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Abstract
Context. Irregular plaguesofhousemicecausehighproduction losses ingrain crops inAustralia. If plagues canbe forecast

through broad-scale monitoring or model-based prediction, then mice can be proactively controlled by poison baiting.
Aims. To predict mouse plagues in grain crops in Queensland and assess the value of broad-scale monitoring.
Methods.Regular trapping of mice at the same sites on the Darling Downs in southern Queensland has been undertaken

since 1974. This provides an index of abundance over time that can be related to rainfall, crop yield, winter temperature and
past mouse abundance. Other sites have been trapped over a shorter time period elsewhere on the Darling Downs and in
central Queensland, allowing a comparison ofmouse population dynamics and cross-validation ofmodels predictingmouse
abundance.

Key results.On the regularly trapped 32-km transect on the Darling Downs, damaging mouse densities occur in 50% of
years and a plague in 25% of years, with no detectable increase in mean monthly mouse abundance over the past 35 years.
Highmouse abundance on this transect is not consistentlymatched by high abundance in the broader area. Annualmaximum
mouse abundance in autumn–winter can be predicted (R2 = 57%) from spring mouse abundance and autumn–winter rainfall
in the previous year. In central Queensland, mouse dynamics contrast with those on the Darling Downs and lack the distinct
annual cycle,with peak abundance occurring in anymonthoutside early spring.Onaverage, damagingmousedensities occur
in 1 in 3 years and a plague occurs in 1 in 7 years. The dynamics of mouse populations on two transects ~70 km apart were
rarely synchronous. Autumn–winter rainfall can indicate mouse abundance in some seasons (R2 = ~52%).

Conclusion. Early warning of mouse plague formation in Queensland grain crops from regional models should trigger
farm-based monitoring. This can be incorporated with rainfall into a simple model predicting future abundance that will
determine any need for mouse control.

Implications. Amodel-based warning of a possible mouse plague can highlight the need for local monitoring of mouse
activity, which in turn could trigger poison baiting to prevent further mouse build-up.
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Introduction

Damaging numbers of house mice (Mus domesticus) occur
irregularly in grain crops in south-eastern Australia. These
are costly in terms of lost production and growers attempt to
prevent or mitigate these losses through a range of measures,
including baiting and habitat modification (Brown et al. 2004).
In years when mouse numbers are low, losses are negligible
and control is not warranted. However, when mouse densities
are high, farmers generally implement control when they see
damage. This reactive response does not necessarily prevent
substantial losses (Davis et al. 2004). If plagues can be

predicted with sufficient warning, then preventative or
preparatory action can be taken.

Davis et al. (2004) identified that control is warranted if the
likelihood of a plague (P) is greater than the cost of pre-emptive
control (C) divided by the product of the damage cost (Q) and
control effectiveness (z) (i.e. P >C/Qz, which was roughly
estimated as 0.30 for south-eastern Australia). Even without a
forecast, it is still beneficial to control mice if plague frequency is
greater thanC/Qz. For a predictivemodel based on rainfall, Davis
et al. (2004) determined a rainfall threshold above which it is
worth implementing control for mice in south-eastern Australia.
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Relationship between density and damage

The terms ‘plague’ or ‘outbreak’ are loosely defined, but
generally refer to substantial crop losses over large areas
involving several farms. Singleton et al. (2005) offered a more
precise definition by relating damage to mouse density. At
densities of <50mice ha–1 there were no economic losses.
Densities of 50–200mice ha–1 were described as an outbreak
and resulted in low losses to cereal crops, and high losses to
vegetable crops and stored grain. Densities of >200mice ha–1

were considered a plague, with high economic losses on a broad
scale. At densities of >800mice ha–1, a plague was severe,
with losses over thousands rather than hundreds of square
kilometres.

Cantrill (1992) suggested that grain growers consider that
mice are ‘present’ in crops at densities of 10 mice per 100 break-
back traps and are causing damage (and presumably requiring
control) at 20 mice per 100 break-back traps (equivalent to
~100mice ha–1, J. Caughley, unpubl. data). Brown and
Singleton (1999) suggested the threshold density at which
farmers consider mice a problem is 200mice ha–1. They
further argued that once mice reached this density, it was
likely to be too late for cost-effective management.

Kaboodvandpour and Leung (2012) quantified the
relationship between mouse density and wheat yield loss by
releasing mice into crops at the milky stage of development
and enclosed by a mouse-proof fence. They recorded a linear
increase in yield loss with increasing mouse density up to
500mouse ha–1, when intraspecific competition is the likely
cause for a curvilinear relationship that asymptotes at
extremely high mouse densities. These data were then used to
suggest density thresholds above which it was economically
beneficial to control mice. Likely thresholds, assuming baiting
effectiveness of ~40% and 2001 crop values and baiting costs,
were ~90mice ha–1. Similar relationships were recorded for
sorghum crops.

Plague incidence

On the basis of qualitative data such as newspaper accounts,
the frequency of plagues is roughly 1 in 7 years in any particular
state (Singleton et al. 2005). However, the frequency is higher on
the Darling Downs in Queensland, where plagues have occurred
on average every 3 years since 1980, up from an average of once
every 10 years before that (Singleton and Brown 1999). Notably,
according to the framework of Davis et al. (2004), a frequency
of 1 in every 3 years makes annual control worthwhile, even if
the chance of a plague is the same fromyear-to-year. However, on
individual farms where decisions on mouse control are made,
the plague frequency appears to be less frequent than that
reported for the broader region (Donkin and Caughley 1998).
The increased plague frequency on the Darling Downs has
been attributed to changes in farming practices such as
retained stubble providing mice with cover, reduced
disturbance from sheep grazing and tillage, and increased
intensity and diversity (i.e. variable planting and harvesting
times) of cropping leading to a more reliable and higher-
quality food supply through the year (Singleton and Brown
1999). Caughley (2001) questioned this purported increased
frequency of plagues, suggesting it reflected a change in

methodology for determining the incidences of plagues
rather than a true increase. An increased frequency of plagues
(of similar density) would also result in a trend of increased
density over time. Changes in farming practices may also have
increased the average or maximum density of mice in any
one year. However, Caughley (2001) was unable to detect an
increase in average density in early winter over 1974–2001 along
the central Darling Downs transect (see below). Caughley (2001)
suggested that stubble retention and other changes in land
management changed only the distribution of mice in the
landscape and not their average density.

