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Abstract A significantly increased water regime can lead
to inundation of rivers, creeks and surrounding flood-
plains- and thus impact on the temporal dynamics of
both the extant vegetation and the dormant, but viable
soil-seed bank of riparian corridors. The study docu-
mented changes in the soil seed-bank along riparian
corridors before and after a major flood event in January
2011 in southeast Queensland, Australia. The study site
was a major river (the Mooleyember creek) near Roma,
Central Queensland impacted by the extreme flood event
and where baseline ecological data on riparian seed-bank
populations have previously been collected in 2007, 2008
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and 2009. After the major flood event, we collected fur-
ther soil samples from the same locations in spring/
summer (November—December 2011) and in early au-
tumn (March 2012). Thereafter, the soils were exposed to
adequate warmth and moisture under glasshouse condi-
tions, and emerged seedlings identified taxonomically.
Flooding increased seed-bank abundance but decreased
its species richness and diversity. However, flood impact
was less than that of yearly effect but greater than that of
seasonal variation. Seeds of trees and shrubs were few in
the soil, and were negatively affected by the flood; those
of herbaceous and graminoids were numerous and pro-
liferate after the flood. Seed-banks of weedy and/or
exotic species were no more affected by the flood than
those of native and/or non-invasive species. Overall, the
studied riparian zone showed evidence of a quick
recovery of its seed-bank over time, and can be consid-
ered to be resilient to an extreme flood event.

Keywords Disturbance - Ecosystem resiliency -
Extreme events - Inundation - Riparian-zone -
Seed-bank - Vegetation dynamics - Weeds

Introduction

Riparian corridors in human dominated landscape are
extremely fragile due to their linear, often narrow width
(mostly <30 m) of vegetation and influx or exchange of
propagules, nutrients, water and sediment loads with the
surrounding matrix of varying land-use types (Naiman
and Decamps 1997; Goodson et al. 2001; Stromberg et al.
2008). Many studies have documented the dynamics of
riparian zone above-ground vegetation in relation to
various anthropogenic and natural disturbances, such as
flooding and drying regimes (e.g., Bagstad et al. 2005; Ilg
et al. 2008; Stromberg et al. 2008). In contrast, except in
the last decade, little is known concerning the spatio-
temporal dynamics of the below ground flora and fauna,
including that of the viable soil seed bank, insect and
microbial communities of riparian corridors (but see
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Ward et al. 1998; Goodson et al. 2001; Capon and Brock
2006; Ilg et al. 2008; Williams et al. 2008; Osunkoya et al.
2011). Yet, knowledge of the above- and below-ground
processes of riparian corridors is essential for better
conservation and management of this fragile ecosystem.
Viable soil seed banks facilitate plant community
dynamics by providing species persistence in a dormant
state until suitable conditions for their germination and
establishment occur (Roberts 1981; Baskin and Seeds
2001; Martinez-Duro et al. 2011).

A significantly changed water regime, such as that
brought about by a sudden increase in precipitation, can
lead to inundation (of varying magnitude and duration)
of rivers, creeks and surrounding floodplains, impacting
on the temporal dynamics of both the extant vegetation
and the dormant, but viable soil seed bank (Siebentritt
et al. 2004; Kehr et al. 2014). Such an extreme event can
be considered as a form of disturbance, and through its
influence on sediment reworking, plays an important
role in re-shaping of wetland communities and ecosys-
tems (Naiman and Decamps 1997; Nilsson et al. 2010;
Greet et al. 2012). One such an extreme event happened
in the later months of 2010 and continued into mid
January 2011 in eastern Australia (Fig. 1). It resulted in
several dazys of inundation and affected more than
80,000 km“ of Queensland south-east coastal and inland
floodplains, rivers and riparian corridors (Honert and
McAneney 2011; Queensland Government 2011). This
rare catastrophic event provided a unique opportunity
to study the effect of climate variability at a specific
location upon ecosystem dynamics and resilience; the
phenomenon allowed us to document pre- and post-
flood abundance and composition of the soil seed banks
along a Queensland riparian corridor-the Mooleyember
Creek, near Injune, 100 km north-east of the township
of Roma, central Queensland. We chose this site due to
the availability of data that had been collected on tem-
poral dynamics of its seed banks spanning back several
years prior to the flood event (Adkins and McFadyen
1996; Navie et al. 2004; Nguyen 2011). Our collections
and analyses of post-flood data and the comparison with
the previously collected pre-flood data set allow us to
explore several testable hypotheses.

1) Irrespective of the underlying process operating
during the flood, we hypothesized a significant
change in seed bank signature both in terms of
quantity (abundance) and quality (species richness
and diversity), and that the change caused by the
extreme event will be greater than that due to regular
temporal (yearly and seasonal) factors. Some past
studies have suggested that flooding induce ecutro-
phication (due to large input of dissolved and par-
ticulate nutrients) and hence promote rapid
vegetation growth of specific taxa, leading to a de-
crease in species richness (Smith et al. 1998; Bagstad
et al. 2005). Others argued that flooding may reduce
competition intensity, favoring weak competitors,

2)

3)

leading to a higher diversity in the standing vegeta-
tion (Stromberg et al. 1993; Gerard et al. 2008).
The magnitude and direction of flooding effect upon
the viable seed bank will vary, depending on the plant
functional group and/or their life history traits. For
example, theory predicts that the trajectory pathways
of invasive exotics are significantly different from
those of native or non-invasive species (e.g., Holzel
and Otte 2004; Catford et al. 2011; Greet et al. 2012).
Flooding, being a form of disturbance that can creates
new niches, should favour exotic invasive species over
native species because of their higher competitive
ability in these modified environments (Greet et al.
2012). Wetland and aquatic plant species are better
adapted to moisture, and hence their seeds, following
flooding can float and survive better than those of
species that are less adapted to such condition (espe-
cially terrestrial specialists). Similarly it can be ex-
pected that the response of opportunist species
(annual/biennials, herbaceous and graminoids) that
complete their life cycles in short periods of time will
be different from the response of long-lived perennials,
trees and shrubs. Thus it is predicted that in the post-
flood environment, annuals, short-lived perennials,
hygrophilous, and invasives will make-up the majority
of plant species found in the seed bank (Bagstad et al.
2005; Catford et al. 2011; Greet et al. 2012).

