
Agricultural Systems 125 (2014) 23–32
Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: www.elsevier .com/locate /agsy
Identifying risk-efficient strategies using stochastic frontier analysis
and simulation: An application to irrigated cropping in Australia
0308-521X/$ - see front matter Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.agsy.2013.11.002

⇑ Corresponding author. Tel.: +61 7 4688 1624; fax: +61 7 4688 1193.
E-mail address: brendan.power@daff.qld.gov.au (B. Power).

1 Tel.: +61 2 6673 3215; fax: +61 2 6773 3596.
Brendan Power a,⇑, Oscar J Cacho b,1

a Agri-Science Queensland, Queensland Department of Agriculture Fisheries and Forestry, PO Box 102, Toowoomba, QLD 4350, Australia
b UNE Business School, University of New England, Armidale, NSW 2351, Australia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 July 2013
Received in revised form 7 November 2013
Accepted 26 November 2013
Available online 25 December 2013

Keywords:
Irrigation
APSIM
Farm bioeconomic model
Risk-efficiency
Stochastic frontier analysis
In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit
would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is
desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk.
This paper identifies risk-efficient cropping strategies that allocate land and water between crop enter-
prises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying
stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved
changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic
model of the case study farm. This model utilises the multi-field capability of the process based Agricul-
tural Production System Simulator (APSIM) and is parameterised using data collected from interviews
with a collaborating farmer.

We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-
efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing
rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing
rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually,
without significantly increasing risk. The concept of the shadow price of risk is discussed and an expres-
sion is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Bioeconomic simulation models of cropping systems have long
been used to allocate farm resources across competing enterprises
by comparing management strategies using computer-based
experiments (e.g. Cammarano et al., 2012; Farquharson et al.,
2008; Gaydon et al., 2011; Meinke et al., 2001; Peake et al.,
2008; Power et al., 2011; Rodriguez et al., 2011). Their use is time
and cost-efficient compared to the alternative of conducting field
experiments that may take years or decades instead of hours or
days (Keating and McCown, 2001). Lien et al. (2007) observe that
the economic sustainability of a system cannot be measured
directly with short-term experiments, but that results can be
enhanced through simulation modelling to represent longer time-
frames (also see Hansen and Jones, 1996; Pandey and Hardaker,
1995).

Hardaker (2000) observed that the stochasticity of the produc-
tion environment and the resulting farm business risk were seldom
considered in modelling studies. A decade later, the use of
stochastic simulation has become more common, but business risk
is not always treated appropriately. Climate and price variability
mean expected profit on its own is an insufficient criterion to
choose between risky alternatives (Behrendt et al., 2006; Carberry
et al., 2010; Gaydon et al., 2012; Keating and Carberry, 2010; Lien
et al., 2007). If farmers were indifferent to risk the problem would
be trivial and strategies could be ranked according to output, profit,
partial productivity ratios (e.g. $/ha or $/ML), or other measures.
However, farmers, as with most people, are risk averse (Hardaker
et al., 2004 pp. 4) yet will trade some risk for returns. The amount
they trade is dependent on their level of risk aversion.

Most strategies to choose between risky alternatives require the
farmer’s level of risk aversion to be known a priori (Anderson et al.,
1977, pp. 66–69), yet in practice a famer’s risk attitude may vary as
farm conditions change. For example, if the farm business is in a
healthy financial position the farmer may choose strategies ex-
pected to yield high returns with relatively high risk, but if the
farm business is in financial stress the farmer, or farm creditors,
may dictate lower-yield, lower-risk strategies. This example illus-
trates why it is difficult to elicit a decision maker’s utility function
(Hardaker, 2000; King and Robison, 1981; Schoemaker, 1982). For-
tunately, it is possible to choose between risky alternatives when
risk preferences are unknown (Hardaker et al., 2004, pp.140). The
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most common method consists of identifying the set of strategies
that achieve the best possible return for any given level of risk
(the risk-efficient or mean–variance efficient strategies). Identify-
ing the efficient set allows a decision maker to determine the
appropriate strategy for their current level of risk aversion (Antle,
1983; Cacho et al., 1999; Hardaker et al., 2004 p. 143). In the liter-
ature the standard deviation or variance of output is often used as a
proxy for risk (Anderson et al., 1977; Behrendt et al., 2006; Cacho
et al., 1999; Carberry et al., 2010; Gaydon et al., 2012; Parton and
Carberry, 1995).