Plague-prediction models

Models for predicting mouse plagues in south-eastern Australia
have been developed from either long-term qualitative data on
the occurrence of plagues from newspaper reports or shorter-
term trapping data (see Pech et al. 1999 for a review). Both
approaches can yield a probability of a plague occurring using
logistic regression.With trapping data, density or rate of increase
can be predicted. For southern Australia, recent modelling efforts
with qualitative data (1900–2002) identified a combination of
winter (May–September) and spring (November) rainfall as the
best predictor of a plague (Kenney et al. 2003). Using a large
trapping dataset (>20 years) from southern Australia, maximum
autumn density was best predicted by the previous year’s
autumn–spring (April–October) and summer (December)
rainfall and spring (September) mouse density (Krebs et al.
2004). For both these analyses, wheat yield was a poorer
predictor of mouse abundance than was rainfall, which was
surprising as it was expected to be a better proxy for food
supply (Mutze et al. 1990; Pech et al. 1999).

In Queensland, Cantrill (1992) described the population
dynamics of house mice on the basis of trapping data
(1974–1986) from a 32-km transect in the central Darling
Downs. In southern Australia, mice remain at low densities,
often for many years, outside plague years. In contrast, mouse
density along the central Darling Downs transect underwent
regular seasonal cycles, with maximum abundance varying
along a continuum, rather than distinct plague and non-
plague years. Cantrill (1992) argued that mouse numbers rose
unvaryingly from a seasonal low in spring at the onset of
breeding, to a maximum in late autumn or early winter.
Relatively high numbers in spring (>1% trap success) were
therefore likely to translate into a plague the following year.
The exceptions were years with flooding spring–summer rains
that had the potential to suppress the rate of increase, probably
through increased juvenile mortality. Spring abundance of
mice was negatively correlated with abundance in the
preceding winter. The decline in mouse numbers over winter
was also exacerbated by low winter temperatures and a lack of
favourable habitat following the harvest of summer crops,
forcing large dispersal distances (Cantrill 1992; Caughley
2001). Cantrill (1992) developed an expert system model to
provide probabilities of density classes of mice in late autumn.
Data required for prediction were

* trap success in the previous autumn (May) (long-term
prediction),

* trap success in spring (September) (mid-term prediction), and
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* trap success in September and monthly trap success or
rainfall for spring–summer (September–December) (short-
term prediction).

Pech et al. (2003) identified the following three
demographic factors that are responsible for the development
of plagues in mice populations in Australian grain-growing
areas:

(1) The population density at the start of the breeding season.
This is the result of the overwinter decline from an autumn
maximum; these two variables are negatively correlated
and this formed the basis of Cantrill’s (1992) long-term
prediction.

(2) The rate of increase over the breeding season, which, at least
in southernAustralia, is influenced bywinter–spring rainfall,
but not starting density (or at least only trivially).

(3) The duration of the breeding season, which is unaffected by
the above two factors, but is variable and probably not
predictable. Despite breeding, mice on the Darling Downs
may not increase because of floodmortality and so themodel
of Cantrill (1992) relied on trapping or spring–summer
rainfall to determine the start of the ‘increase phase’.

These factors seem to be independent, indicating that all
three need to be estimated so as to accurately predict the
occurrence of plagues.

Study objectives

Trapping has continued along the central Darling Downs
transect and other grain-growing areas in Queensland. Using
these data, the present paper aims to better describe the
dynamics of mouse populations in these areas and refine or
develop new models to predict mouse numbers for improved
mouse management in crops. The question addressed here is
whether damaging mouse numbers can be predicted from
simple proxies for food supply (i.e. rainfall, crop yield),
weather (i.e. flooding, winter temperature) and past mouse
abundance with sufficient accuracy and timeliness to be useful
to crop farmers. Past work described above provides candidate
parameters. The longer time series also allows a renewed
assessment of whether mouse abundance has increased on
average in the Darling Downs.

Scanlan and Farrell (2005) used artificial neural networks to
model mouse abundance in central Queensland, using data up
to 2004. They found that summer and autumn rainfall, coupled
with summer mouse abundance, could be used to predict winter
mouse abundance. This result was also reassessed with a longer
time series.

Methods

Three statistical approaches were taken to analyse trapping data
so as to describe the population dynamics of house mice in
Queensland cropping areas. First, time-series analysis was
used to understand the autocorrelation structure of the data,
describe the seasonal cycles and test for any long-term trend in
mouse density. Second, regression models were used to predict
mouse density from likely explanatory variables. Finally,
exponential rate of increase in mouse abundance was modelled

as the response variable in regression models. Cross-validation
of regression models was possible in some cases, using
independent data.

Study areas and trapping, weather and crop data

In the central Darling Downs, house mice have been trapped at
47 sites along a 32-km transect between Cecil Plains (27�300S,
151�110E) and Mount Tyson (27�340S, 151�340E) over
1974–2008 (Fig. 1). At each site, 20 break-back traps were
baited with bacon, placed 10m apart along a line and left
overnight. Trapping data can be expressed as the number
caught (less the number of traps that fired but did not capture a
mouse) per 100 trap-nights (= ‘unadjusted’ trap success). Cantrill
(1992) used this measure of trap success as a basis for his
modelling. The proportion of traps capturing mice (P) can be
adjusted to an index of density (I) to account for trap saturation
(Caughley 1977) as I = –ln(1 –P) (= ‘adjusted’ trap success). This
was done here, which is consistent with other, more recent
models (e.g. Pech et al. 1999; Krebs et al. 2004).

House mice were also trapped intermittently over 1998–2008
along a transect, comprising 20 sites, each with 10 traps, in
the northern Darling Downs between Macalister (27�010S,
151�040E) and Irvingdale (27�110S, 151�300E) and along
another transect, comprising 20 sites, each with 10 traps, in the
eastern Darling Downs between Black Plains (27�530S,
151�470E) and Pilton (27�510S, 152�020E) (Fig. 1). In central
Queensland, a transect comprising 22 sites, each with 20 traps,
was trapped intermittently over 1990–2008 in the Dawson
Valley between Moura (24�560S, 150�040E) and Theodore
(24�330S, 149�580E) and another transect comprising 24 sites,
each with 20 traps, was trapped intermittently over the same
period in the Callide Valley between Jambin (24�110S, 150�220E)
and Thangool (24�280S, 150�340E) (Fig. 1).

For all study areas, trap-site locations were fixed and
represented a variety of habitats used by mice in the district,
including cultivated paddocks (regardless of cropping stage),
roadside verges and native grasslands. Typically, there were
two trap lines (i.e. sites) at each location, one in cultivation,
the other in an uncultivated area.

