Biodiversity of Australian smut fungi

R.G. Shivas^{1*} and K. Vánky²

¹Queensland Department of Primary Industries, Plant Pathology Herbarium, 80 Meiers Road, Indooroopilly, Queensland 4068, Australia

²Herbarium Ustilaginales Vánky, Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany

Shivas, R.G. and Vánky, K. (2003). Biodiversity of Australian smut fungi. Fungal Diversity 13: 137-152.

There are about 250 species of smut fungi known from Australia of which 95 are endemic. Fourteen of these endemic species were first collected in the period culminating with the publication of Daniel McAlpine's revision of Australian smut fungi in 1910. Of the 68 species treated by McAlpine, 10 were considered to be endemic to Australia at that time. Only 23 of the species treated by McAlpine have names that are currently accepted. During the following eighty years until 1990, a further 31 endemic species were collected and just 11 of these were named and described in that period. Since 1990, 50 further species of endemic smut fungi have been collected and named in Australia. There are 115 species that are restricted to either Australia or to Australia and the neighbouring countries of Indonesia, New Zealand, Papua New Guinea and the Philippines. These 115 endemic species occur in 24 genera, namely Anthracoidea (1 species), Bauerago (1), Cintractia (3), Dermatosorus (1), Entyloma (3), (1),Heterotolyposporium (1), Lundquistia Fulvisporium (1),Farysporium Macalpinomyces (4), Microbotryum (2), Moreaua (20), Pseudotracya (1), Restiosporium (5), Sporisorium (26), Thecaphora (2), Tilletia (12), Tolyposporella (1), Tranzscheliella (1), Urocystis (2), Ustanciosporium (1), Ustilago (22), Websdanea (1) and Yelsemia (2). About a half of these local and regional endemic species occur on grasses and a quarter on sedges. The northern tropical savannah region of Australia offers most promise for the discovery of new endemic species. The agricultural, quarantine and environmental significance to Australia of some introduced species is discussed.

Key Words: biodiversity, smut fungi, Ustilaginomycetes

Introduction

In 1802 the eminent British botanist Robert Brown, while collecting specimens of a sedge near Port Jackson (now Sydney), unknowingly made the first collection of an Australian smut fungus (Ustilaginomycetes) that was parasitising the seeds (Walker, 1971). Brown's specimens provided the lectotype of *Cyperus lucidus*, and the smut fungus, discovered amongst herbarium specimens of the sedge more than 150 years later, is now known as

^{*}Corresponding author: R.G. Shivas; e-mail: roger.shivas@dpi.qld.gov.au

Bauerago cyperi-lucidi (J. Walker) K. Vánky. A little more than a century after this accidental beginning, the first and only taxonomic revision of Australian smut fungi, *The Smuts of Australia*, appeared by McAlpine (1910) who treated 68 species. Now, 200 years ago since Robert Brown's collection, about 250 species of smut fungus have been discovered in Australia and the number of endemic species has risen to 95. In this paper we briefly explore the biodiversity of Australian smut fungi in the context of endemism, host specificity, phytogeography as well as agricultural, quarantine and environmental significance.

Endemism

It is convenient to divide the two centuries that have elapsed since the first smut was collected in Australia in 1802, into three periods. The first period from 1802 until 1910 represents the time of greatest botanical and geographical discovery in Australia. This was a period that started with British colonisation and exploration; was followed by the introduction of broad acre farming systems, particularly for cereals and livestock; and eventually saw the birth of the Australian nation in 1901. During this period the first endemic species of smut fungus in Australia was published by Nees (1846) on a native Western Australian rush (Restionaceae) under the name of Uredo restionum Nees (Websdane et al., 1994).

Daniel McAlpine (1849-1932) made his founding and most influential contributions to taxonomic mycology and plant pathology in Australia (May and Pascoe, 1996). This era culminated with McAlpine's revision of Australian smut fungi in 1910. His treatment documented all that was known about the Australian smut fungi at that time and it is still the only comprehensive treatment on the subject today. McAlpine (1910) treated 68 species of which 26 were new species of smut. Of these 68 species only 23 have names that are accepted today. Ten of the 68 species known to McAlpine were considered to be endemic to Australia although this number increased to 17 if species restricted to Australia and New Zealand were included (Table 2). With hindsight we now know that in 1910 there were a further five species of Australian endemic smut fungi that lay in collections awaiting critical examination (Table 1). Unfortunately the period up to 1910 also saw the introduction into Australia of ten of the most serious exotic smut diseases of cereals (Table 5).