The riparian zone seed-bank will show resiliency to
the flood disturbance, recovering from its impact
within a short time. In ecological terms, resilience
refers to (i) the capacity of an ecosystem to undergo
disturbance but maintain core functions and controls
and (ii) the capacity of the ecosystem to resist dis-
turbance and return to equilibrium afterward (Collof
and Baldwin 2010). The more rapidly it returns and
with the least fluctuations, the more stable it is con-
sidered to be. Wetzel et al. (2004) and Bilkovic et al.
(2012) have suggested that changes associated with
drought and floods tend to be temporary, with
aquatic community (marsh and riparian corridors)
returning to their previous compositions within
2 years (see also Capon and Brock 2006; Ilg et al.
2008). If this is true, we hypothesized that the mag-
nitude of the flood impact, irrespective of its direc-
tion, will decrease over time. Thus, in the process of
searching for resilience of riparian ecosystem to rare,
extreme disturbance event, we quantify (1) the impact
of the major flood in Queensland, Australia of 2011
on soil seed bank composition and functional group
assemblage, and (2) the effect of the flood disturbance
relative to yearly, seasonal and micro-topographic
factors. Seasonal observations are important because
riparian vegetation often displays dramatic seasonal
changes (Reid and Quinn 2004), and thus vegetation
and seed-bank changes associated with flooding are
hypothesised to be more apparent at different seasons
of the year (Holzel and Otte 2004; Greet et al. 2012).
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Fig. 1 Long-term rainfall (a, b) and water level fluctuations
(¢ lower graph is water level, and upper graph is water discharge)
in the study area based on gauges on Brown River into which the
study Mooloyember creek, central Queensland, Australia flows

Methods
Study region and site

The site selected for this study was the Moolayember
Creek, 90 km south of Rolleston (latitude 25°S, longi-

into (source: Australian Bureau of Meteorology). a shows the
monthly rainfall patterns around the survey periods compared to
long-term monthly average values. Arrows in b indicate soil-
sampling periods

tude 149°E), near Roma, central Queensland, Australia.
The 32 km-long Creek is at an elevation of 262-350 m
above sea level and flows into the Brown River. The
study area has a humid subtropical climate, with an
average rainfall ca. 630 mm per year, the majority of
which falls in summer months of December—February
(Fig. 1a). The catchment, which is part of Fitzroy basin,



is warm with maximum daytime temperatures in spring-
summer (September—February) of 28.5-34.3 °C and
20.2-25°C in the autumn—winter (March—August)
months. There are no flow gauges on Moolayember
Creek, and hence the flow data from the downstream
Brown River into which the creek flows into are the best
available for the study site. The long term data indicate
that surface water discharge and river levels are ex-
tremely variable with periods of average, low, and
occasionally above average values during the last decade
(Fig. 1b, ¢). In November 2010 to mid January 2011,
due to four strongest La Nina events since 1900 (see
http://www.bom.gov.au/climate/current/soihtm1.shtml)
more than 80,000 km> of south-east and central
Queensland lands were inundated, resulting in a rela-
tively rare, large flood pulse with a peak discharge of
~60,000 ML.day ' (compared with normal value of 585
ML.day ') and a peak height of 9.95 m of the Brown
River (QLD Dept of NRWM 2011). By early January
2011, anecdotal evidence suggested that a record height
of 34 m of water above the Moolayember Creek bench
was recorded and these lasted for several days, and re-
sulted in the inundation of creek channel areas and the
surrounding floodplains.

The vegetation along the creek and surrounding
floodplain is mainly of short-medium height grasses
(including Imperata cylindrical, Paspalum dilatatum)
and associated sedges (e.g. Carex inverse) punctuated
with variable abundance of open succulent herbs/
shrubs such as Chenopodium and Wahlenbergia species
and many exotic and invasive species (e.g., Argemone
sp., Xanthium pungens, Asclepias physocarpa). Scattered
trees of Angophora floribunda (rough-barked apple),
Eucalyptus tereticornis (the pale smooth flooded gum)
and E. camaldulensis (river red gum) are dominant
along the banks of the creek, while Casuarina cun-
ninghamiana (she oak) and Corymbia citriodora (lemon
scented gum) can be found further in the floodplain
areas. The soil is predominantly a sandy loam.

Sampling protocols

Pre-flood collection of soil samples were made in
December 2007, April 2008, December 2008, May 2009
(see Fig. 1) from three locations, each being at least 2 km
apart, along the Moolayember Creek (Nguyen 2011),
with the sole aim of monitoring the long-term seed bank
size and the extent of dispersal of the invasive arable
weed, Parthenium hysterophorus in the region (Adkins
et al. 1996). Thirty composite soil samples (ten from each
location) were collected per survey period for the pre-
flood samples (see collection details below). After the
flood event, further collections were made in November
2011 and March 2012 at the same three locations along
the creek. These sampling periods coincided with early
summer (November- December) and early autumn
(March—May), which are the main growing seasons in
the region (Navie et al. 2004; Dhileepan 2012).