Monthly rainfall over the study period was estimated for
each transect as averages of rainfall (Bureau of Meteorology,
http://www.bom.gov.au/climate/data/, verified 12 May 2009)
from nearby stations, as follows:

central Darling Downs: Cecil Plains Homestead
(mean = 666mm, s.d. = 176mm), Condamine Plains and
Mount Irving;
northern Darling Downs: Bundaleer (mean = 625mm,
s.d. = 143mm), Wilga Home and Macalister;
easternDarlingDowns:NobbyToothStreet (mean = 737mm,
s.d. = 161mm) and Clifton Post Office;
Dawson Valley: Moura (mean = 677mm, s.d. = 202mm) and
Theodore; and
Callide Valley: Jambin (mean = 689mm, s.d. = 187mm),
Biloela and Thangool.

To reflect the mildness of winters, the median of the mean
and the lowest minimum temperatures for June, July and
August were calculated for each year over the study period
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from Bureau of Meteorology records. The closest weather
stations recording temperature to each of the above transects,
respectively, were Oakey, Dalby, Toowoomba, Brigalow
Research Station and Thangool.

For the central Darling Downs transect, summer and winter
cereal-crop yield were calculated from the Australian Bureau of
Statistics records. For 1973–2002 and 2005–06, these were
available for shires, so transect values were calculated as the
average of estimates for Pittsworth and Jondaryan shires
(Fig. 1), which the transect spans. For 2002–05 and 2006–09,
an estimate was available only for the statistical division of the

Darling Downs. Transect estimates were therefore calculated
as a proportion of the Darling Downs estimates, with the
proportion determined as (average crop yield for Pittsworth
and Jondaryan shires)/(crop yield for Darling Downs statistical
division), averaged across the most recent years, 2001–02 and
2005–06.

Time-series analysis

Autocorrelations and partial autocorrelations for monthly
adjusted trap successes along the central Darling Downs
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Fig. 1. Location of endpoints of transects of trapping sites for mice in the central Darling Downs (solid
triangles), northern Darling Downs (open triangles), eastern Darling Downs (open diamonds), Dawson
Valley (open circles) and Callide Valley (open squares). Cereal-crop yield was recorded for the Jodaryan
and Pittsworth shires, whose boundaries are also shown.
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transect were calculated in R (R Development Core Team 2010).
Following Crawley (2007) to test for trend, mixed models
predicting adjusted trap success were fitted using maximum
likelihood, with and without an index term for the number
of months since the start of the time series. Models included
terms for seasonal cycles (comprising sin(2� p� time) and cos
(2� p� time) terms) and different intercepts for each year. As
an alternative, yearly means for adjusted trap success were
regressed against an index term for each year (Crawley 2007).

Regression analyses

For the Darling Downs transects, missing values required the
response variable to be the maximum trap success recorded over
April–August (‘autumn–winter’). Trap success was transformed
to natural logarithms to improve linearity. Regression models
predicting maximum abundance were fitted in R using a range of
explanatory variables, including the following:

(1) maximum autumn–winter mouse abundance from the
previous year,

(2) minimum winter temperature from the previous year,
(3) food supply, either autumn–winter rainfall from the

previous year or winter crop yield from the previous year;
(4) spring mouse abundance (usually September, but October

in one year); and
(5) spring–summer (September–December) rainfall, as either

absolute rainfall or a dummy variable based on the
argument of Cantrill (1992) that consecutive months of
>40-mm rainfall during September–December delayed the
population increase through nestling mortality.

Two sets of models were fitted, namely, one with and one
without spring mouse abundance. With spring abundance
available, the forecast is short-term. Mouse abundance and
minimum temperature in the previous winter are proxies for
spring abundance and provide a longer-term forecast.
Interactions and curvilinear terms were also included, but the
number of terms was constrained by the number of observations
(n). The recommended maximum number of fitted parameters
ranges from n/6 (Neter et al. 1996) to n/3 (Crawley 2007). With
only n= 32, not all potential interactions and curvilinear terms
could be assessed. The approach was to test for curvilinearity
first, followed by a restricted (if necessary) set of interactions
(Crawley 2007). Models were simplified by stepwise removal of
non-significant (P> 0.05) terms from the full model (Crawley
2007).

The slope of the regression of monthly values of
loge(adjusted % trap success) over time (spring–autumn,
September–May) provides an estimate of the exponential rate
of increase. Models with common or separate slopes were
compared in an analysis of covariance to test the assertion
(Cantrill 1992) that mouse numbers increase at a constant rate
among years from spring, unless there isflooding spring–summer
rain.

Potential determinants of monthly exponential rate of
increase (ln(It+1/It)) were also assessed through multiple
regression. Rates of increase were calculated between
consecutive seasons, using average trap success in spring
(September), summer (November–January) and autumn

(March–May) and maximum trap success in winter
(June–August). Rate of increase was also calculated between
the annual maximum (April–August) and the following spring.
Winter and annual maxima were used to measure abundance at
both the start of the decline phase (usually June–July) and end
of the increase phase (about May). Explanatory variables in
addition to those above included seasonal rainfall, initial trap
success and summer crop yield.

To test the resulting best models against independent data in
a different climate on the eastern and northern Darling Downs
required rainfall and temperature to be converted to standard
deviation units (or z-scores). September abundance for these
areas was also converted to z-scores by using the mean and
standard deviation for September abundance on the central
Darling Downs transect. Using z-scores for all explanatory
variables produced standardised parameter estimates that
indicate relative importance.

For central Queensland, models developed for the Darling
Downs were clearly not going to be applicable as maximum
abundance did not necessarily occur over autumn–winter and,
more generally, there was no clear seasonal cycle. Therefore,
monthly exponential rates of increase were calculated between
seasons, using true seasonal calendar months in this case,
and related to 6-monthly rainfall at increasing monthly lags,
following the approach of Brown and Singleton (1999). Initial
abundance was also included as a potential explanatory variable
(Pech et al. 1999). This approach of simple linear correlation
and regression was used to reassess the models of Scanlan and
Farrell (2005) to predict winter mouse abundance.

Results

Trapping data and time-series analysis

The time series of unadjusted trap success for each of the five
transects is shown in Fig. 2. In discussing these results, years
refer to biological years, starting at a low density in spring of the
previous calendar year and ending at a maximum in autumn or
winter of the following calendar year. For the central Darling
Downs, there are regular seasonal peaks of density in late autumn
or early winter, as described by Cantrill (1992), with the broad-
scale plague of 1995 being prominent among them. The time
series is incomplete, but of the 32 years that were trapped, 16
(i.e. 50%) experienced mouse densities greater than the damage
threshold of 20% trap success of Cantrill (1992). In eight of
these years (i.e. 25%), trap success was greater than 32%, being
roughly equivalent to the plague threshold of 200mice ha–1.
Years with high trap success were often, but not always,
followed by a low-density year. Over 1982–85 and 1999–
2001, there were four and three consecutive years,
respectively, of trap success >20%. There were also notable
runs of low maximum trap success over 1990–92 and 2004–
07. These were dry years, although not remarkably so.