The next period, from 1910 until 1990, sees Australia's population rapidly colonise the eastern coastal regions and massive land clearing for broad acre farms expand into the heart of the continent. During this period, 31 species

Table 1. Chronological list (according to year first collected) of species of smut fungi known to occur only in Australia together with year basionym published.

Year first	Australian angaing	
collected in	Australian species	Year
Australia		basionym
up to 1910:		published
1802	Bauerago cyperi-lucidi (J. Walker) K. Vánky	1051
1839	Restiosporium restionum (Nees) K. Vánky	1971
1850	Restiosporium restionum (Nees) K. Vanky Restiosporium leptocarpi (Berk.) K. Vánky	1846
1878	Moreaua muelleriana (Thümen) K. Vánky	1881
1889	Ustilago tepperi Ludwig	1878
1890	Ustilago pertusa Tracy & Earle	1889
1891	· · · · · · · · · · · · · · · · · · ·	1895
1894	Ustilago distichlidis (McAlpine) Ciferri	1928
1897	Thecaphora lagenophorae (McAlpine) McAlpine	1910
1902	Moreaua gigaglomerulosa K. Vánky	2002
?1902	Urocystis destruens McAlpine	1910
	Sporisorium mitchellii (Syd. & P. Syd.) K. Vánky	1903
1903 1904	Restiosporium lepidobolii (McAlpine) K. Vánky	1904
	Moreaua lepidospermae (McAlpine) K. Vánky	1910
1909	Sporisorium walkeri K. Vánky	1994
1910-1990: 1910	Manufacture (COLAL CARACTER OF GROVE	
	Macalpinomyces ewartii (McAlpine) K. Vánky & R.G. Shivas	1911
1911 1911	Ustilago panici-gracilis MacKinnon	1912
	Sporisorium exsertiformum K. Vánky	1995
1923 1931	Urocystis chorizandrae J. Cunnington, R.G. Shivas & K. Vánky	in press
1931	Ustilago curta Syd.	1937
1931	Sporisorium polycarpum (Syd.) K. Vánky	1937
1932	Sporisorium fraserianum (Syd.) K. Vánky	1937
	Sporisorium centrale R.G. Shivas & K. Vánky	2002
1935	Ustilago altilis Syd.	1937
1935 1936	Ustilago radulans K. Vánky	1999
	Ustilago serena Syd.	1937
1938	Ustilago lepturi-xerophili K. Vánky	1999
1940 1941	Tilletia palpera J. Walker	2001
1941 1947	Sporisorium eulaliae (L. Ling) K. Vánky	1953
	Ustilago porosa Langdon	1962
1947 1951	Microbotryum prostratum (K. Vánky & Oberw.) K. Vánky	1991
	Fulvisporium restifaciens (D.E. Shaw) K. Vánky	1952
1953	Entyloma arctotis K. Vánky	2000
1961	Microbotryum dumosum (K. Vánky & Oberw.) K. Vánky	1990
1963	Moreaua opaca K. Vánky	2002
1964	Tilletia nigrifaciens Langdon & Boughton	1978
1968	Thecaphora maireanum R.G. Shivas & K. Vánky	in press
1971	Lundquistia fascicularis K. Vánky	2001
1974	Moreaua elongata K. Vánky	2002

Table 1 (continued).