To date, stochastic simulation studies that select optimal strat-
egies in the presence of uncertainty have failed to account for ran-
dom statistical noise. This means that the possibility of optimal
solutions not remaining optimal under different environmental
and economic conditions is not considered. In this paper we over-
come this limitation by accounting for statistical noise using sto-
chastic frontier analysis when ranking the output of a
bioeconomic model. The use of a stochastic frontier is appropriate
when a function defining the industry’s best performing firms is
warranted, as opposed to the average performing firms considered
in ordinary least squares (Aigner et al., 1977; Battese and Coelli,
1992, 1995; Meeusen and van den Broeck, 1977). The technique
has been extended to quantify the effect of environmental vari-
ables on the economic efficiency of the firm (Coelli et al., 1999).

There are many examples in the published literature where sto-
chastic frontier functions have been estimated to compare firms
(e.g. Battese and Coelli, 1992, 1995; Coelli et al., 1999; Huang
et al., 1986; Kalirajan and Shand, 1989; Nganga et al., 2010; Non-
thakot and Villano, 2009; Tran et al., 2008; Villano and Fleming,
2006; Wang et al., 1996; Wilson et al., 2001). Most of them have
involved estimation of functions from survey or observational data.
None could be found that used bioeconomic model output to pro-
duce a dataset for analysis. A common criticism of applying sto-
chastic frontier analysis to compare farms based on survey data
is that there are too many differences between farms, farmers
and the operational environment to include in the estimated pro-
duction function. This causes biases in both the estimation of the
parameters and the predictors of technical efficiency; therefore
comparisons based on estimated technical efficiencies are inappro-
priate (Coelli et al., 1999, 2005 p. 282; Yotopoulos et al., 1970).
Fig. 1. Schematic of bioeconomic model showing linka
When used to compare management strategies of a particular farm
in a modelling framework, as applied here, only differences of
interest are varied within the model and hence those biases will
not be present.

This study proceeds as follows. Firstly, a bioeconomic model is
described and applied to a case study of an irrigated cropping farm
enterprise in southern Queensland, Australia. Secondly, the model
is used to perform sensitivity analysis on key farm resources and
input and output prices. This is conducted to determine if the mod-
el behaves sensibly to changes in key variables of the production
environment and to rank these variables according their relative
effect on farm profit. Lastly, a simulation experiment is designed
with the case study farmer and optimal cropping strategies are
identified that maximise farm business profit whilst simulta-
neously minimising farm business risk.
2. Method

The modelling framework employed uses a multi-field ap-
proach similar to that described in Power et al. (2011). Fig. 1 shows
the linkages between the biological and economic model.
2.1. Biological model

A whole-farm multi-field variant of APSIM (Keating et al., 2003)
was used to model the biological farm system. Management of the
simulated farm occurs through a Tool Command Language (TCL)
interpreter in APSIM (de Voil et al., 2009). Management strategies
include decisions such as which crop to sow or harvest in a partic-
ular field and the movement of water between storages to mini-
mise losses due to evaporation and drainage. A complete listing
of the TCL code interpreted by APSIM is available in the online Sup-
plementary material.

The choice of crop to sow in each field is achieved by specifying
sowing rules that are executed every day for each of the farm
fields. When all the sowing rules for a crop evaluate to true, the
crop will be sown with specifications for crop variety, fertiliser
rates, sowing density and other agronomic factors. Sowing rules
allow the farm model to respond to seasonal conditions and
ges between the biological and economic model.
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production environments, therefore changing the sowing rules can
change risk exposure.

Fertiliser rates at sowing are determined by the crop nitrogen
requirements less soil nitrogen availability at planting. The daily
net balance of soil nitrogen is modelled by APSIM’s nitrogen mod-
ule SOILN (Probert et al., 1997). This means fertiliser amounts and
costs vary between seasons and across fields depending on the
cropping history of each field. If no crop is able to be planted then
the field is left fallow and a simple weed model (de Voil et al.,
2009) is used to estimate fallow costs due to weed management.

Within the model the timing and amount of irrigation applied
to a crop is determined by the difference between crop demand
and soil water supply. When extractable soil water falls below a
critical value, water is pumped from a water source, such as a stor-
age or bore, to the field requiring the water. When the level of the
storage is sufficiently high, water can gravitate out and pumps are
not operated. The level at which this occurs is set for the particular
farm based on interviews.

On-farm water sources are modelled via instances of APSIM’s
WaterSupply module (Gaydon and Lisson, 2005). These can be con-
figured to be: bores with an annual allocation that is renewed
annually; sumps that capture on and off farm runoff or river flows;
or open storages that have set capacities. The latter supply water
when available, are subject to daily water losses due to seepage
and evaporation and are ‘‘topped-up’’ from intercepted rainfall,
sumps or bores. When daily runoff is greater than some critical va-
lue the sump is assumed to be full and water is pumped into the
storage, provided sufficient storage capacity is available.