For the northern and eastern Darling Downs, autumn trap
success was recorded in only 5 or 6 years, respectively, and
exceeded 20% twice and once, respectively. These peak years
coincided with maxima >20% over autumn–winter (i.e.
April–August) on the central Darling Downs transect.
However, the eastern Darling Downs transect recorded
autumn–winter maxima in 1999 and 2003 of <10% that were
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well below the high abundance (>20%) recorded on the other
two transects. Trap success was 23% in November 2006 on
the northern Darling Downs transect, but mouse abundance
subsequently declined following a dry winter–summer. A
comparison of maximum autumn–winter trap success on the

eastern and northern Darling Downs transects with those on
the central Darling Downs transect is shown in Fig. 3. Density
was almost always higher on the central Darling Downs and,
more importantly, high densities (>20% trap success) recorded
there were matched by high densities on the other two transects
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in only two of five cases. However, there was a broad match for
low densities, using a cut-off of 10% trap success.

In central Queensland, mouse populations fluctuate in a
manner different from those in the Darling Downs. There is no
distinct annual cycle and peak abundance can occur in anymonth
across November–August. Despite their relatively close
proximity (~70 km), the dynamics of mouse populations on
the two transects were rarely in concert and high densities
(>20% trap success) were matched on the two transects in
only 3 of 10 cases (Fig. 4). For the two transects, mice were
trapped in 14 of the 19 years of the study period. In the Dawson
Valley, monthly trap success exceeded 20% in 6 years (43%)
and was >32% in 2 years (14%). In the Callide Valley, trap
success was >20% in 4 years (29%) and >32% in 2 years (14%).
However, sampling was incomplete within years, particularly

in the latter part of the time series, so true maxima may have
been missed and the frequency of high densities is probably
underestimated.

Autocorrelations and partial autocorrelations for adjusted
trap success at increasing monthly lags on the central Darling
Downs transect are shown in Fig. 5. The partial autocorrelations
show the correlation remaining once the correlations with
earlier months have been taken into account. Strong seasonal
cycles are evident with a positive correlation at 2 years. Notably,
there is no significant correlation at 12 months, although there
is a significant negative partial correlation at 15 months. This
does not support the long-term prediction of Cantrill (1992)
using autumn density to predict autumn density in the
following year.

A comparison of mixed models showed no significant trend
in trap success over the time series (c2 = 0.90, P > 0.3) for the
central Darling Downs. This was supported by a non-significant
regression of monthly mean adjusted trap success over time
(F1,30 = 0.15, P > 0.7).

Darling Downs

Predicting mouse abundance

For the central Darling Downs transect, the most
parsimonious model (standardised coefficients are given here;
unstandardised coefficients are given in Appendix 1) predicting
autumn–winter mouse abundance and including September
(spring) abundance (n = 27) as a potential explanatory variable
was as follows:

logeðautumn�winter adjusted trap successÞ
¼ 2:6404þ 0:5032 ðprevious year’s March�August rainÞ
� 0:6423 ðSeptember�December rainÞ
þ 0:4465ðlogeðSeptember adjusted trap successþ 0:01ÞÞ
ðModel 1Þ:
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This model had an R2 of 57%. If September abundance was
removed, R2 was reduced to 38%. There was no support for
curvilinear terms or interactions between the three variables.
March–August (autumn–winter) rainfall is correlated with
winter crop yield (Spearman’s r= 0.67, P< 0.001), but the
latter variable results in a model with poorer explanatory
power when included in place of March–August rainfall.
Using a dummy variable for flooding spring–summer rain
instead of September–December rain does not improve the
model (R2 = 49%). Using only September abundance produces
a model explaining only 19% of the variance in contrast to the
56% recorded by Cantrill (1992) using a shorter time series.

The relationship between September and maximum
autumn–winter abundances has considerable scatter (Fig. 6)
and so, alone, September abundance is a poor indicator of
future abundance. A September trap success of >1%,
considered a threshold above which a plague is likely
(Caughley 1998), does not guarantee high numbers over
autumn–winter and would lead to numerous false plague
warnings. There is also a false negative.

If September abundance is ignored, both the maximum
autumn–winter trap success in the previous year and winter
temperature are potential explanatory variables. Median
minimum rather than lowest temperature over winter had the
stronger correlation (Spearman’s r= 0.356 cf. r= 0.204) with
maximum autumn–winter trap success, and so was used in the
modelling. Again, there were no significant curvilinear terms
following stepwise removal. Only two-way interactions were
considered, leaving a final model with an almost identical R2 as
that of Model 1 with September abundance. This model did not
include the maximum autumn–winter abundance of the
previous year, which is weakly negatively correlated with
the maximum abundance of the present year (Spearman’s
r= –0.42, P < 0.05), supporting the time-series analysis above.

Excluding September abundance and the maximum
autumn–winter abundance of the previous year allows the use
of a larger dataset (n= 32). The same model was selected as
with the smaller dataset and had the following standardised
coefficients (unstandardised coefficients in Appendix):

logeðautumn�winter adjusted trap successÞ
¼ 2:5301þ 0:4357 ðprevious year’s March�August rainÞ
� 0:4329 ðSeptember�December rainÞ þ 0:3451

ðprevious year’s median monthly minimum

June�August temperatureÞ þ 0:6265

ðSeptember�December rainÞ � ðprevious year’s median

monthly minimum June�August temperatureÞ ðModel 2Þ:
An indication of the fit of the two models is a plot of observed
against predicted % trap success over autumn–winter, which is
shown in Fig. 7. Notably, both models fell short of predicting the
magnitude of the 1995 plague (77% trap success). Other
anomalies were the high densities (>40%) in 2001 and 2009
that were predicted to be of only moderate abundance (10–20%),
and a false negative in 1991.