Year first	Australian species	Year
collected in	Tausei unum species	basionym
Australia		published
1974	Pseudotracya otteliae K. Vánky	1999
1976	Ustilago latzii K. Vánky	2001
1978	Ustilago alcornii K. Vánky	2000
1982	Ustilago enteropogonis K. Vánky	2002
1984	Sporisorium simile R.G. Shivas & J. Walker	1998
1989	Tilletia pseudochaetochloae R.G. Shivas & K. Vánky	2002
1989	Ustilago neurachnis K. Vánky	2002
1990-2002:	,	
1990	Yelsemia arthropodii J. Walker	2001
1991	Sporisorium cenchri-elymoidis K. Vánky & R.G. Shivas	2002
1992	Moreaua cyathochaetae (Websdane & K. Vánky) K. Vánky	1996
1992	Moreaua mesomelaenae (Websdane & K. Vánky) K. Vánky	1996
1992	Tilletia robeana K. Vánky	2002
1992	Websdanea lyginiae (Websdane, Sivasithamparam, Dixon &	
	Pate) K. Vánky	1993
1992	Moreaua tricostulariae (Websdane & K. Vánky) K. Vánky	1996
1993	Moreaua evandrae (Websdane & K. Vánky) K. Vánky	1996
1993	Moreaua laevigata (Websdane & K. Vánky) K. Vánky	1995
1993	Moreaua melanospora (Websdane & K. Vánky) K. Vánky	1996
1994	Moreaua caustidis (K. Vánky) K. Vánky	1996
1995	Tilletia lineata R.G. Shivas & K. Vánky	2001
1995	Sporisorium ordense R.G. Shivas & K. Vánky	1997
1995	Sporisorium paraneurachnis R.G. Shivas & K. Vánky	1997
1996	Entyloma bracteanthae K. Vánky	1997
1996	Heterotolyposporium lepidospermae K. Vánky	1997
1996	Moreaua gahniae (K. & C. Vánky) K. Vánky	1997
1996	Moreaua gymnoschoeni (K. & C. Vánky) K. Vánky	1997
1996	Moreaua megaglomerulosa (K. Vánky) K. Vánky	1997
1996	Moreaua tetrariae (K. Vánky) K. Vánky	1997
1996	Restiosporium meneyae K. Vánky	2000
1996	Ustilago triodiae K. Vánky	1997
1996	Ustilago xerochloae K. Vánky & R.G. Shivas	1997
1996	Ustilago inaltilis K. Vánky & A.A. Mitchell	1998
1997	Sporisorium iseilematis-ciliati K. Vánky	1998
1998	Cintractia bulbostylidis R.G. Shivas & K. Vánky	2001
1998	Sporisorium iseilematis-vaginiflori K. Vánky	1999
1998	Sporisorium whiteochloae K. Vánky & McKenzie	2001
1998	Sporisorium ryleyi K. Vánky & R.G. Shivas	2001
1999	Sporisorium normanensis R.G. Shivas & K. Vánky	2002
1999	Tilletia kimberleyensis K. Vánky & R.G. Shivas	2001
2000	Cinctractia lipocarphae K. & C. Vánky & R.G. Shivas	2001
2000	Macalpinomyces brachiariae K. & C. Vánky & R.G. Shivas	in press
2000	Macalpinomyces digitariae K. Vánky & R.G. Shivas	in press

Table 1 (continued).

Year first collected in	Australian species	Year basionym
Australia		published
2000	Moreaua arthrostylidis K. Vánky & R.G. Shivas	2001
2000	Moreaua fimbristylidis K. Vánky & R.G. Shivas	2001
2000	Sporisorium gibbosum K. & C. Vánky & R.G. Shivas	2001
2000	Sporisorium horsfallii K. Vánky	2001
2000	Sporisorium nervosum K. & C. Vánky & R.G. Shivas	2001
2000	Sporisorium operculatum K. & C. Vánky & R.G. Shivas	2001
2000	Sporisorium queenslandicum K. & C. Vánky & R.G. Shivas	2001
2000	Tilletia cape-yorkensis K. Vánky & R.G. Shivas	in press
2000	Tilletia chionachnes K. & C. Vánky & R.G. Shivas	2001
2000	Tilletia whiteochloae R.G. Shivas & K. Vánky	2001
2000	Ustilago chloridis K. & C. Vánky & R.G. Shivas	2001
2001	Dermatosorus schoenoplecti K. Vánky & R.G. Shivas	in press
2001	Entyloma grampiansis K. Vánky & R.G. Shivas	in press
2001	Restiosporium baloskionis K. Vánky & R.G. Shivas	in press
2001	Ustanciosporium tenellum R.G. Shivas & K. Vánky	in press
2002	Yelsemia lowrieana R.G. Shivas & K. Vánky	in press

of endemic smut fungi were first collected in Australia (Table 1). However only 11 of these species were named and described during that period, which calculates on average at less than one new species every seven years.