Post-flood sampling protocol was the same as that of
pre-flood, except that additional effect of distance from
the creek-line on seed bank was incorporated and hence
necessitated doubling the sample size. At each location,
two transects, each 100 m in length and running parallel
to the creek bank were set up. One transect was close
(ca. 2-3 m) to the creek bank while the second one was
10 m away towards the floodplains. Along each transect,
a total of 10, 1 X 1 m quadrats were established at 10 m
intervals. Five soil cores were removed from each
quadrat, one from each of the four corners and one from
the centre, using a brass ring soil corer (7.2 cm diameter
and 10 cm deep). The soil samples of each quadrat were
pooled to make a single (composite) sample. The 10
(pre-flood) and 20 (post-flood) samples collected per
location were placed individually into zip-lock plastic
bags sealed and stored at ca. 25 + 5 °C for 2-3 days
while being transferred from the field to the glasshouse
facility at the University of Queensland, Brisbane,
Australia for immediate seed germination trials. The soil
samples were spread thinly over a 2 cm layer of sterilised
compost contained within shallow seedling trays
(20 x 25 x 6 cm; w/l/h) that were distributed randomly
on benches in the glasshouse. The temperature in the
glasshouse over each of the germination periods ranged
between 20-38 °C (spring/summer time) and 10-31 °C
in the autumn/winter months, while the photosynthetic
light intensity was in the order 300-990 umol.m? sec.
Trays were watered daily through overhead sprinklers to
maintain soil moisture content close to field capacity.
The trays were observed regularly (at least once a week)
for newly emerging seedlings. Once seedlings were fully
formed, they were taxonomically identified and re-
moved, or in the case of where identification was not
possible, representative individuals were planted into
small pots and grown on to maturity, to allow later
identification. After 4 months, when seedling emergence
had almost ceased, the soil in the trays was allowed to
dry for 2 weeks, then stirred, rewetted and inspected for
any further seedling emergence over another 3 month
period. This enabled the detection of species that re-
quired moisture and temperature fluctuations to stimu-
late their germination, and hence were present but
dormant during the initial 4 months of the trial. The
final record of seedling emergence was taken when no
further germination occurred for a period of 2 weeks.

The species identified were assigned into functional
groups, including plant longevity (perennial or annual/
biennial), life form (tree, shrub, herb or graminoid),
habitat/moisture requirement (wetland or terrestrial),
weed status (invasive or non-invasive) and origin (native
or exotic to Australia), using the literature (Stanley and
Ross 1983-1995; Hussey et al. 1997) and electronic
databases (Plantnet—National Herbarium of New
South Wales- http://www.rbgsyd.nsw.gov.au and Weeds
Australia- http://www.weeds.org.au). The ‘unidentified
species’ term was used for several seedlings that had died
before they could be identified; the proportion of
‘unidentified species or individuals’ ranged between
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5-15 % of total count for the pre-flood data and 1 %
for the post-flood data (see Table S1).

Data analyses

Data were subjected to a series of univariate and mul-
tivariate analyses. At the univariate level, we used re-
peated-measure ANOVA, »° or ¢ tests to compare seed
bank abundance, richness, diversity and assemblages in
relation to season (summer or autumn), inundation
condition (pre- or post-flood years), and landscape/
topographic effect (near and far from the creek bank). In
the ANOVA, time (the five sampling years) was the re-
peated factor. The assumption of sphericity was tested
(using Mauchly criterion) and was found not violated in
all analyses. In many instances, the repeated-measure
ANOVA was restricted to main effects and 2-way
interactions of these main effects because sampling de-
sign was not completely balanced as data for the three
locations at each pre-flood survey period were not sep-
arated during initial stage of data compilation; also
spring and autumn (i.e., complete seasonal) data were
often not collected for each sampling year. Functional
composition was examined by assigning species to
functional groups (as explained earlier) and assessing the
significance of the differences in the patterns between
pre- and post-flood conditions using > analysis. The
abundance and richness data were log + 1 transformed
due to low or zero species counts in some samples and to
meet the assumption of normality.

For a measure of habitat resilience, we estimated
proportional change in seed bank species abundance and
richness in response to the flood using the expression:
[(postflood-preflood)/preflood] x 100 and significance of
the change tested using a critical limit of 10 % difference
(see Welleck 2003).

At the multivariate level, patterns of seed bank spe-
cies assemblage were investigated using non-metric
multidimensional scaling (MDS) in two-three dimen-
sions with inundation, season, year and topographic
distance as main factors. PRIMER ver. 6.0 statistical
software (Clarke and Gorley 2006) was used. Species
abundance or presence/absence data were used; both
gave comparable trends and hence only that of abun-
dance are presented. MDS was based on a Bray-Curtis
dissimilarity matrix following log (x + 1) transforma-
tion of the data. The extents of clustering of species seed
bank in response to the extreme flood event and/or
above-mentioned temporal and topographic factors
were then assessed by analyses of similarity (ANOSIM)
and similarity percentage (SIMPER), again using the
Primer software. Analogous to ANOVA, ANOSIM
compares the mean difference of ranks within and be-
tween groups, generating the Global statistic R (Clarke
and Warwick 2001). Values of R range from —1 to +1,
with negative values and values near 0 indicating simi-
larity among groups and values approaching R = 1
indicating a strong dissimilarity among groups. SIM-

PER identifies species that contributed most to the
average dissimilarity between groups that have been
selected a priori (in our case, between pre- and post-
flood condition or between seasons or amongst sampling
years) and those that contributed most to the average
similarity within group. This procedure computes the
average contribution of each species to the overall dis-
similarity between two groups. Discriminating species
are those characterised by a high ratio between their
average contribution to the dissimilarity between groups
and its standard deviation (Clarke and Warwick 2001).
The overall percentage similarity between groups ranges
between 0 and 100, with 100 expressing maximum sim-
ilarity.