Captured on-farm runoff into farm storages is calculated as.

RML ¼min WSML; TL
Xn

i¼1

riAi

100

( )
ð1Þ

where RML is the total farm runoff (ML) calculated daily; WSML is
the available capacity in ML of the farm water storage of interest;
TL is the transmission loss from moving water from the fields into
storages and is due to evaporation and drainage in channels; ri is
the runoff (mm) from field i and modelled by APSIM’s soil water
module SoilWat (Probert et al., 1997); and Ai is the area (ha) of field
i.

Harvested overland flow is modelled using an historical time
series of ephemeral flows. To generate a series that correlates with
the climate data a multi-year APSIM simulation is calibrated to
reproduce the particular farm manager’s records. The calibrated
model is then used to generate a full historical record of the same
length as the historical climate series.

2.2. Economic model

The economic model involves assigning a dollar value to every
event in the biological model, such as crop sowing and harvest,
weed events and operation of farm pumps. This is achieved using
the statistical computing environment R (R Development Core
Team, 2012). The R code that achieves this appears in the online
Supplementary material. Crop prices and variable and overhead
costs are obtained through farmer interviews and represent what
the farmer expects over the long term. The annual farm profit is gi-
ven by:

P ¼ GMfarm � OH ð2Þ

GMfarm ¼
X

GMpaddocks ð3Þ

GMpaddock ¼
X
ðYPA� HAA� HY Y � SA� N � F � IÞ ð4Þ

I ¼
X
ðWSþ Bþ T þWHÞ ð5Þ
where P is annual farm profit consisting of farm gross margin for
the year (GMfarm) less annual farm overhead costs (OH). Farm gross
margin is the aggregate of all fields (GMpaddock), calculated from rev-
enue for all crops in that field for the year less all costs; Y is the crop
yield for cotton (ba/ha) or other crops (t/ha); P is crop price ($/(ba or
t)); A is the crop area grown (ha); HA is the aggregate area-depen-
dent harvest costs ($/ha) and HY is the aggregate yield-dependent
harvest costs ($/(ba or t)); S is the aggregate sowing costs ($/ha);
N is the costs of fertilisers applied to the field ($); F is the fallow cost
(the cost of spraying every weed event generated in the weed model
in $); I is the irrigation costs ($) for a crop in that field.

The irrigation costs, defined in Eq. (5), are the sum of all pump-
ing costs ($) from water storages (WS) and bores (B), pumping of
return tail water (T) and water harvesting costs (WH). WH is a var-
iable cost calculated for each cropping enterprise by apportioning
the pumping costs to harvest the overland flow based on the
amount of applied irrigation to each crop for the year.

2.3. The case study

The model was applied to a farm in the Darling Downs, located
in south-eastern Queensland, Australia. The Darling Downs is
approximately 77,400 km2 in size and forms part of the headwa-
ters of the Murray-Darling basin (Fig. 2). This area accounts for
over one third of Australia’s food production and hence has rela-
tively high agri-political importance. The region’s soils are typified
by a rich vertisol ideally suited to cropping, which is conducted as
both dryland and irrigated. The climate is temperate and sub-hu-
mid and although it is characterised by highly variable summer
dominant rainfall, moderate falls may occur during any season.
This permits an opportunistic cropping system for both summer
and winter crops subject to the availability of water. Sources of
water for irrigation include diverted rainfall, runoff (i.e. surface
water), harvested river flow or pumped ground water.

Irrigated farms in the region have been experiencing increasing
pressure due to several factors:

(1) Reductions in long term diversion limits recommended by
the draft Murray-Darling basin plan (MDBA, 2010) for both
surface water and ground water.

(2) Stress from climate change, with less reliable irrigation
water (CSIRO, 2008) and a predicted decline in the value of
irrigated production from the Murray-Darling Basin by
2030 of 12% in a no mitigation scenario (Garnaut, 2011).

(3) Increased risk to ground water systems from coal seam gas
mining (DERM, 2010).

(4) Possible trading of water to other uses (National Water Com-
mission, 2009).

(5) Volatile commodity prices, shifting exchange rates and
changes in government policies (National Water Commis-
sion, 2009).

Each of these issues has the potential to affect the economic via-
bility of farm businesses and will have flow on effects on the wider
community.