The third period, from 1990 to the present, coincides with a belated community realisation of the potential economic and social importance of biodiversity and habitat preservation. It is also the period that sees the development of modern taxonomic methods that utilise the tools of ultrastructural and molecular analysis. A product of these new methods is the development of a new classification system for the smut fungi (Bauer et al., 1997; Begerow et al., 1997; Vánky, 2001), which surprisingly shows some smut fungi (Microbotryales) are more closely related to rust fungi (Uredinales) than to other smuts.

During this period of only twelve years, a further 50 species of endemic smut fungi were first collected and named in Australia (e.g. Shivas and Vánky, 2001; Vánky and Shivas, 2001, Table 1). This period marks a rapid increase in the rate that new endemic species of smut fungi are discovered, from a steady rate of about one species every three years in the previous hundred years to about four species per year since 1990 (Fig. 1). This recent period coincides with a time that the Australian community has sought to sustain its agricultural systems and preserve its natural environment through surveillance programs, primarily for the early detection of incursions of exotic pathogens. This mostly

Table 2. Chronological list (according to year first collected in Australia) of species of smut fungi known to occur only in Australia and neighbouring countries together with year basionym published.

Year first	Australian species	Year
collected in	-	basionym
Australia		published
	Also occurring in New Zealand:	
1845	Cinctractia solida (Berk.) M. Piepenbr.	1860
1891	Moreaua rodwayi (McAlpine) K. Vánky	1910
1892	Ustilago agropyri McAlpine	1896
1892	Tranzscheliella comburens (Ludwig) K. Vánky & E.	1893
	McKenzie	
1892	Ustilago spinificis Ludwig	1893
1894	Tilletia inolens McAlpine	1896
1895	Ustilago bullata Berk.	1855
1898	Moreaua schoeni (K. Vánky & E. McKenzie) K. Vánky	1995
1940	Tilletia cathcartae Durán & G.W. Fischer	1961
1947	Arthracoidea sclerotiformis (Cooke & Massee) Kukkonen	1888
1979	Farysporium endotrichum (Berk.) K. Vánky	1855
	Also occurring in Indonesia and/or Papua New Guinea and/or Philippines:	
1855	Macalpinomyces eriachnis (Thümen) Langdon & Fullerton	1878
1892	Ustilago confusa Massee	1892
1941	Sporisorium langdonii K. Vánky	
1970	Sporisorium themedae-arrguentis K. Vánky 1994	
1995	Tilletia opaca Syd. & P. Syd.	1913
1996	Sporisorium australasiaticum K. Vánky & R.G. Shivas	2001
1996	Sporisorium chamaeraphis (Syd.) K. Vánky	1928
1999	Sporisorium anthracoideisporum K. Vánky & R.G. Shivas	1998
2000	Tolyposporella pachycarpa (Syd.) L. Ling	1928

government-funded surveillance has focused on northern Australia because of its proximity to potential pathways for exotic pathogens through Indonesia and Papua New Guinea. Many new smut fungi have been found during botanical and plant pathological surveys in northern Australia organised as part of this surveillance.

Host specificity

About half of the endemic species of smut fungi in Australia occur on grasses (*Poaceae*) and about a quarter on sedges (*Cyperaceae*) (Table 4), which reflects the host specificity of Ustilaginomycetes worldwide (Vánky, 2002). Of the species of smut fungi parasitising grasses in Australia, about two-thirds have panicoid (*Panicoideae*) hosts. A pattern of host specificity was

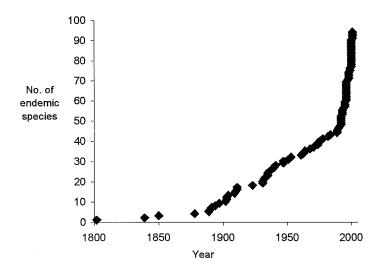


Fig. 1. Chart of the accumulated number of endemic species of smut fungi known in Australia since the first collection in 1802.

also seen for some genera of smut fungi amongst the subfamilies of grasses. Almost exclusively, species of *Sporisorium* had panicoid hosts and species of *Ustilago* were mostly restricted to the two subfamilies (*Chloridoideae* and *Panicoideae*). McAlpine (1910) was aware of four species (all in *Ustilago*) of endemic smut fungi on grasses, yet eleven new endemic species of smut fungi were collected on grasses in Australia in the year 2000 alone (Table 1). As there are about 150 genera (containing more than 1,000 species) of grasses native to Australia (Simon, 1993) it is certain that many more species of smut fungi on native grasses remain to be discovered.