Results
Overall trends

In the 5 years of survey, a total of 132 species were
found in the soil seed bank at the Moolayember Creek
site, consisting of Poaceae (30), Asteraceae (21),
Chenopodiaceae (8), Cyperaceae (7), Malvaceae (6),
Verbenaceae (5), Solanaceae, Amaranthaceae, Brassi-
caceae (four each), Campanulaceae, Onagraceae (three
each) and 37 other species distributed across 15 families
(Electronic Supplementary Material Table S1). The
density of all species in the seed bank ranged from 3,145
to 61,090 (mean: 171,020) seeds per m>. An average of
26.0 + 0.5 species emerged per m> of soil sample col-
lected (Fig. 2). For the post-flood data set, we found
only minimal difference in the soil seed bank composi-
tion (abundance) and species richness across the three
locations along the creek or between the two vertical
(bar and bench) distances from the creek line. Hence the
post-flood data across the three locations and between
the two creek distances were pooled during further sta-
tistical analyses carried out. Abundance and species
number per unit area, as well as species richness and
diversity fluctuated from year to year and in response to
season and flooding condition (Table 1).

Seasonal effect

Two-way ANOVA suggested that with the exception of
species count per sample and species richness, all other
species and taxonomic indices showed significant flood
condition x season interaction effects. This result implied
that after the flood, the magnitude and/or direction of
seed bank response varied significantly, depending upon
the season (Table 1; Fig. 2). Subsequently, seasonal
variation was taken into consideration when exploring
the effect of the extreme flood event on seed bank
assemblages.

After accounting for yearly variation, most indices of
seed bank species diversity, including taxonomic dis-
tinctness indices were affected by season (Table 1).
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Table 1 Summary ANOVA of effects of flooding, season and year on various aspects of soil seed bank composition of Mooloyember
creek, Central Queensland, Australia

Factor Abundance Species indices Taxonomic indices
Individuals m ™2 No. of species Species richness® Species diversity® A A+ Phi Phi+
Flooding HoHE NS kK ok * NS NS NS
Season NS * * EEES sekk NS * %
Flooding x season ** NS NS HoHE * kK ** NS
Year sk sk sk seskesk sk sk sesfesk sk

A taxonomic diversity, 4+ average taxonomic distinctness using presence/absence, Phi average taxonomic diversity using presence/
absence, Phi+ total phylogenetic diversity

¥k p < 0.001; ** P < 0.02; * P < 0.05; NS not significant (i.e., P > 0.05)

#Species richness referes to Margalef index

bSpecies diversity refers to Shannon index



Abundance per m? was higher in autumn

(18,250 + 1,165) but the differences did not differ sta-
tistically from values obtained for the spring months
(16,753 + 765; Table 1; Fig. 2a). Equally, species count
and richness values were significantly higher in autumn
than in the spring months (Table 1; Fig. 2b, ¢); however,
the opposite pattern was observed with species diversity
and most indices of taxonomic distinctness, which were
of higher values in spring compared to the autumn
periods (Table 1; Fig. 2d).

Flooding effect on abundance, species richness,
and functional types

Flooding affected the species indices more than it did on
the taxonomic indices. It decreased species diversity and
richness, but increased abundance per unit area while
having marginal or no effect on the taxonomic indices

(Table 1; Fig. 2). A summary of the abundance and
species richness of plant functional types detected in the
seed bank is given in Table 2.

Seed bank abundance showed significant changes
following the flood, though the directions (either
increasing or decreasing) were often not consistent
across functional types (Table 2; Fig. 3). In the first
post-flood survey, abundance of the herbs and grami-
noids showed a major increase (90-110 %) while those
of shrubs and trees were largely reduced (up to 80 %
reduction) (Fig. 3a). By the second post-flood survey, all
life form groups showed reduced seed bank abundance
except those for herbs, which showed a marginal positive
gain. It must be pointed out that the abundance of trees
and vines in the seed bank was low with mean value of
4.4 + 2.4 seeds per m? (Table 2). The seed bank abun-
dance of both wetland and terrestrial plant species re-
sponded positively to the flood, but the effect was much
more dramatic for terrestrial (ca. 100 % increase) com-

Table 2 Summary of abundance and richness of plant functional groups in the seed bank of Moolayember creek, central Queensland,