A number of possible solutions exist to maintain farm output
notwithstanding these pressures. These include technological solu-
tions such as conventional plant breeding or genetically modified
crops; capital expenditure on farm infrastructure to increase water
storage capacity or adopt more efficient irrigation technologies;
and improvements in the efficiency of land and water allocation
between competing cropping enterprises. Below we analyse the
latter option as the simplest, least expensive, and most immediate
response to pressures experienced by irrigators.

A typical farm in the region was selected for this study. A num-
ber of interviews were conducted with the farmer to elicit the



Fig. 2. Map showing location of Darling Downs within the Murray Darling Basin.

26 B. Power, O.J Cacho / Agricultural Systems 125 (2014) 23–32
required information about the farm and its operations and to val-
idate output from the model. The case study farm is an irrigated
grain-cotton enterprise situated on the eastern Darling Downs.
The nearest Bureau of Meteorology (BOM) recording station to
the farm indicates the area has an average annual rainfall of ca.
660 mm/year. These data were used in model runs with missing
data in-filled using spatial interpolation (Jeffrey et al., 2001).

Details of the fields and farm storages for the case study farm
are presented in the Supplementary materials. The timing and
choice of crop to sow in each field on the farm is determined by
evaluating the rules in Table 1 on a daily basis. These rules were
designed through a process of multiple iterations of eliciting the
farmer’s rules and observing model output with respect to farm
cropping mix and intensity. The sowing rule ‘‘Available stored
water greater than �ML/ha’’ considers the aggregated water in
farm storages, bore allocation and soil water. This rule sets the
farm area to be planted to each crop depending on the amount
of available water at the time of sowing.

The mechanism used to express sowing rules and their activa-
tion in the model offers extreme flexibility. For example, the
farmer indicated that if at the end of the wheat sowing window
there is insufficient area planted he will plant some area to wheat
irrespective of sowing rain. This is implemented in the model by
including a second set of wheat sowing rules: if the date is equal
to the end of the sowing window and the farm area already
planted to wheat is less than 50 ha, then wheat will be sown.
Table 2 lists the agronomic parameters for each crop. Detailed
prices and variable costs for each cropping enterprise and farm
pumping costs were elicited from the farmer and appear in the
additional online material.



Table 1
Crop sowing rules.

Crop Sowing rules

Maize Date between September 15 and September 30
Farm area planted to maize less than 40 ha
Previous crop not maize
Days past since a harvest greater than 14
Available stored water greater than 3 ML/ha

Cotton Date between October 1 and November 15
Previous crop not cotton
Farm area planted to cotton less than 200 ha
Days since a harvest greater than 14
Available stored water greater than 3 ML/ha

Sorghum Date between November 16 and November 30
Rain over 3 days greater than 50 mm
Soil water profile greater than 50%
Days since a harvest greater than 14

Wheat Date between June 1 and June 30
Farm area planted to wheat less than 80 ha
Rain over 3 days greater than 30 mm
Days since a harvest greater than 14

Wheat Date equals June 30
Farm area planted to wheat less than 50 ha
Days since a harvest greater than 14

Table 3
Subset of possible values in sowing rules for the minimum required stored water per
hectare (SW) in for each crop (ML/ha) and the unique simulation number.

Cotton Maize Wheat Sorghum Simulation/strategy number

0 0 0 0 0
1 0 0 0 1
2 0 0 0 2
3 0 0 0 3
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2.4. Sensitivity analysis

Climate variability was adequately accounted for in the biolog-
ical model by simulating using 111 years of daily climatic data.
However, input and output prices were kept constant in the eco-
nomic model (Eqs. (2)–(5)). Prices and costs faced by farmers vary,
and are often unknown when crucial decisions are made. Accord-
ingly, sensitivity analysis was conducted on crop prices and key in-
put costs (pumping and fertiliser costs). A sensitivity analysis was
also conducted on farm resource levels to determine their effect on
farm profit and to test that the model behaved sensibly to changes
in their values. The total farm area (ha) was varied by adding new
fields or removing existing fields. Changes in other variables were
made by increasing or decreasing their levels.The steps in the sen-
sitivity analysis are as follows: (1) conduct base simulation using
all available climate data (i.e.1900–2011) and calculate farm profit
PB; (2) for a variable of interest i generate a small percentage
change p in its level within the model, re-run and calculate farm
profit Pi; (3) repeat step (2) for a range of values of p and for each
variable; (4) use Eq. (6) to calculate a distribution of elasticities for
each variable. The elasticity, Ei, is interpreted as the percentage
change in farm profit due to a 1% change in the level of the given
variable:

Ei ¼
Pi �PB

jPBj
p�1 ð6Þ
2 1 0 0 11
3 1 0 0 12
4 1 0 0 13
5 1 0 0 14
6 1 0 0 15
7 1 0 0 16
8 1 0 0 17
2.5. Simulation experiments

Simulations were conducted using the following set of sowing
rules developed in collaboration with the case-study farmer:
Table 2
Crop agronomy parameters: Soil N levels at sowing indicate the total amount of soil
nitrogen required at sowing; irrigation thresholds are expressed as a fraction of the
full soil profile.