About three-quarters of the endemic smut fungi that parasitise sedges in Australia belong to the genus *Moreaua* (Table 4). More than half of these endemic species of *Moreaua* were first collected in the last decade (Table 1). In Australia there are about 650 species of sedge in 47 genera (Wilson, 1988), and it is very likely that many more species of *Moreaua* await discovery.

Other than the grasses and sedges, there is no taxonomic group of plants in Australia that host more than 5% of the endemic species of smut fungi. There are about 150 species of rushes (*Restionales*) in Australia (Meney and Pate, 1999), yet this large and diverse group hosts only six endemic species of smut fungi (Table 4) in two endemic genera, *Restiosporium* and *Websdanea*.

Table 3. Genera and number of species of 115 endemic smut fungi (those listed in Tables 1 and 2) in the major Australian phytogeographic regions (modified from Doing, 1981).

Genera of endemic smut	Phytogeographic region (climate)				
fungi (no. of species)	Central Australian desert, mulga and mallee scrubland (arid)	Eastern forest (tropical to cool temperate with an absence of arid periods)	Northern savannah (tropical with summer rains)	South-eastern savannah (sub- tropical to temperate)	South-western forest and heath (Mediterranean to semi-arid)
Arthracoidea (1)	-	1	-	-	
Bauerago (1)	-	1	-	1	-
Cinctractia (3)	1	1	1	1	-
Dermatosorus (1)	-	1	-	-	-
Entyloma (3)	-	3	-	-	-
Farysporium (1)	-	1	-	-	-
Fulvisporium (1)	-	•	-	1	-
Heterotolyposporium (1)	-	-	-	1	-
Lundquistia (1)	-	-	-	1	-
Macalpinomyces (4)	1	1	4	1	-
Microbotryum (2)	-	1	-	1	-
Moreaua (20)	1	10	1	4	8

Table 3. (continued).

Genera of endemic smut	Phytogeographic region (climate)				
fungi (no. of species)	Central Australian desert, mulga and mallee scrubland (arid)	Eastern forest (tropical to cool temperate with an absence of arid periods)	Northern savannah (tropical with summer rains)	South-eastern savannah (sub- tropical to temperate)	South-western forest and heath (Mediterranean to semi-arid)
Pseudotracya (1)		-	-	1	
Restiosporium (5)	-	3	-	-	2
Sporisorium (26)	5	4	15	6	-
Thecaphora (2)	1	1	-	-	-
Tilletia (12)	-	4	7	1	-
Tolyposporella (1)	-	-	1	-	-
Tranzscheliella (1)	1	1	-	1	1
Urocystis (2)	-	2	-	-	-
Ustanciosporium (1)	1	-	-	-	-
Ustilago (22)	9	7	8	6	2
Websdanea (1)	-	-	-	-	1
Yelsemia (2)	1	-	1	-	-
Total number of species	21	42	38	26	14

Table 4. Higher order classification of host plants (according to Cronquist, 1988; Wilson, 1988; Simon, 1993) of endemic species of Australian smut fungi (those listed in Tables 1 and 2).