Cross-validation

Models 1 and 2 provided 15 predictions of maximum %
trap success over autumn–winter for the northern and eastern
Darling Downs transects (Fig. 8). Using 20% trap success as a
cut-off for high densities, for Model 1, there were two false
negatives, seven correct negatives and one borderline result.
For Model 2, there were three correct negatives, one false
positive and one borderline result.
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Fig. 6. Maximum % trap success (unadjusted) in autumn–winter on the
central Darling Downs transect as a function of September (spring) % trap
success (unadjusted) in the previous year. The dashed vertical line represents
a September trap success of 1%. September trap success >1% was suggested
by Caughley (1998) as an indicator of a likely plague the following
autumn–winter. Shaded areas represent false predictions of high density
(>20% trap success) or low density.
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Fig. 7. Observed maximum % trap success (unadjusted) of mice over
autumn–winter on the central Darling Downs transect plotted against
predicted maximum % trap success (back-transformed from adjusted to
unadjusted) using Model 1 (open circles; including September (spring)
abundance) and Model 2 (solid squares; using only rainfall and the
minimum winter temperature from the previous year). The dashed line is
y= x. See text for details. Shaded areas represent false predictions of high
density (>20% trap success) or low density.

668 Wildlife Research A. Pople et al.



Determinants of rate of increase

An analysis of covariance comparing the regression-based
rates of increase (r) over spring–autumn (September–May)
among years found a significant time� year interaction
(F24,104 = 1.98, P < 0.01), indicating varying rates among years.
The monthly exponential rates of increase over this period, on
the basis of the regression slope, were between –0.23 and 0.74.
Plots indicated no obvious relationship between these rates
and either spring–summer (September–February) rainfall,
which had been found to delay the start of the increase phase,
or autumn–winter (March–August) rainfall, which is an
important influence in southern Australia. Further, monthly
rates of increase following consecutive months of >40-mm
rain over September–December (r= 0.26� 0.06) were not
significantly lower than those for drier years (r= 0.34� 0.10).

For the central Darling Downs transect, using rates of
increase calculated from two point estimates (i.e. average or
maximum of seasonal values) of adjusted % trap success
provided a similar but generally larger dataset for analysis.
The monthly exponential rates of increase from September to
the maximum over April–August were between –0.14 and 0.70.
The most parsimonious regression model (standardised
coefficients are given here; unstandardised coefficients are
given in the Appendix) predicting this rate of increase
contained the same set of explanatory variables as did the
model predicting maximum abundance (Model 1), as follows:

r ðSeptember�maximumÞ ¼ 0:2702þ 0:0638

ðprevious year’s March�August rainÞ � 0:0800

ðSeptember�December rainÞ � 0:1566

ðlogeðSeptember adjusted trap successþ 0:01Þ ðModel 3Þ:

This model had an R2 of 80%. There was no support for
curvilinear terms or interactions between the three variables.
Again, using a dummy variable for flooding, spring–summer
rain instead of September–December rain did not improve
the model (R2 = 76%). With only September abundance, R2 is
reduced to 62% (Fig. 9). Either alone or together, the two
rainfall terms did not have significant relationships with r
(September–maximum). Other rainfall periods (i.e. April–
October, July–December) and winter crop yield were similarly
unrelated to r (September–maximum). This precluded
developing a numerical-response model for mice (e.g. Brown
and Singleton 1999; Pech et al. 1999) from these data.

Given September abundance, Model 3 can be used for
prediction of maximum abundance over April–August. When
the explanatory variables were held at their mean values, mouse
abundance increasedat amonthly rate of0.27.Using this rate in an
example, average September abundance over the study period
was 3.6% unadjusted trap success, which would, on average,
increase to 27.2% unadjusted trap success in May. Not
surprisingly, a comparison of predicted with observed
maximum abundance for the central Darling Downs using
Model 3 and September abundance produced plots almost
identical to those in Figs 7 and 8. Cross-validation of Model 3
with data from the northern and eastern Darling Downs transects
produced a plot similar to that in Fig. 8, with one false and one
borderline false negative, and three correct negatives.

Outside the overwinter decline, maximum monthly
exponential rates of increase between seasons ranged from
0.48 over spring–summer to 1.29 over summer–autumn. Best
models (with standardised coefficients) for predicting
monthly exponential rates of increase between seasons were
the following:

r ðSeptember�summerÞ � no significant explanatory

variables;
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Fig. 8. Observed maximum % trap success (unadjusted) of mice over
autumn–winter on the northern (open symbols) and eastern (solid
symbols) Darling Downs transects plotted against predicted maximum
% trap success (back-transformed from adjusted to unadjusted) using
Model 1 (circles; including September abundance) and Model 2 (squares;
using only rainfall and the minimum winter temperature from the
previous year). The dashed line is y= x. See text for details. Shaded
areas represent false predictions of high density (>20% trap success) or
low density.
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r ðsummer�autumnÞ ¼ 0:4715� 0:3504

ðlogeðsummer adjusted trap successþ 0:01ÞÞ;
R2 ¼ 57% ðModel 4Þ;

r ðautumn�winterÞ ¼ 0:1485� 0:5876

ðlogeðautumn adjusted trap successþ 0:01ÞÞ
þ 0:4576ðlogeðautumn adjusted trap successþ 0:01ÞÞ2
þ 0:1194 ðsummer crop yieldÞ; R2 ¼ 53% ðModel 5Þ; and

r ðmaximum�SeptemberÞ ¼ �0:5247� 0:4239

ðlogeðmaximum adjusted trap successÞÞ;
R2 ¼ 54% ðModel 6Þ:

In all cases, neither rainfall nor crop variables (i.e. proxies for
food supply) alone were significantly related to r.

Central Queensland

In the Dawson Valley, mouse numbers increased on average
over spring–summer (mean monthly r= 0.23� 0.22), declined
over summer–autumn (mean monthly r= –0.36� 0.15),
increased over autumn–winter (mean monthly r= 0.13� 0.18)
and declined over winter–spring (mean monthly
r = –0.27� 0.27). In the Callide Valley, the pattern is similar,
with mouse numbers declining on average over spring–
summer (mean monthly r= –0.05� 0.19), declining over
summer–autumn (mean monthly r= –0.22� 0.22), increasing
over autumn–winter (mean monthly r= 0.52� 0.25) and
declining over winter–spring (mean monthly r= –0.24� 0.25).
Declines in both cases over summer–autumn contrasted strongly
with mouse rate of increase for the corresponding period on the
Darling Downs.