Australia during pre-and post-flood periods

Functional type Spring Autumn
Pre-flood Post-flood Pre-flood Post-flood
(a) Abundance (mean + SE individuals m~?)
Life history group
Forb (herb) 116.4 + 31.72 240.10 £ 67.82 205.40 £+ 56.63 220.18 + 87.38
Graminoid 45.87 + 42.67 87.07 + 91.22 48.82 £+ 76.17 43.36 + 117.54
Shrub 9.82 + 104.52 8.99 + 223.45 22.99 + 186.59 7.59 + 28791
Tree 4.10 £ 159.66 0.25 + 34.33 3.69 + 285.02 5.05 + 439.79
Vine 0.61 + 195.54 0.76 + 418.04 20.27 + 349.07 0.57 £+ 538.63
Habitat
Terrestrial 79.88 + 26.52 162.22 + 56.84 136.35 + 47.20 143.85 + 72.37
Wetland 128.73 + 120.73 194.89 + 12593 137.23 £+ 105.06 133.87 £+ 161.08
Plant longevity
Annual/biennial 121.23 + 33.41 267.12 £ 71.09 216.67 £ 59.58 240.64 + 91.83
Perennial 4337 + 34.51 64.64 + 73.32 52.83 + 61.44 39.71 + 94.69
Invasiveness
Non-invasive 41.95 + 38.92 79.62 + 83.22 48.63 £+ 69.47 41.54 £ 107.3
Invasive 110.77 £ 30.96 227.73 £+ 66.21 194.88 + 55.27 209.33 + 85.15
Origin
Native 78.34 + 32.55 118.48 £ 69.32 85.28 + 57.28 106.32 + 88.31
Exotic 75.16 + 36.26 229.66 + 77.24 200.87 £+ 64.26 187.33 £+ 99.07
(b) Number of species (mean + SE m™2)
Life history group
Forb (herb) 62.25 + 2.83 44.00 + 3.51 63.25 + 14.14 38.29 + 2.52
Graminoid 35.00 + 3.54 2345 £ 3.22 28.89 £ 6.36 16.45 £ 2.00
Shrub 5.99 + 0.71 3.07 £ 0.57 7.99 + 2.12 3.00 + 0.00
Tree 4.21 £ 0.71 3.11 = 1.15 2.98 £ 0.71 1.12 £ 0.05
Vine I.11 £ 0.59 1.09 £+ 0.29 1.12 £ 0.70 0.92 £ 0.58
Habitat
Terrestrial 86.45 + 5.67 61.25 + 6.25 86.02 + 19.09 50.00 + 1.53
Wetland 22.22 + 5.78 11.98 £ 1.73 17.05 + 3.05 8.27 + 1.01
Plant longevity
Annual/biennial 57.98 + 11.31 41.23 + 4.58 52.01 + 12.01 26.25 £ 2.52
Perennial 49.01 + 4.24 32.21 + 3.46 49.99 + 10.61 22.22 + 1.53
Invasiveness
Non-invasive 38.25 + 2.12 26.45 + 4.58 37.08 + 14.14 16.97 + 1.00
Invasive/weed 69.24 + 2.56 47.01 £ 3.46 65.23 + 8.48 41.11 £ 0.58
Origin
Native 60.79 + 6.36 35.00 + 5.19 58.22 + 3.56 23.00 £+ 5.77
Exotic 46.98 + 6.95 38.25 + 3.00 45.40 £+ 19.09 35.21 £ 4.77

Data are back-transformed values from a log (x + 1) transformation in a repeated-measure ANOVA
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Fig. 3 Changes in seed bank abundance of plant species function
types at 10 months (spring) and 15 months (autumn) after the
extreme flood event in Mooleyember creek, Central Queensland:
a plant life form; b plant habitat; ¢ plant longevity; d plant weedy
status; e plant origin; and f overall performance at each season.

pared to wetland species (ca. 52 % increase) in the first
post-flood survey. Likewise in terms of plant longevity,
across the two post-flood survey periods, the positive
effect of inundation was greater on the seed bank density
of the annuals/biennials (ca. 75 % net increase) com-
pared to the perennials (ca. 12 % net-increase). The
flood event also increased the abundance of the seed

Asterisks (*) refer to significant difference (P < 0.05) between
functional types in their responses to the flood in a given season,
except the last graph f that depicts differences between seasons.
Arrow indicates increasing time since the flood

bank of the invasive and exotic species over that of non-
invasive and native species (Table 2; Fig. 3d, e), espe-
cially by the first survey period. Nonetheless, post-flood
seed bank abundance of native species increased almost
linearly with increasing number of exotics (> = 0.96,
n = 6; P = 0.001; Fig. 4a); the same trend occurred,
irrespective of origin, between non-invasive and invasive



species (> = 0.59, n = 6; P = 0.02; Fig. 4b). Overall,
the flood effect diminished with time from ca.75 % net-
increase in seed bank abundance at 11 months (first
post-flood survey) to a much lower value (ca.12 % net
decrease) at 15 months (second post-flood survey)
(Fig. 3f).

The direction of the flood effects was more consistent
on species richness as compared to abundance; in most
cases and irrespective of plant functional group or sur-
vey season, a negative effect was the observed trend
(Fig. 5; Table 2). Compared to those of shrubs, grami-
noids and herbs, the negative effect of the flood on
species richness of trees and vines in the soil seed bank
was much reduced - from 67 % decrease in the first
survey to 25 % by the second survey after the flood
(Fig. 6a); note however that like the abundance data,
number of species that are trees and vines in the seed
bank are low (mean: 1-4 per m?% see Table 2). It ap-
peared that seed bank species richness of wetland plants
were more affected by the flood compared to that of the
terrestrial plants (Fig. 5b). The seed bank of both
perennial and annual/biennial plants were also nega-
tively affected by the flood, but the adverse effect was
more pronounced in the perennial group (Fig. 5c). The
flood negatively affected both invasive and non-invasive
groups, but we could not detect any significant difference
between the two sub-groups by the second post-flood
survey (Fig. 5d). Likewise, the negative effect of the
flood was more pronounced on seed bank richness of
natives compared to those of the exotics (Fig. 5¢). Again
like the abundance data, the richness data suggested that
the negative influence of the flood was more pronounced
in the first post-flood survey (overall decrease across
function types: 45 %) compared to the second survey
period (autumn) (ca. 31 % decrease) (Fig. 5f).