Host classification		Smut genus (no. of endemic species)
Magnoliopsida (dice	otvledons)	
Caryophyllida		
Caryopi		Thecaphora (1)
Polygor		Microbotryum (2)
Rosidae		* * * * * * * * * * * * * * * * * * * *
Apiales	(Hydrocotylaceae)	Entyloma (1)
Rosales	(Byblidaceae)	Yelsemia (1)
Asteridae		
Asteral	es	Entyloma (2), Thecaphora (1)
Liliopsida (monocot	yledons)	
Alismatidae		
	haritales	Pseudotracya (1)
Commelinidae		
Restione		Restiosporium (5), Websdanea (1)
Cypera		
	Cyperaceae	
	Caricoideae	Arthracoidea (1)
	Cyperoideae	Bauerago (1), Cinctractia (3),
		Dermatosorus (1), Farysporium (1),
		Heterotolyposporium (1), Moreaua (20),
	Daggaga	Urocystis (1), Ustanciosporium (1)
	Poaceae Arundinoideae) (daine
	Arundmoideae	Macalpinomyces (1), Sporisorium (1),
		Tilletia (2), Tranzscheliella (1),
	Stipoideae	Ustilago (1)
	Pooideae	Fulvisporium (1) Tilletia (3), Ustilago (1)
	Chloridoideae	Sporisorium (1), Ustilago (12)
	Panicoideae	Sportsortum (1), Ostitugo (12)
	Panicodae	Lundquistia (1), Macalpinomyces (2),
	1 aneodae	Sporisorium (8),
		Tilletia (5), Ustilago (7)
	Andropogonodae	Macalpinomyces (1), Sporisorium (16),
	sponoudo	Tilletia (2), Tolyposporella (1),
		Ustilago (1)
Liliidae		
Liliales		Urocystis (1), Yelsemia (1)

Table 5. Chronological list (according to year first collected in Australia) of species of smut fungi of agricultural, quarantine or environmental significance.

Year first collected	Species	Significance
1877	Urocystis tritici Körn.	Flag smut of wheat was first described from a specimen collected in South Australia.
1890	Ustilago nuda (J.L. Jensen) Kellerm. & Swingle	Loose smut of barley.
1892	Ustilago tritici (Westend.) Niessl	Loose smut of barley and wheat.
1892	Ustilago avenae (Pers.) Rostr.	Loose smut of oats.
1895	Sporisorium sorghi Ehren. ex Link	Covered smut of cultivated sorghum.
1896	Urocystis agropyri (Preuss) A.A. Fisch. Waldh.	Flag smut of wheat.
1899	Tilletia laevis Kühn	Stinking smut or bunt of wheat.
1903	Tilletia caries (DC.) Tul.	Stinking smut or bunt of wheat.
1903	Ustilago hordei (Pers.) Lagerh.	Covered smut of barley.
1907	Urocystis occulta (Wallr.) Rabenh. ex Fuckel	Flag smut of rye.
1908	Tilletia contraversa Kühn in Rabenh.	In Australia this smut is known only on wild barley grass (Langdon <i>et al.</i> , 1976). In other parts of the world it causes dwarf bunt of winter wheat, barley, rye and other grasses.
1915	Ustilago maydis (DC.) Corda	Boil smut of maize was eradicated from Australia in 1940 and then reappeared in New South Wales in 1982 (Allen and Jones, 1983). Quarantine regulations have managed to restrict the spread of boil smut of maize to Western Australia and some districts in other States.
1950	Urocystis magica Pass.	Quarantine regulations have ensured that onion smut (also known as <i>Urocystis cepulae</i> Frost) has been restricted to infrequent, local outbreaks in South Australia and New South Wales. It was last detected in Australia in 1985 (Walker, 2001).
1967	Tilletia walkeri L.A. Castlebury & L.M. Carris	Seed smut of perennial rye grass in Australia and annual ryegrass in USA (Castlebury and Carris, 1999).
1986	Microbotryum violaceum (Pers.:Pers.) G. Deml & Oberw.	Anther smut of carnation was found at a few plant nurseries in southern Queensland. The smut was traced back to imported elite nursery stock. It was successfully eradicated and has not been seen since 1987.

Table 5. (continued).

Year first collected	Species	Significance
1994	Sporisorium ophiuri (Henn.) K. Vánky	Under investigation as a possible biocontrol agent for itch grass (<i>Rottboellia</i> cochinchinensis) in Central America (Smith et al., 1997).
1998	Ustilago scitaminea Syd.	Quarantine regulations have restricted sugarcane smut to the Ord River Irrigation Area in the semi-arid tropics of Western Australia since it was first detected in 1998. It has not been found in the main sugarcane growing regions of eastern Australia

The two centres of diversity of the rushes are South Africa and Australia, in particular southwestern Australia. Interestingly smut fungi have never been recorded on rushes in South Africa.