Correlates of these rates of increase are shown in
Tables 1 and 2, and the relationships differed among the
valleys, as Fig. 4 would suggest. In the Dawson Valley,
6-monthly rainfall with a short lag was positively correlated
with rate of increase over summer–autumn and winter–spring,
which was consistent with the results from the central Darling
Downs above. However, the rainfall from the previous winter
had a negative relationship with r over autumn–winter. In
contrast, there were no significant relationships between
rainfall and the rate of increase in the Callide Valley. As
expected from results on the central Darling Downs, initial
mouse abundance was negatively correlated with the
(tendency for an) overwinter decline in the Callide Valley, but
not the Dawson Valley. High autumn abundance on both
transects tended to dampen the regular increase over
autumn–winter.

For both transects, there were correlations between rainfall
and seasonal trap success (Tables 1, 2). In many cases, it was
autumn–winter rainfall that appeared influential, as on the
Darling Downs. The stronger correlations suggested that it is
worthwhile to consider three regression models (see below) to
predict seasonal mouse abundance (unstandardised coefficients),
although the prediction for the Callide Valley provides little
advance warning.

Dawson Valley

logeðsummer adjusted trap successþ 0:1Þ
¼ �3:0693þ 0:0142 ðJanuary�June rainÞ;
R2 ¼ 60% ðModel 7Þ; and

logeðautumn adjusted trap success þ 0:1Þ
¼ �2:0184þ 0:0140 ðMarch�August rainÞ;
R2 ¼ 53% ðModel 8Þ:

Table 1. Strongest, significant (P < 0.05) Spearman’s rank
correlations between exponential rates of increase (r) between seasons
and either 6-monthly rainfall or starting mouse abundance (adjusted %
trap success), and between seasonal, adjusted % trap success and

6-monthly rainfall in the Dawson Valley, central Queensland
n.s., not significant. See text for details

Response variable Correlate Spearman’s r P

r vs rainfall
r (spring–summer) n.s.
r (summer–autumn) Rain (September–February) 0.75 0.02
r (autumn–winter) Rain (May–October) –0.87 0.005
r (winter–spring) Rain (March–August) 0.70 0.03

r vs mouse abundance
r (spring–summer) n.s.
r (summer–autumn) n.s.
r (autumn–winter) Autumn trap success –0.78 0.02
r (winter–spring) n.s.

Seasonal trap success vs rainfall
Spring trap success Rain (January–June) 0.72 0.01
Summer trap success Rain (January–June) 0.80 0.005
Autumn trap success Rain (March–August) 0.84 0.001
Winter trap success n.s.

Table 2. Strongest, significant (P < 0.05) Spearman’s rank
correlations between exponential rates of increase (r) between seasons
and either 6-monthly rainfall or starting mouse abundance (adjusted %
trap success), and between seasonal, adjusted % trap success and

6-monthly rainfall in the Callide Valley, central Queensland
n.s., not significant. See text for details

Response variable Correlate Spearman’s r P

r vs rainfall
r (spring–summer) n.s.
r (summer–autumn) n.s.
r (autumn–winter) n.s.
r (winter–spring) n.s.

r vs mouse abundance
r (spring–summer) n.s.
r (summer–autumn) n.s.
r (autumn–winter) Autumn trap success –0.88 0.002
r (winter–spring) Winter trap success –0.66 0.04

Seasonal trap success vs rainfall
Spring trap success Rain (March–August) 0.76 0.009
Summer trap success Rain (March–August) 0.75 0.03
Autumn trap success Rain (March–August) 0.58 0.05
Winter trap success Rain (July–December) 0.68 0.03
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Callide Valley

logeðspring adjusted trap successþ 0:1Þ
¼ �1:4875þ 0:0146 ðMarch�August rainÞ;
R2 ¼ 51% ðModel 9Þ:

Regression models predicting winter mouse abundance from
summer rainfall and summer mouse abundance, as broadly
suggested by Scanlan and Farrell (2005), resulted in a non-
significant model for the Callide Valley, and a good fit
(R2 = 86%) for the Dawson Valley. The latter result is
misleading because rainfall was barely significant (P ffi 0.05)
and summer mouse abundance had the strongest influence. The
latter relationship is not surprising because autocorrelation is
expected in these data, although perhaps not at a 6-month lag (see
Fig. 5). The regression is also greatly influenced by a single point
of high abundance in both seasons in 2004.

Discussion

A 32-year time series of mouse abundance showed a
plague frequency of 1 in 4 years, but damaging mouse
densities occurred on average every second year in the central
Darling Downs. Such a high risk of mouse impact warrants an
early warning system. This could be a predictive model giving a
warning some months in advance of high mouse numbers or,
alternatively, regular direct monitoring could provide the
warning and with much greater certainty. Quite clearly,
however, the central Darling Downs transect did not
consistently provide an early warning even for nearby
transects and so the relative abundance on that transect should
not be extrapolated to a broader area. This is consistent with
Caughley’s (2001) argument that monitoring needs to be
undertaken at the scale of an individual farm. This was based
on a 1997 survey of grain growers across the Darling Downs
who reported different timing, severity and frequency of mouse
plagues over the previous 5 years (Donkin and Caughley 1998).
Local monitoring in September can indicate the potential for a
plague as part of a model (e.g. Model 1), rather than a threshold
such as 1% trap success.

The model-based warning system presented here should be
useful, providing a warning several months ahead of a plague,
but there is uncertainty in the prediction. Figs 7 and 8 showed that
there will be false negatives and positives. Although this
uncertainty alone would make a crop farmer reluctant to bait,
it is likely that they would delay baiting anyway. Mouse
populations may well decline, before the crop has matured and
is at greatest risk of damage, and so the warning could most
realistically trigger closer monitoring of mouse abundance. A
warning of a plague would give bait suppliers time to build up
sufficient stock of bait and give government agencies and
agribusinesses time to plan the necessary logistical and
technical support for grain growers.

Autumn–winter rainfall, overlooked as a predictor of the
mouse abundance in the following year in previous analyses of
these data, proved to be important, as it is in models predicting
mouse abundance in southern Australia. In central Queensland
too, winter rainfall is often the best correlate of seasonal mouse
abundance, but the correlation is often weak. In the Dawson

Valley, autumn–winter rainfall provides a simple indicator of
mouse abundance in the following summer and autumn.

One limitation to these results is that the time series was
incomplete, particularly for the past 10 years. This meant that
the month and size of the yearly maxima could not be accurately
identified in several years and rates of increase between seasons
were approximate because trapping was conducted only in
1 month of many seasons. This shortcoming is at least partly
overcome by the length of the time series, whereby bias in
one year should be offset by counter bias in other years.
Nevertheless, this will add noise to the data and uncertainty to
the predictions. The data also came from only a single-night
trapping at each site along the transects. This is considered
unreliable because of the night-to-night variation in trap
success for house mice observed in other studies (Davis et al.
2003; Kaboodvandpour et al. 2010). Although this could be a
problem at a local scale of a single farm (i.e. <100 km2), the
transects in the present study provided abundance estimates at a
regional scale of numerous farms. The imprecision seen at a site
with 20–25 traps will therefore have been dampened across
transects comprising from 200 to almost 1000 traps in the
present study.

