonnages
was still set above and below the base quota. Only population
model procedures with greater certainty can perform better at
achieving target biomasses (Rademeyer et al., 2007). The crab
resource may be underutilized if the real population size were
high (e.g. scenarios 33–48; Figure 4). In addition, as highlighted
by Cox and Kronlund (2008) and found here, the performance
of empirical rules was very dependent on the level of population

Figure 5. Comparison of expected quota behaviour from three random time-series selected under six scenarios. Catch rate baselines were all
fixed, assumed proportional to abundance, with an interval width of +10%.
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size present when the baselines were set. Problems of catch rate
non-linearity and uncertainty of lower-than-perceived population
size were overcome by setting precautionary quota and catch rate
baselines. Abundance indices generated from a more temporally
and spatially replicated fishery-independent survey would mini-
mize some of the problems and remove the need for including
fishery data (Skalski, 1990; Brown, 2001).

Standardize catch rates using appropriate
statistical models
General linear models were used to analyse log-transformed com-
mercial weights of spanner crab. The transformation model is
common and was appropriate for spanner crabs, because catches
were many, right-skewed, non-zero, and with normally distributed
residuals. A large subset (63%) of the commercial catch infor-
mation was first analysed with data on skippers’ years of fishing
experience (Table 4), thus quantifying the improvement in the

fleet’s fishing experience. At that time, the resulting improvements
(fishing-power offset) had limited practical effect on standardized
catch rates. Even so, documenting change in fishing-power vari-
ables is essential, because operators will always aim to improve
their efficiency.

Survey catches of spanner crab were standardized using a two-
component approach. The methodology was particularly appli-
cable to these discrete-count data that exhibited a significant
zero class and moderate non-zero catch sizes. The models more
accurately reflected the properties of the data than the old
fashioned log(y + 1) transformation. Overall, the conditional log-
normal model provided the best goodness-of-fit statistics and
normal residual plots, as found by Mayer et al. (2005). However,
further enhancement through more general modelling might be
possible using the techniques described in other studies (Faddy,
1998; O’Neill and Faddy, 2002; Podlich et al., 2002). These two-
component approaches do not rely on the standard distributional

Figure 6. Simulated performance of quota setting against exploitable stock size for six scenarios. Statistics show the proportion of quotas set
at zero tonnage (Stat 1), non-zero tonnages less than base (Stat 2), base (Stat 3), and above base (Stat 4); n ¼ 25 000 points per subplot. Catch
rate baselines were all fixed, assumed proportional to abundance, with an interval width of +10%.
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assumptions, but instead a model based on a generalized Poisson
process.

Conclusions
This research paper has described a new empirical management
procedure for Australian spanner crabs. Notably, it has also high-
lighted an approach of how to apply statistical and mathematical
tools in setting harvest-decision rules. The empirical rules were
simple to follow, cost-effective, flexible to changes in fishery con-
ditions, and adaptable for use in many fisheries. When stock status
and dynamics are uncertain, precautionary levels of quota and
catch rate baselines are suggested to ensure sustainable and profit-
able fishing. The nature of this result was consistent with many
numerical publications which suggest the setting of quotas
below the maximum sustainable yield. This was because of the
uncertainty surrounding the real values of sustainable harvest
and their year-on-year variability. The system described here
solved earlier problems of overestimating increases and decreases
in quota and assessed fishing-power bias on catch rates. Further,
the results demonstrated the technical advantages and increased
potential for sustainable management gained from using this
empirical baseline approach. The adaptive capacity that this man-
agement procedure provides has significance for improving our
ability to manage data-poor and data-rich fisheries sustainably.
In that context, the continued application and the development
of these techniques warrants consideration in fisheries manage-
ment into the future across all fisheries.
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