In Australia only eight of the 115 endemic species of smut fungi have dicotyledonous hosts (Table 4). The eight species have hosts across five orders.

Phytogeography

It is conventional to list the distribution of Australia's flora amongst the States and Territories. However the State boundaries are artificial divides and give little useful indication of the distribution of plant species or habitats. The phytogeographic regions of Australia (Doing, 1981) are more useful measures of determining where hosts, and their pathogens, occur. The distribution of the Australian endemic smut fungi amongst the five major phytogeographic regions (Fig. 2, simplified from Doing, 1981) offers some insights (Table 3).

The eastern forest region that comprises a complexity of plant communities recorded most endemic species of smut fungi (42). However several of the smut species recorded in this region were found on grasses that also occurred in the savannah regions to the west. That most endemic species were found in the eastern forest region compared to the other regions is likely a reflection that most collecting has taken place in this region, which incorporates most of Australia's population centres.

The comparatively large number (15) of endemic species of *Sporisorium* in the northern savannah region (Table 3) correlates with it having mostly panicoid and andropogonoid grass hosts that are primarily tropical species. As it is known that there are several small genera of exclusively tropical smut, not

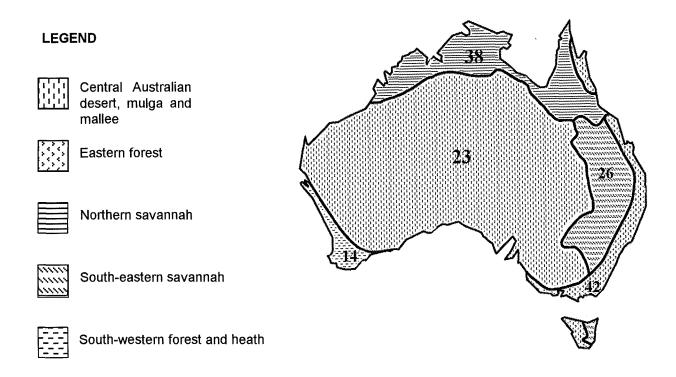


Fig. 2. Five major phytogeographic regions of Australia (simplified from Doing, 1981). Number of species of smut fungi endemic to Australia found in each region is superimposed on map.

all of which are represented in Australia, this region offers most promise for discovering new endemic species of smut fungi.

Perhaps it seems incongruous that endemic smut fungi poorly represent the southwestern forest and heath region, which is rich in endemic plant species. However grasses are not a dominant part of heath and forest communities. The low number of endemic smut species in the arid Central Australian may reflect that this region is floristically poor (Doing, 1981) or that there has been relatively little collecting in the region. Grasses tend to be annual species in this region, which provides a very narrow window of opportunity to collect specimens.

Agricultural, quarantine and environmental significance

By 1915, almost all of the important cereal pathogens had been introduced into Australia (Table 5). Many of these cereal smuts were responsible for devastating losses in the late nineteenth and early twentieth centuries (McAlpine, 1910). Their importance to Australian agriculture has reduced markedly since the introduction of effective fungicidal seed treatments and the development of disease resistant varieties through plant breeding. There are still important exotic smut pathogens of cereals that are not present in Australia, including for example, *Tilletia indica* (karnal bunt of wheat) and *Sporisorium cruentum* (loose smut of sorghum). Their existence underlines the need for vigilant and appropriate quarantine measures (Vánky and McKenzie, 2002) that were so missing in the nineteenth century.

The importance of rigorous quarantine to an isolated island continent is demonstrated by the appearance but failure to establish of three smut fungi that are virtually cosmopolitan outside of Australia. Onion smut, anther smut of carnation and sugarcane smut have all been detected in Australia (Table 5) but each has been severely restricted in distribution, with one, anther smut of carnation, apparently eradicated.

Many of the Australian endemic smut fungi are represented by single, or very few, specimens. These species must be considered rare although it is likely many are not. Undoubtedly there are rare hosts of smut fungi, possibly some threatened with extinction. Habitat destruction in Australia, as evidenced by the massive land clearing that taken place since European colonisation, has certainly accounted for the extinction of many plant species. We have no idea how many endemic smut fungi may also have become extinct with their hosts.