Estimates of maximum monthly rate of increase (rm) ranged
from 0.7 to 1.3, being lowest when calculated between
September and the annual maximum abundance estimates and
highest when the calculation was restricted to a period when
mice were consistently increasing between summer and the
annual maximum. These estimates fell around the rm of 1.2
recorded directly in cropping systems in southern Australia
(Brown and Singleton 1999), or 0.87 based on vital rates
including a fortnightly survival rate on the Darling Downs of
0.95 and a recruitment rate of seven young per pregnancy
(Krebs et al. 1994). Model 3 predicts that mice will increase
on average at a monthly exponential rate of 0.27 from
September, being well short of the maximum rate. Several
factors ameliorate this potential rate of increase. Identified here
and by Cantrill (1992) is a delay in the start of the increase phase
and the negative impact of flooding summer rain (Models 1–3).
Other factors affecting the realised rate of increase were clearly
not captured by the simple models here.

Surprisingly, rate of increasewas onlyweakly related to either
rainfall or crop yield, the two surrogates of food supply. Initial
mouse abundance was the stronger influence, but this evidence
for density dependence is unsatisfactory. Although there is a
strong negative relationship between r (September–maximum)
and September abundance (Model 3; Fig. 9), the latter is included
in both response and explanatory variables, violating an
assumption of linear regression and potentially overestimating
the strength of density dependence (Burgman et al. 1993;
McCarthy 1996). Further, uncertainty in abundance estimates
leads to anomalous fluctuations in a time series leading to an
overestimation of the strength of density dependence through
regression analyses (McCarthy 1996; Pople et al. 2010). Despite
these concerns, the relationship here is unlikely to be an artefact
of observation error or a statistical anomaly, and so warrants
discussion. The relationship is at least partly an artefact of
a continuation in the regular winter decline in the population.
In 16 of 20 years with data, the population declined from
September to October or November. The low point of the
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population cycle, calculated as the mean or median of % trap
success for each month across years over the study period, was
in October and November. December also had a lower median
% trap success than did September. This was observed by
Cantrill (1992) who argued that identification of the start of
the increase phase was important for predicting maximum
abundance over autumn–winter. This emphasises the point that
September abundance alone is a poor predictor of a plague.

Nevertheless, there were strong negative relationships
between density and the other rates of increase between
seasons from summer onwards on the Darling Downs and in
central Queensland. For the overwinter decline, the relationship
was expected (Cantrill 1992; Pech et al. 2003), and for r over
autumn–winter, the population was often already declining.
However, during the breeding season, rate of increase was
generally monotonic and was expected to be largely
independent of the starting density (Pech et al. 2003).

Finally, it is worth noting that increasing the length of a time
series has not led to more accurate predictions of, in this case,
mouse abundance. It has allowed reappraisal of previous
modelling, correcting some misinterpretations such as the rate
of increase during the breeding season being constant from year
to year. Autumn–winter rainfall was also identified as an
important positive influence on mouse abundance. The regular
pattern of seasonal cycles observed in mouse populations in
Queensland grain crops suggests that the maximum abundance
there should be more predictable than the maximum abundance
in the irregular dynamics observed in southern Australian grain
crops; however, that is not the case. The inability to predict
accurately appears to be a problem in measuring the major
factors (e.g. invertebrate and plant-food supply, predators and
disease) influencing the rate of increase of mouse populations
(Krebs et al. 2004). It also highlights the importance of
monitoring mouse numbers, at the scale of a farm, both to
support a predictive model and to directly indicate the need to
control mouse abundance.

Acknowledgements

The data presented here have been collected by numerous people, including
the late John Wilson, Steve Cantrill, Christine Donkin, Judy Caughley, John
Conroy, Craig Hunter and Kevin Strong. Their efforts in building what has
now become a valuable long-term dataset are greatly appreciated. We also
thank Pat Abbott who collated data on grain yield in Queensland. All
trapping was undertaken with animal ethics permits (latest PAEC number
030605) from the now Queensland Department of Agriculture, Fisheries and
Forestry. Wilmot Senaratne kindly prepared Fig. 1. This work was supported
by funding from the Grains Research and Development Corporation. We are
grateful to two anonymous reviewers whose comments improved the
manuscript.

References

Brown, P. R., and Singleton, G. R. (1999). Rate of increase as a function of
rainfall for house mouseMus domesticus populations in a cereal-growing
region in southern Australia. Journal of Applied Ecology 36, 484–493.
doi:10.1046/j.1365-2664.1999.00422.x

Brown, P. R., Davies, M. J., Singleton, G. R., and Croft, J. D. (2004). Can
farm-management practices reduce the impact of house mouse
populations on crops in an irrigated farming system? Wildlife Research
31, 597–604. doi:10.1071/WR03063

Burgman,M.A., Ferson,S., andAkcakaya,H.R. (1993). ‘RiskAssessment in
Conservation Biology.’ (Chapman and Hall: London.)

Cantrill, S. (1992). The population dynamics of the house mouse (Mus
domesticus) in a dual crop agricultural ecosystem. Ph.D. Thesis,
Queensland University of Technology, Brisbane.

Caughley, G. (1977). ‘Analysis of Vertebrate Populations.’ (Wiley and Sons:
London.)

Caughley, J. A. (1998). ‘House Mouse (Mus domesticus) in Queensland.’
(Department of Natural Resources and Mines: Brisbane.)

Caughley, J. (2001). Optimisation of zinc phosphide baiting to control mice.
GRDC project no. DNR 8. Final report to the Grains Research and
Development Corporation, Canberra.

Crawley, M. J. (2007). ‘The R Book.’ (Wiley and Sons: Chichester, UK.)
Davis, S.A.,Akison,L.K., Farroway,L.N., Singleton,G.R., andLeslie,K.E.

(2003). Abundance estimators and truth: accounting for individual
heterogeneity in wild house mice. The Journal of Wildlife
Management 67, 634–645. doi:10.2307/3802720

Davis, S. A., Leirs, H., Pech, R., Zhang, Z., and Stenseth, N. C. (2004). On the
economic benefit of predicting rodent outbreaks in agricultural systems
Crop Protection 23, 305–314. doi:10.1016/j.cropro.2003.09.002

Donkin, C., and Caughley, J. (1998). Are mouse plagues increasing in
frequency in Queensland? In ‘11th Australian Vertebrate Pest
Conference’, Bunbury, WA. pp. 241–246. 3–8 May 1998.