Overall and relative effects of temporal and
environmental factors on seed bank

Multivariate analyses confirmed many of the trends
observed with the univariate ANOVA that seed bank
abundance varied yearly, seasonally and in response to
the flood. The ordination (MDS) and ANOSIM showed
that the magnitude of differences in seed bank assem-
blage in relation to the factors examined was in the or-
der: year effect > inundation effect > seasonal effect
(Fig. 6), with Global R values of 0.653, 0.478, and 0.253,
respectively. These effects were all significant
(P < 0.001). Of the 32 families represented in the soil
seed bank, only five families were major drivers of the
differences observed due to the flood effect as indicated
by ANOSIM (pre- vs. post-flood): Chenopodiaceae
(Global R = 0.389); Asteraceac (Global R = 0.271);
Solanaceae (Global R = 0.143); Poaceae (Globa
R = 0.12); and Cyperaceae (Globa R = 0.108)
(P < 0.02 in all cases).

SIMPER analyses showed a high average dissimi-
larity (64.0 %) between pre- and post-flood conditions
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Fig. 4 Relationship between seed bank abundance of a native vs.
exotic species, and b invasive vs. non-invasive species. Each point is
the mean (£ SE) data for a survey year (pre-flood), or location
(post-flood). Significant trends (P < 0.05) are in continuous lines

(Table 3; Fig. 6b), both in spring and autumn seasons
(data not presented). Notable weedy species driving this
dynamics are: Parthenium hysterophorus, Conyza, Ar-
gemone and Gamochaeta; for native species these are
Crassula, Chenopodium, Wahlenbergia, Cyperus, Juncus,
Pseudognaphalium and Oxalis. A full list of species for
which the differences in abundance between pre-flood
and post flood conditions were highest is presented in
Table 3. It should be noted that no particular species or
functional group overwhelmingly drives the dichotomy,
as contribution of each of the top 20 species was low,
ranging between 1.6 and 2.5 %.F



I
(@) (b)
Spring O A A O O A A A A A A A
* 000 L es vwiwsw s
BTree & Vine
OShrub
B Graminoid m\Wetland
OForb (herb) OTerrestrial
-80 60 -40 -20 0 -80 -60 -40 -20 0
c d
Autumn () (d)
. *
Spring
B Perennial -
OAnnual/biennial
ONon-invasive
-80 -60 -40 -20 0 80 -60 -40 20 0
(e) (f) Overall richness
Autumn *
*
Spring *
ONative [ Spring
-80 -60 -40 -20 0 -80 -60 -40 20 0

Proportional change in species richness from pre-flood condition (%)

Fig. 5 Changes in seed bank richness of plant species function
types at 10 months (spring) and 15 months (autumn) after the
extreme flood event in Mooleyember creek, Central Queensland:
a plant life form; b plant habitat; ¢ plant longevity; d plant weedy
status; e plant origin; and f overall performance at each season.

Discussion

Our seed bank density estimate is large (> 10,000 seeds
m?) but is similar to values reported in the literature
both for riparian corridors and wetland habitats in

Asterisks (*) refer to significant difference (P < 0.05) between
functional types in their responses to the flood in a given season,
except the last graph f that depicts differences between seasons.
Arrow indicates increasing time since the flood

general (e.g., Goodson et al. 2001; Siebentritt et al. 2004;
Gerard et al. 2008). Soil seed bank homogeneity detected
across the three disparate locations along the creek is not
unusual despite heterogeneity in observed above ground
vegetation (Osunkoya OO, unpublished data). Similar
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trend has been observed in many wetland and other
aquatic ecosystems (e.g., Haukos and Smith 1994; Ca-
pon and Brock 2006; Williams et al. 2008). This could be
attributable to the widespread dispersal of propagules
across the landscape by the floodwater, though we could
not be completely certain of this assertion because of
lack of similar data for the pre-flood periods.

The strong influence of season on our data set dem-
onstrates the transient condition of many seeds in the soil.
Many previous works have shown that both above and
below ground plant communities of river and wetland
systems can change sharply between seasons and years
(Britton and Brock 1994; Navie et al. 2004; Capon 2005;
Stromberg 2007). In general, in line with our hypothesis
and trend reported elsewhere, seed bank appeared sea-
sonally patterned with higher abundance and species
richness occurring in late autumn/summer (when most
plant species are reproductive and dispersing their seeds)
and became depleted over winter-spring periods (Britton
and Brock 1994; Goodson et al. 2001; Dhileepan 2012).

The ordination results indicate that flooding can
influence seed bank dynamics, but its effect was much
lower compared to that due to year-to-year variation. In
the pre-flood years, there were periods of moisture stress
(year 2007 and year 2009) and periods when moisture
though not excessive was above the long-term average
(year 2008) (Fig. 1). Such intermittent dry and wet spells
are typical of most creeks and wetlands of inland central
and western Queensland (Colloff and Baldwin 2010),
and it is conceivable that the local flora over evolu-
tionary time have adapted to such dynamics. Thus the
excessive rainfall of late 2010, though created a major
flood event in early January 2011, was not exceptional;
consequently such a lack of uniqueness, coupled with
long-term adaptation of riparian local flora to the sto-
chasticity of water availability and hence disturbance,
could account for the observed lower influence of
flooding compared to yearly effect (see also Capon 2005;
Capon and Brock 2006).

We sampled 10 months after the flood (spring/summer
time), during which seed bank density was higher com-
pared to the pre-flood period. This is often due to estab-
lishment and initiation of massive reproductive activity of
new recruits from the seed bank (especially annuals; see
Fig. 3), and/or from resprouting of vegetative remnants
some of which could have re-stocked the soil following the
initial post-flood germination flush (see Jutila 2001); it
could also have resulted from transported seeds brought
by drift with the creek inflow/flooding.