References

- Allen, R.N. and Jones, D.R. (1983). Recurrence of *Ustilago maydis* on maize in Australia. Plant Disease Survey 1981-1982, New South Wales, Department of Agriculture.
- Bauer, R., Oberwinkler, F. and Vánky, K. (1997). Ultrastructural markers and systematics in smut fungi and allied taxa. Canadian Journal of Botany 75: 1273-1314.
- Begerow, D., Bauer, R. and Oberwinkler, F. (1997). Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Canadian Journal of Botany 75: 2045-2056.
- Castlebury, L.A. and Carris, L.M. (1999). *Tilletia walkeri*, a new species on *Lolium multiflorum* and *L. perenne*. Mycologia 91: 121-131.
- Cronquist, A. (1988). The Evolution and Classification of Flowering Plants. 2nd edition. New York Botanical Garden.
- Doing, H. (1981). Phytogeography of the Australian floristic kingdom. In *Australian Vegetation* (ed. R.H. Groves). Cambridge University Press, Melbourne: 3-25.
- Langdon, R.F.N., Kollmorgen, J.F. and Walker, J. (1976). The nomenclature of the smuts of wheat, barley, oats, rye and certain grasses. Australasian Plant Pathology 5: 52-54.
- May, T.W. and Pascoe, I.G. (1996). History of the taxonomic study of Australian fungi. In Fungi of Australia, Volume 1A, Introduction Classification. Australian Biological Resources Study, Canberra: 171-206.
- McAlpine, D. (1910). The Smuts of Australia. Their Structure, Life History, Treatment, and Classification. Melbourne, Australia.
- Meney, K.A. and Pate, J.S. (1999). Australian Rushes. University of Western Australia Press.
- Nees von Esenbeck, C.G.D. (1846). Restio nitens Nees in Lehmann, C. (Ed.). Plantae Preissianae sive Enumeratio plantarum quas in Australasia occidentali et meridionali-occidentali annis 1838-1841 collegit Ludovicus Preiss. Vol. II. Hamburg: 59-60.
- Shivas, R.G. And Vánky, K. (2001). The smut fungi on *Cynodon*, including *Sporisorium normanensis*, a new species from Australia. Fungal Diversity 8: 149-154.
- Simon, B.K. (1993). A Key to Australian Grasses. 2nd edition. Queensland Department of Primary Industries, Brisbane.
- Smith, M.C., Reeder, R.H. and Thomas, M.B. (1997). A model to determine the potential for biological control of *Rottboellia cochinchinensis* with the head smut *Sporisorium ophiuri*. Journal of Applied Ecology 34: 388-398.
- Vánky, K. (2001). The new classification of the smut fungi, exemplified by Australasian taxa. Australian Systematic Botany 14: 385-394.
- Vánky, K. (2002). Illustrated Genera of Smut Fungi. 2nd edition. APS Press, St. Paul, Minnesota.
- Vánky, K. and McKenzie, E.C.H. (2002). Smut Fungi of New Zealand. Fungal Diversity Research Series 8: 1-259.
- Vánky, K. and Shivas, R.G. (2001). New smut fungi (Ustilaginomycetes) from Australia. Fungal Diversity 7: 145-174.
- Walker, J. (1971). An undescribed species of *Ustilago* on *Cyperus lucidus* R. Br. in Australia with comments on Robert Brown's type collection of *C. lucidus*. Proceedings of the Linnean Society of New South Wales 96: 99-107.
- Walker, J. (2001). Smuts of Liliales in Australia. Australasian Mycologist 20: 61-70.
- Websdane, K.A., Sivasithamparam, K., Dixon, K.W. and Meney, K.A. (1994). *Tolyposporium restionum* comb. nov. on *Alexgeorgea* species (Restionaceae) in Western Australia. Mycotaxon 51: 471-477.

Wilson, K.L. (1988). Cyperales. In: Flowering Plants in Australia (eds. B.D. Morely and H.R. Toelken). Rigby Publishers, New South Wales.

(Received 12 November 2002; accepted 13 February 2003)