Crop Variety Soil N at sowing Fraction of full profile

Cotton S71BR 240 0.55
Maize dekalb_xl82 220 0.40
Sorghum early 100 NA
Wheat hartog 200 0.40
(1) the same crop cannot be planted in the same field for two
consecutive seasons (disease break stipulation);

(2) the time since the last harvest must be greater than two
weeks;

(3) the farm area planted to any crop cannot be greater than 45%
of the total farm area;

(4) the available stored water (SW), for each hectare of crop to
be sown must be greater than a target value.

SW is the aggregate of on farm water storages, remaining bore
allocation and plant available soil water. This variable can take on
values ranging from 0 to 8 in 1 ML/ha increments for each crop in a
fractional factorial design. Table 3 lists a subset of these values. The
factorial design is fractional because simulations where sorghum
SW values are greater than any other crop where removed. This
is because sorghum has a relatively lower water requirement than
the other summer crops and hence it is not sensible to evaluate
strategies where sorghum requires more water per hectare. The to-
tal number of simulations, each representing a strategy, is 2025.
Each strategy was evaluated in a simulation using the historical cli-
mate record from 1900 to 2011.

SW is a metric of both the intention to sow a crop and the crop’s
production risk. Low values of SW result in a higher probability of
sowing more area with relatively higher production risk due to a
greater reliance on highly variable in-crop rainfall. Alternatively,
higher values of SW result in the likelihood of sowing relatively
less area with a lower production risk because crops are less likely
to exhaust available water for irrigation.
2.6. The stochastic frontier function

The stochastic frontier production function is given by:

ln qi ¼ x0ibþ mi � ui ð7Þ

where qi is the output of the i’th firm; xi is a vector of inputs or
environmental variables for the i’th firm, b is the vector of
estimated parameters, vi is symmetric random noise which is inde-
pendently and identically distributed N(0,r2) and is assumed to be
independent of u; ui is a non-negative half normal random variable
for technical efficiency (i.e. ui � iidN+(0,r2)). The xib term
8 2 0 0 26

..

.

7 7 7 7 2016
8 7 7 7 2017
7 8 7 7 2018
8 8 7 7 2019
7 7 8 7 2020
8 7 8 7 2021
7 8 8 7 2022
8 8 8 7 2023
8 8 8 8 2024
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represents the deterministic component and vi and ui together rep-
resent the stochastic component of the model. Coefficients are usu-
ally estimated using the method of maximum likelihood.

Frontier functions are typically estimated for the purpose of
predicting inefficiencies of firms (Coelli et al., 2005, p. 245). When
applied to agriculture studies the firm is typically a farm and out-
put is measured by farm production. However, output can also be
represented by farm profit in which case Eq. (6) represents a sto-
chastic profit function (e.g. Huang et al., 1986; Nganga et al.,
2010 and Wang et al., 1996). The statistical noise, intended to be
captured by the vi term in Eq. (6), can occur for the following rea-
sons: (1) due to the lack of relevant explanatory variables which
may be omitted inadvertently or because they are too expensive
or impossible to measure; (2) due to measurement error; and (3)
due to an inappropriate functional form. However, when applied
in a modelling framework as done here, statistical noise due to
measurement error is implicit in the model parameters and not
present in the v term.

2.7. Choosing between risky alternatives

The relationship between a farm’s business profit and risk can
be viewed as a one-input one-output production process where a
farmer may trade risk for profit. If a farm is operated to achieve
maximum profit for a particular level of risk exposure it is said
to be risk-efficient. Such a farm is operating at or close to the effi-
ciency frontier. A farm operating below the risk-efficiency frontier
is inefficient because either more profit could be achieved for sim-
ilar levels of risk or the same profit could be achieved for less risk.
The stochastic risk-efficiency frontier, estimated from results from
the simulation experiments, is:

logðEPiÞ ¼ b0 þ b1 logðRiskiÞ þ b2 log ðRiskiÞ2 þ Vi � Ui ð8Þ

where EP is the expected farm profit (mean annual farm profit);
Risk is a mean-corrected proxy for farm business risk; Vi is a ran-
dom error assumed to be normally distributed with a mean of zero
and constant variance; and Ui is the technical inefficiency esti-
mated as:

Ui ¼ d0 þ d1ðCottonSWiÞ þ d2ðMaizeSWiÞ þ d3ðWheatSWiÞ
þ d4ðSorghumSWiÞ þWit ð9Þ

where CottonSW, MaizeSW, WheatSW and SorghumSW, are
parameters for the stored water (SW) at which the respective crop
is planted as explained previously; W is a random variable
assumed to be distributed by a truncated normal distribution with
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Fig. 3. Time series (y axis) of farm fields (x axis) showing type of crop sown in each field
zero mean and constant variance; and b and d coefficients are un-
known parameters estimated simultaneously using the method of
maximum likelihood via the R implementation of Frontier Version
4.1 (Coelli, 1996; Coelli and Henningsen, 2012).

Incorporating a nested sub-model for the inefficiency term U
(Eq. (9)) enables the cropping strategies to influence the stochastic
part of the profit-risk frontier in Eq. (8), which permits the ineffi-
ciency to vary with each cropping strategy. V and W capture the
combined effects of the stochastic climate, which are unobservable
at sowing time.

Although the variance of farm business returns is often used as
a proxy for risk (Hardaker et al., 2004) this approach fails to differ-
entiate between distributions of farm profit that are negatively and
positively skewed. To overcome that problem we use the standard
deviation of the lower tail of the truncated distribution, given by:

Riski ¼ SDðPtijPti < liÞ ð10Þ

where Pti is the annual profit for year t and strategy i and li is
the mean of annual farm profits for strategy i. This metric for farm
business risk better captures risk by considering only the lower tail
of the distribution.

Hypothesis tests were conducted to determine if all strategies
are fully risk-efficient and to find the crop sowing rules that have
an effect on risk-efficiency. The strategies were then ranked
according to their risk-efficiency (RE):

REi ¼ e�Ui ð11Þ

Typically, when estimating stochastic frontiers the effect of
management on efficiency is not directly observable, and its effects
are estimated by proxies such as education or age of the decision
maker. In this study the effects of management are quantified
through the effects of crops’ sowing rules on risk-efficiency.

Risk-efficient cropping strategies were identified that have
approximately equal levels of risk to the farmer’s current manage-
ment but higher expected farm profit.
3. Results and discussion

The model was run for the time period the farmer has been
operating with the current farm infrastructure (i.e. 1999–2012).
Fig. 3 shows crops sown in each field (x-axis), timing (y-axis) and
simulated yields (ba/ha for cotton and t/ha for other crops). This
is the final result after revising the sowing rules until the farmer
was satisfied that the sowing rules adequately reproduced his
current cropping mix and intensity. Other sensibility tests were
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Fig. 4. Annual farm gross margins ($100,000) for each cropping enterprise.

Table 4
Farm profit elasticity estimates for farm resources and input and output prices.

Variable Elasticity

Mean s.d.

Crop prices
Cotton 4.3 0.0
Maize 1.3 0.0
Sorghum 0.2 0.0
Wheat 0.8 0.0

Costs
Fertiliser �0.5 0.0
Pump operation �0.8 0.0

Farm resource
Area 0.3 8.0
Bore 0.7 7.8
Storage 0.1 9.1
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conducted by presenting key output from the biological model to
the farmer. The justification for this approach is presented in Holz-
worth et al., 2011 and is conducted to provide confidence in the
performance of the model. The model adequately reproduced the
median yields for all crops though with a large variation about
the median. The result of this validation process was confidence
that the biological model adequately represented the production
and water balance of the farm.

3.1. Economic model output

Plots of distributions of irrigation, fallow and fertiliser costs
were presented to the farmer to validate the economic model. He
conceded he was unsure of their true values because he had never
accurately measured his costs. Although he stated they were
approximately what he would expect.

Fig. 4 shows the range in annual contributions from each crop-
ping enterprise to the total farm gross margin ($). Cotton is the
most important crop in terms of relative farm profit and it is also
the riskiest in terms of the greatest probability of a loss. Sorghum
has low variability because it is only sown in one season. Fig. 5
shows partial productivity measures for gross margins per farm
area sown ($/ha) and per applied irrigation ($/ML). Again cotton
is the most profitable crop with respect to farm area sown and
Fig. 5. Distribution for each cropping enterprise of annual gross mar
applied irrigation, although the relative profitability of maize,
when considered per amount of applied irrigation water, ap-
proaches that of cotton.