In contrast to abundance, we detected across func-
tional groups, a significant reduction in species richness
and diversity in response to the flood. Some studies of
wetland, riverine and riparian vegetation (and seed
bank) have also reported reduced richness after large
magnitude floods perhaps due to large shearing stresses,
scouring of vegetation and propagule sources (Smith
et al. 1998; Holzel and Otte 2004; Bagstad et al. 2005).
The reduction in richness could also be due to seed
mortality of certain functional/taxonomic group inca-
pable of withstanding long period of anaerobic condi-
tion (Bilkovic et al. 2012).

Herbaceous and graminoid plants dominated the
seed banks while propagule presence of structurally
larger plants (i.e., trees and shrub) was low. Lower seed
bank richness and abundance of trees and shrubs are not
uncommon partly due to low diversity and abundance of



Table 3 SIMPLER analysis of Mooloyember creek, central Queensland, Australia seed bank data for pre- vs. post-flood periods

Species

Groups: pre-flood and post-flood
Average dissimilarity = 64.03 %

Average abundance

Pre-flood Post-flood Av.Diss Diss/SD Contrib % P
Crassula sieberiana 5.22 6.19 1.55 1.30 242 kK
Chenopodium carinatum 3.98 0.00 1.50 1.56 2.34 roxE
Argemone mexicana™ 3.71 422 1.47 1.27 2.30
Wahlenbergia gracilis 1.50 4.07 1.40 1.22 2.18 ok
Argemone ochroleuca™ 5.09 4.55 1.39 1.29 2.18
Parthenium hysterophorus™"™* 5.85 7.43 1.35 1.25 2.10 ok
Cyperus gracilis 3.66 3.94 1.32 1.38 2.06 T
Juncus usitatus 6.17 4.46 1.27 1.24 1.99 T
Pseudognaphalium luteoalbum 4.42 3.71 1.25 1.26 1.95 **
Gamochaeta pensylvanica™ 6.85 5.26 1.23 1.10 1.92 ok
Oxalis corniculata 5.06 2.68 1.23 1.39 1.91 ok
Conyza sumatrensis™" ** 5.23 4.38 1.19 1.29 1.85 NS
Einadia trigonos 3.52 3.08 1.17 1.27 1.83 NS
Dysphania carinata 0.13 3.15 1.16 1.03 1.82 HEE
Hydrocotyle acutiloba ) 3.44 3.06 1.16 1.28 1.81 NS
Cyclospermum leptophyllum™"* 1.54 2.84 1.07 1.08 1.67 NS
Cyperus difformis 2.85 0.79 1.05 1.06 1.65 HxE
Verbena litoralis™" ™ 1.65 2.50 1.04 1.01 1.62 NS
Lepidium bonariense™" ™ 1.14 2.71 1.02 1.05 1.59 ok
Echinochloa colona™ " ** 1.60 2.13 0.97 0.96 1.51 NS
Verbesina encelioides™ * 2.47 1.27 0.96 1.08 1.51 NS
Conyza bonariensis™ ™ 2.25 2.44 0.94 1.36 1.47 T
Austrostipa verticillata 2.35 1.35 0.93 1.01 1.45 NS
Wahlenbergia tenuifolia 2.44 0.00 0.92 0.79 1.44 HxE
Eragrostis cilianensis™"™* 2.39 1.01 0.91 1.08 1.42 *
Xanthium pungens™ * 0.94 2.44 0.90 1.16 1.40 ok
Cynodon dactylon™"* 1.82 1.75 0.90 0.99 1.40 NS
Sida rhombifolia™"** 1.60 2.24 0.88 1.09 1.37 *
Centipeda minima ) 2.15 1.56 0.84 1.21 1.32 NS
Wahlenbergia tumidifructa™ * 1.74 1.33 0.82 0.98 1.28 NS
Nicotiana velutina 2.11 0.49 0.80 0.94 1.25 NS
Urochloa panicoides™™* 0.26 2.04 0.78 0.76 1.22 NS
Sporobolus elongatus 1.51 1.08 0.74 0.81 1.16 NS
Chloris divaricata 0.20 1.85 0.71 0.81 1.11 HoxE
Glandularia aristigera™"™** _ 1.65 1.00 0.71 0.93 1.10 NS
Malvastrum coromandelianum™"™* 1.00 1.55 0.69 1.06 1.07 ok
Bidens pilosa™""* 0.17 1.82 0.68 1.16 1.07 ok
Schenkia spicata 1.75 0.54 0.67 0.89 1.05 NS
Portulaca pilosa™ " 1.18 1.25 0.67 0.85 1.05 NS
Digitaria ciliaris"™"** ) 1.16 1.12 0.62 0.90 0.96 NS
Heliotropium amplexicaule™ 0.28 1.58 0.61 0.72 0.95 ok
Eragrostis parviflora 1.25 0.67 0.57 0.74 0.89 NS
Portulaca oleracea™ ™ 0.58 1.30 0.56 0.69 0.88 T
Malvastrum americanum'™""* 1.42 0.13 0.56 0.70 0.87 ook
Cyperus sesquiflorus™'* 1.41 0.28 0.55 0.74 0.87 *E
Digitaria didactyla™ 0.12 1.44 0.55 0.57 0.86 ok
Sporobolus creber 1.22 0.44 0.53 0.70 0.83 *
Einadia nutans 0.59 1.17 0.53 0.83 0.83 o
Dysphania pumilio 0.54 1.16 0.53 0.80 0.82 NS
Verbena gaudichaudii 0.47 1.19 0.52 0.71 0.81 kK
Cenchrus ciliaris™ 0.36 1.20 0.50 0.71 0.78 NS
Eragrostis elongata™" " 0.73 0.84 0.47 0.65 0.74 NS
Eriochloa procera 0.68 0.88 0.47 0.76 0.73 NS
Cyperus polystachyos 1.30 0.00 0.46 0.64 0.72 roxE
Solanum nodiflorum™"** 0.00 1.24 0.45 0.64 0.71 ok
Wahlenbergia stricta 1.13 0.12 0.45 0.59 0.71 oK
Verbena bonariensis 1.20 0.00 0.45 0.50 0.69 ok
Rumex brownii 0.40 0.86 0.42 0.56 0.66 T
Paspalum distichum 0.60 0.65 0.41 0.54 0.64 NS
Senecio pinnatifolius 1.07 0.10 0.40 0.59 0.63 HxE
Solanum nigrum'¥"** 0.21 0.96 0.40 0.64 0.62 ok
Fimbristylis dichotoma 0.83 0.27 0.38 0.56 0.59 NS