Kaboodvandpour, S., and Leung, L. K. P. (2012). Modelling density
thresholds for managing mouse damage to maturing wheat. Crop
Protection 42, 134–140. doi:10.1016/j.cropro.2012.07.013

Kaboodvandpour, S., Free, C., and Leung, L. K. (2010). Comparison of
population estimators and indices for monitoring house mice in
sorghum crops. Integrative Zoology 5, 53–62. doi:10.1111/j.1749-4877.
2010.00189.x

Kenney, A., Krebs, C., Davis, S., Pech, R., Mutze, G., and Singleton,
G. (2003). Predicting house mice outbreaks in the wheat growing areas
of southeastern Australia? In ‘Rats, Mice and People: Rodent Biology
and Management’. (Eds G. Singleton, L. Hinds, C. Krebs and D. Spratt.)
pp. 325–328. (ACIAR: Canberra.)

Krebs, C., Singleton, G., and Kenney, A. (1994). Six reasons why feral
house mouse populations might have low recapture rates. Wildlife
Research 21, 559–567. doi:10.1071/WR9940559

Krebs, C. J., Kenney, A. J., Singleton, G. R., Mutze, G., Pech, R. P., Brown,
P. R., and Davis, S. A. (2004). Can outbreaks of house mice in south-
eastern Australia be predicted by weather models?Wildlife Research 31,
465–474. doi:10.1071/WR03131

McCarthy, M. A. (1996). Red kangaroo (Macropus rufus) dynamics:
effects of rainfall, density dependence, harvesting and environmental
stochasticity. Journal of Applied Ecology 33, 45–53. doi:10.2307/240
5014

Mutze, G., Veitch, L., and Miller, R. (1990). Mouse plagues in South
Australian cereal-growing areas. II. An empirical model for prediction
of plagues. Wildlife Research 17, 313–324. doi:10.1071/WR9900313

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996).
‘Applied Linear Statistical Models.’ 4th edn. (Irwin: Burr Ridge, IL.)

Pech, R. P., Hood, G. M., Singleton, G. R., Salmon, E., Forrester, R. I., and
Brown, P. R. (1999). Models for predicting plagues of house mice
(Mus domesticus) in Australia. In ‘Ecologically-based Management of
Rodent Pests’. (Eds G. R. Singleton, L. A. Hinds, H. Leirs and Z. Zhang.)
pp. 81–112. (Australian Centre for International Agricultural Research:
Canberra.)

Pech, R. P., Davis, S. A., and Singleton, G. R. (2003). Outbreaks of rodents
in agricultural systems: pest control problems or symptoms of
dysfunctional ecosystems? In ‘Rats, Mice and People: Rodent Biology
and Management’. (Eds G. Singleton, L. Hinds, C. Krebs and D. Spratt.)
pp. 311–315. (ACIAR: Canberra.)

Pople, A., Grigg, G., Phinn, S., Menke, N., McAlpine, C., and Possingham,
H. (2010). Reassessing spatial and temporal dynamics of kangaroo

672 Wildlife Research A. Pople et al.

dx.doi.org/10.1046/j.1365-2664.1999.00422.x
dx.doi.org/10.1071/WR03063
dx.doi.org/10.2307/3802720
dx.doi.org/10.1016/j.cropro.2003.09.002
dx.doi.org/10.1016/j.cropro.2012.07.013
dx.doi.org/10.1111/j.1749-4877.2010.00189.x
dx.doi.org/10.1111/j.1749-4877.2010.00189.x
dx.doi.org/10.1071/WR9940559
dx.doi.org/10.1071/WR03131
dx.doi.org/10.2307/2405014
dx.doi.org/10.2307/2405014
dx.doi.org/10.1071/WR9900313


populations. In ‘Macropods: the Biology of Kangaroos, Wallabies and
Rat-kangaroos’. (Eds G. Coulson and M. D. B. Eldridge.) pp. 197–210.
(CSIRO Publishing: Melbourne.)

R Development Core Team (2010). ‘R: a Language and Environment for
Statistical Computing.’ 2.11.0 edn. (R Foundation for Statistical
Computing: Vienna.)

Scanlan, J. C., and Farrell, J. (2005). A preliminary mouse abundance
prediction model for the central Queensland grain producing region. In
‘13th Australian Vertebrate Pest Conference’, Wellington, New Zealand.
pp. 44–47.

Singleton, G. R., and Brown, P. R. (1999). Management of mouse plagues in
Australia: integration of population ecology, bio-control and best farm
practice. In ‘Advances in Vertebrate Pest Management.’ (Eds DP Cowan
and CJ Feare.) pp. 189–203. (Filander-Verlag: Berlin.)

Singleton, G. R., Brown, P. R., Pech, R. P., Jacob, J., Mutze, G. J., and Krebs,
C. J. (2005). One hundred years of eruptions of house mice in Australia –
a natural biological curio. Biological Journal of the Linnean Society.
Linnean Society of London 84, 617–627. doi:10.1111/j.1095-8312.2005.
00458.x

Population dynamics of mice in grain crops Wildlife Research 673

dx.doi.org/10.1111/j.1095-8312.2005.00458.x
dx.doi.org/10.1111/j.1095-8312.2005.00458.x


Appendix 1. Unstandardised coefficients for regression models predicting mouse abundance and monthly exponential
rate of increase

The models are the same as the equivalent model in the main text with standardised coefficients

logeðautumn�winter adjusted trap successÞ
¼ 3:609þ 0:0043 ðprevious year’s March�August rainÞ
� 0:0079 ðSeptember�December rainÞ þ 0:2653

½logeðSeptember adjusted trap successþ 0:01Þ� ðModel 1Þ;

logeðautumn�winter adjusted trap successÞ
¼ 6:8053þ 0:0037 ðprevious year’s March�August rainÞ
� 0:0227 ðSeptember�December rainÞ � 1:060

ðmedian monthly minimum June�August temperatureÞ
þ 0:005 ðSeptember�December rainÞ
� ðmedian monthly minimum June�August temperatureÞ ðModel 2Þ; and

rðSeptember�maximumÞ
¼ 0:4511þ 0:0005 ðprevious year’s March�August rainÞ
� 0:0010 ðSeptember�December rainÞ0:0903
½logeðSeptember adjusted trap successþ 0:01� ðModel 3Þ:
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