Table 4 presents the sensitivity analysis results. Elasticities of
profit with respect to prices of cotton, maize, sorghum and wheat
were 4.3, 1.3, 0.2 and 0.8, whereas elasticities for fertiliser and
pumping costs were �0.5 and �0.8. Of the prices considered the
cotton price clearly has the largest influence on farm profit.

Regarding changes in farm resources, the annual bore allocation
had the greatest effect on farm profit with an elasticity of 0.7, fol-
lowed by cropping area and farm storage capacity with elasticities
of 0.3 and 0.1 respectively (Table 4). Fig. 6 shows the sensitivity
analysis of farm resources graphically. It is interesting that the ef-
fects of farm area and storage capacity are similar for increases but
they diverge considerably for decreases, with farm area having a
greater effect on profit than storage capacity. This suggests that
the current size of the farm is approximately optimal for the cur-
rent water availability. The elasticities for farm resources have high
variability as indicated by their standard deviations in Table 4 and
Fig. 6. This is due to interactions within the biological model. The
standard deviations for the elasticities with respect to prices are
zero (Table 4) because prices are linearly related to profits and
price changes do not interact with the biological model.
3.2. Hypothesis tests and parameter estimates

The maximum likelihood parameter estimates for the stochastic
frontier model (8) and the inefficiency effects model (9) are listed
in Table 5. A test with null hypothesis H0: r2 = 0 assumes each
gins per: (A) area sown ($/ha) and; (B) applied irrigation ($/ML).



Fig. 6. Percentage change in farm profits against percentage change in levels of
farm profits.

Fig. 7. Expected farm business profit against a proxy for risk (i.e. standard deviation
of lower tail of truncated distribution of annual farm profits) for all cropping
strategies (black open circles). Each point represents an 111 year simulation from
1900 to 2011. Risk-efficient strategies (solid red circles) and farmer’s current
management (yellow cross) are identified.
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strategy is fully risk-efficient. This assumption was found to be
highly unlikely with probability rounding to zero and it can be con-
cluded that risk-inefficiencies exist. The variance parameter c indi-
cates 61% of the total variability in simulated expected farm profit
is explained by risk inefficiency. The null hypothesis H0: c = 0 is a
test assuming the inefficiency effects are not stochastic and all
variables in the inefficiency effects model (U) have no effect on
the level of risk-efficiency. From Table 5 this test is highly signifi-
cant and hence it is highly likely at least one variable in the ineffi-
ciency effects model has a significant effect.

The variable Risk in Eq. (10) was mean-corrected (mean Risk
was subtracted from each value) which ensures Risk has a mean
of zero and its coefficient estimates are the profit elasticity (Villano
and Fleming, 2006). The estimated b coefficients for both the first
and second order terms for the profit-risk frontier are positive as
expected and are significantly different form zero. This indicates
the trade-off between profit and risk.

The estimated d coefficients for the inefficiency effects model,
which are of most interest in this study, are also listed in Table 5.
The estimated parameter for the cotton sowing rules, d1, is positive
and significantly different from zero. This is expected, since cotton
is the most profitable crop according to a number of metrics ($/
farm, $/ha and $/ML), and indicates that more stringent water
requirements at sowing for cotton increases risk-inefficiency. The
Table 5
Maximum likelihood estimates of parameters for the stochastic profit-risk frontier and in

Variable Parameter Estimate

Stochastic frontier
Intercept b0 1.2E+01
log(risk) b1 6.3E�01
(log(risk))2 b2 1.8E�01

Inefficiency model
Intercept d0 �9.6E�01
CottonSW d1 1.9E�01
MaizeSW d2 1.1E�01
WheatSW d3 �6.8E�02
SorghumSW d4 �2.1E�04

Variance parameters
r2 3.8E�02
c 6.1E�01

log likelihood 807.0945
result for maize is similar but of lower magnitude. This indicates
that even though maize is not the most profitable crop, sowing
rules that result in more farm area dedicated to maize improve
efficiency but to a lesser extent than a similar increase in cotton
area. The estimate for wheat is significant and negative, indicating
that as wheat areas increase the risk-efficiency decreases. This is
due to the displacement of more profitable crops such as cotton
and maize. The estimated coefficient for Sorghum SW, d4, is not sig-
nificant (p value = 0.96) and therefore changes in the area of this
crop have no effect on efficiency.