Table 3 continued

Species

Groups: pre-flood and post-flood

Average dissimilarity = 64.03 %

Average abundance

Pre-flood Post-flood Av.Diss Diss/SD Contrib % P
Verbena rigida™"™* 0.16 0.93 0.38 0.56 0.59 ok
Physalis lanceifolia™** 0.06 0.98 0.37 0.53 0.57 ok
Gomphrena celosioides™ 0.35 0.71 0.36 0.60 0.56 NS
Cotula australis 0.40 0.72 0.35 0.64 0.55 T
Typha domingensis 0.79 0.19 0.34 0.54 0.52 T
Melaleuca sp. 0.42 0.55 0.32 0.54 0.50 NS
Scoparia dulcis™ 0.74 0.05 0.30 0.42 0.46 *

Values are average abundance ranking (rare-1; common-2; very common-3; >4 dominant) and the contribution (%) to the dissimilarity
between the two survey periods. Invasive and/or exotic species are indicated by superscript (inv-ex) next to their names.
Diss dissimlarity, SD standard deviation. P refers to probability of a significant difference between pre-flood and post-flood using non-

parametric independent ¢ test, NS not significant
* P < 0.05; ** P < 0.02; *** P < 0.001;
+P < 0.10

large above ground plants in riparian corridors (Capon
and Brock 2006).

Though seed bank abundance was higher for exotic
and invasive species compared to native and non-inva-
sive species, but a near linear positive relationship was
detected between the two groups, especially for the post-
flood dataset (Fig. 4)—suggesting that seeds of both
groups of plants responded in a similar manner to the
flood disturbance. Both groups also contributed to the
pre-vs. post-flood dichotomy observed in the ordination
space (Table 3). Hence it could be argued that the exotic
species are not necessarily major drivers of the riparian
zone in this landscape (MacDougall et al. 2005). This
finding buttressed Catford’s et al. (2011) assertion that
while exotic/invasive species will no doubt establish be-
tween floods, inundation (through its scouring effect)
will ensure that the group does not dominate the wet-
lands (including riparian corridors) for decades at a time
and might even provide opportunity for native riparian
plants to regenerate and disperse (see also Siebentritt
et al. 2004; Lunt et al. 2012). However, the resiliencies of
the invasive/exotic species as ecological groups were
much higher than that of the non-invasive/native species
(see Figs. 3, 5), which over a longer time might translate
to their increasing dominance in the riparian landscape.

Synthesis, management applications, caveats
and conclusions

We lack replication of site (i.e., creek) for this study.
Thus future work on flood impact on riparian ecosys-
tems will need to examine more sites and locations to
increase robustness of the findings. Nonetheless, as we
sampled same locations over several years and seasons,
we can retain some confidence that findings can be
generalise to other creek systems. We analysed seed
bank by the seedling emergence method (Roberts
1981)—a technique considered appropriate by many for

determining germinable soil seed bank (e.g., Capon and
Brock 2006). However it is quite possible that we failed
to account for total viable soil seed bank (see Ter-Heerdt
et al. 1996; Bernhardt et al. 2008), due to inability of our
germination method (a moist watering method) to break
dormancy of certain group of seeds, e.g., species that
require complete submergence for germination.

In conclusion, the low presence of seeds of long-lived
plants (i.e., shrubs and trees) in the soil germination
trials reported, suggests, as in many studies of riparian
zones (e.g. Capon et al. 2006; Greet et al. 2012) that
species of these life-form groups cannot rely on buried
seeds for recruitment. Rather the riparian corridors will
benefit from influx of tree and shrub propagules from
the surrounding landscape and/or from assisted regen-
eration for desired biodiversity. Though we have shown
that extreme flood will impact seed bank signature of
riparian corridors, it does not necessarily promote the
proliferation of exotic invasive over native species, per-
haps in part due to scouring effect of the rare event, and
perhaps in part due to isolation of the focal riparian
vegetation from human habitation. The proportional
change due to the flood was in opposite direction for
abundance and species richness, (Figs. 3, 5), but in both
indices the magnitude of the differences in pre- and post-
flood data had decreased with time from 45 to 70 % at
11 months to ca. 20 % at 14 months after the distur-
bance. Though it is difficult to disentangle seasonal effect
as a co-contributing factor to this reduced effect with
time, our finding is in line with the suggestion by Wetzel
et al. 2004 and Bilkovic et al. 2012 that changes associ-
ated with drought and floods tend to be temporary.
Ward et al. (1998) note that the generally high resilience
of lotic ecosystems to disturbance is attributable, in part,
to high spatio-temporal heterogeneity; and also because
habitat patches less affected by a particular perturbation
may serve as refugia from which survivors may recolo-
nize more severely affected areas. Thus it is safe to infer
that seed bank assemblage at the Mooleyember creek



show resilience to the extreme flood event. No doubt to
justify this assertion, additional longer-time data beyond
two years after the flood may be required.
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