3.3. Identification of risk-efficient strategies

Fig. 7 shows the expected farm business profit against Risk for
all cropping strategies. Risk-efficient strategies were selected to
be those strategies with an RE score in the top decile (i.e.
RE > 0.97). These are identified in Fig. 7 by solid red circles and
range in expected annual profit from ca. $114,000 to $243,000 with
a corresponding change in the level of risk. The expected profit and
risk of the farmer’s current management for the same climate
efficiency models (Eqs. (3.1) and (3.2)).

Std. error z Value p Value

1.2E�02 2.8E+01 <2.2e�16
2.8E�02 2.3E+01 <2.2e�16
3.4E�02 5.1E+00 2.96E�07

5.0E�02 �1.9E+01 <2.2e�16
5.2E�03 3.7E+01 <2.2e�16
3.8E�03 3.0E+01 <2.2e�16
4.0E�03 �1.7E+01 <2.2e�16
4.4E�03 �4.8E�02 0.9621

1.8E�03 2.1E+01 <2.2e�16
3.7E�02 1.6E+01 <2.2e�16



Fig. 8. Simulated expected shadow price of risk versus a proxy for risk (i.e. standard deviation of lower tail of truncated distribution of annual farm profits).
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period is identified by the yellow cross in Fig. 7. It is clear the farm
is currently being managed below the efficiency frontier and at the
lower end of the profit-risk continuum.

Among the risk-efficient strategies, 25 were found to have risk
levels approximately equal to that of the farmer’s current manage-
ment. These strategies were presented to the farmer as possible
ways he could increase profits by ca. $50,000, without having to in-
crease the farm’s business risk.

Results display a clear diminishing marginal benefit of risk, as
expected based on economic theory. This provides evidence the
farm model has adequately captured at least some of the key con-
straints in the cropping system. Fig. 7 represents a continuum of
possible profit and associated risk. Points on the bottom left, with
lower return and lower risk, correspond to strategies where
relatively less area is sown per ML of available water. Points on
the top right area have higher returns and greater risk and
correspond to strategies where relatively more area is sown per
ML of available farm water. The profit gradient between these
extreme responses is ca. $200,000 which represents the
simulated range of annual farm profit possible from changes to
management.

Even though farmers are intrinsically aware that a reward for
more risk can be higher business returns, the presentation of the
relative position of the farmer’s current management can still be
informative. It is apparent that the farm is currently operating at
the lower end of the profit-risk continuum. By consulting Fig. 7,
the farmer could choose a different level of risk and/or profit and
change the farm management accordingly. In this way, Fig. 7 can
be used as a decision support tool.

The additional benefit to farm business profit from accepting
an additional unit of risk is given by the rate at which the ex-
pected profit, EPi, changes with respect to risk. Setting the risk-
efficiency score, Ui, to its mean of 0.75 and Vi to 0 and taking
the derivative of EP with respect to Risk results, after some
manipulation, in:
@EPi

@Riski
¼ 0:36e11:25 þ 0:63e11:25

Risk0:01
i

ð12Þ
This expression represents the shadow price of risk and is pre-
sented graphically in Fig. 8. This is the expected change in farm
profit due to changes in risk caused by changes in management.
It shows the highest returns to risk occur when the farm is operat-
ing at relatively low levels of risk exposure.

4. Concluding comments

Every season farmers make decisions about how much of the
farm area and stored water to allocate to each of a number of crop-
ping enterprises subject to existing constraints of capital and la-
bour. This stored water can be either bound to a parcel of land,
as soil water, or unbound water for irrigation that is stored in open
water storages. The success, or otherwise, of these decisions is
dependent in part on stochastic elements of the growing season
that contribute to production risk, such as the timing and amount
of precipitation, average and extreme temperatures, and radiation
amounts. This paper has demonstrated an analytical framework
that helps solve the problem of allocating land and water between
cropping enterprises more efficiently. This was accomplished by
developing a bioeconomic model of a farm. The model was applied
to a case study of an irrigated farm in Australia and used to per-
form sensitivity analysis on key farm resources and input and out-
put prices. This analysis established that the model behaved
sensible to changes in key variables of the production environment
and allowed the ranking of these variables according to their
relative effect on farm profit. Lastly, the model was used in a
simulation experiment where different management strategies
were used to quantify the risk-return profile based on the levels
of risk exposure associated with each strategy. Cropping strategies
were identified that maximise farm business profit for a given level
of risk.

The development of a bioeconomic model to estimate a stochas-
tic risk frontier is a novel approach to investigate the effects of
management on the trade-offs between farm business profit and
risk. When applied in a participatory research approach it can help
farmers allocate their land and water between cropping enter-
prises efficiently by identifying strategies that are on the risk-effi-
ciency frontier.
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