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On-going, high-profile public debate about climate change has focussed attention on how to monitor the soil
organic carbon stock (Cs) of rangelands (savannas). Unfortunately, optimal sampling of the rangelands for
baseline Cs – the critical first step towards efficient monitoring – has received relatively little attention to
date. Moreover, in the rangelands of tropical Australia relatively little is known about how Cs is influenced
by the practice of cattle grazing. To address these issues we used linear mixed models to: (i) unravel how
grazing pressure (over a 12-year period) and soil type have affected Cs and the stable carbon isotope ratio of
soil organic carbon (δ13C) (a measure of the relative contributions of C3 and C4 vegetation to Cs); (ii) examine
the spatial covariation of Cs and δ13C; and, (iii) explore the amount of soil sampling required to adequately de-
termine baseline Cs. Modelling was done in the context of the material coordinate system for the soil profile,
therefore the depths reported, while conventional, are only nominal.
Linearmixedmodels revealed that soil type and grazing pressure interacted to influence Cs to a depth of 0.3 m in
the profile. At a depth of 0.5 m there was no effect of grazing on Cs, but the soil type effect on Cs was significant.
Soil type influenced δ13C to a soil depth of 0.5 m but there was no effect of grazing at any depth examined. The
linear mixed model also revealed the strong negative correlation of Cs with δ13C, particularly to a depth of 0.1 m
in the soil profile. This suggested that increased Cs at the study sitewas associatedwith increased input of C from
C3 trees and shrubs relative to the C4 perennial grasses; as the latter form the bulk of the cattle diet, we contend
that C sequestration may be negatively correlated with forage production. Our baseline Cs sampling recommen-
dation for cattle-grazing properties of the tropical rangelands of Australia is to: (i) divide the property into units
of apparently uniform soil type and grazingmanagement; (ii) use stratified simple random sampling to spread at
least 25 soil sampling locations about each unit, with at least two samples collected per stratum. This will be ade-
quate to accurately estimate baseline mean Cs to within 20% of the true mean, to a nominal depth of 0.3 m in the
profile.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

On-going, high-profile public debate about climate change has fo-
cussed attention on how to monitor the soil organic carbon stock (Cs)
of rangelands (savannas). It is hoped that, through monitoring Cs, cat-
tle graziers will benefit financially when they simultaneously seques-
ter carbon in their soil and improve pasture productivity. Grazed
landscapes are thought to have considerable potential for Cs storage.
Furthermore, changes in grazing management that result in minor
changes in soil C might cause proportionately large changes in Cs
globally, due to the substantial area devoted to grazing (Derner and
M.J. Pringle).

11 Published by Elsevier B.V. All rig
Schuman, 2007). Superficially, the task of the soil scientist is simple:
sample an area to establish baseline Cs then, after a lapse of time,
re-sample the area to assess the change in Cs. Unfortunately it is not
so simple. In addition to the grazier's management preferences, car-
bon accumulation at the spatial scale of ‘the paddock’ (i.e. the smal-
lest unit of management) will be influenced by the inherent soil
variation, microclimate, fire history, topography, and the complexity of
plant communities (Allen et al., 2010; Follett and Reed, 2010; Schuman
et al., 2002). Each of these factors will interact over time, making it diffi-
cult to separate the respective contributions of environment and grazing
management to the change in Cs.

In a recent global review Piñeiro et al. (2010) found that Cs responds
inconsistently to varied grazing conditions and environments. They
identified changes in the composition of plant species as one of the
key factors for understanding the net effect of grazing on Cs. This agrees
hts reserved.
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with other studies that have linked plant communities with grazing
management (Bagchi and Ritchie, 2010; Derner and Schuman, 2007).
The implication is that, as well as sampling for Cs, the soil scientist
might consider assessing the contributions of different plant groups to
Cs. In this regard the relative abundance of the 13C/12C isotopes of soil
organic carbon (denoted δ13C) is useful because it reflects the photo-
synthetic pathway (C3 or C4) of the vegetation grown at a location,
and consequently the proportional C contribution to Cs by vegetation
type (Boutton et al., 1998; Ehleringer et al., 2000; Peterson and Fry,
1987). Typical values for δ13C in soil under C3 and C4 vegetation
are−11 to−14‰ and−24 to−30‰ respectively (Boutton et al., 1998).

We contend that a more complete understanding of below-
ground carbon dynamics in a grazing system will be attained by mea-
suring the soil simultaneously for Cs and δ13C. Despite the large num-
ber of studies into the nature of Cs and δ13C in grazed land,
information on their correlation is scarce in the literature. Several
studies have examined the spatial variability of Cs, with the aim of
optimising a geostatistical sampling scheme for mapping (e.g. Rossi
et al., 2009; Schöning et al., 2006;Worsham et al., 2010). The same at-
tention has not been given to the spatial variability of δ13C. Powers
(2006) investigated the spatial variability of δ13C in an agricultural
context. She reported that the product–moment correlation of δ13C
with soil organic carbon concentration (n.b. not Cs) for pasture was
−0.28, but in a nearby forest it was−0.77. Her subsequent geostatis-
tical analysis considered δ13C and soil organic carbon concentration
as independent variables, and no formal inference was made about
the effect of deforestation.

Our study had three aims: (i) to determine the effects of soil type
and grazing pressure on Cs and δ13C; (ii) to examine the spatial co-
variation of Cs and δ13C; and, (iii) to determine future baseline sam-
pling requirements for Cs and δ13C. As an adjunct to (ii), we wished
to see whether it would be practical to map Cs and δ13C at a within-
paddock scale. To achieve these aims we used linear mixed models,
described below, which allowed us to separate the effects of soil
type from grazing pressure, while explicitly considering the spatial
covariation of Cs and δ13C. The focus of our study is a grazing-strategy
trial based in the rangelands of tropical Australia, which has been
running since 1997. The relatively long-term nature of this trial, to-
gether with the detailed soil data available, suggested its suitability.

2. Statistical background to the linear mixed model

Let us say that, for an area of interest, we have collected n1 obser-
vations of soil variable z1, and n2 observations of soil variable z2. Both
have been sampled systematically on a grid. Note that it is not neces-
sary that n1=n2.

Under a probabilistic (‘design-based’—see de Gruijter et al., 2006)
sampling design we could conventionally analyse the data with a linear
model, fitted with the least-squares method. However, if a systematic,
rather than a probabilistic, framework has been used to locate the soil
samples, least-squaresmodelling results in biased estimates of variance,
which in turn biases any inference derived from the model. The way to
circumvent this problem is through ‘model-based’ analysis (de Gruijter
et al., 2006). The linear mixed model (LMM) is the model-based equiva-
lent of a linearmodel. The essential difference betweendesign-based and
model-based methods is that the latter considers explicitly the spatial
correlation of z1 with z2. Thus the geostatistical concept of the variogram
(Matheron, 1963) is central to model-based analysis. The Matérn func-
tion is considered to be a general form of variogram (Minasny and
McBratney, 2005). For z1 it will be:

γ1;1 hð Þ ¼ b01;1 þ b11;1 1− 1
2v−1Γ vð Þ

h
r

� �v

Kv
h
r

� �� �
; ð1Þ

where γ1,1(h) indicates the semivariance of z1 as a function of separation
distance, h; b1,10 (where ‘0’ is an index, not a power) is known as ‘nugget’
variance (i.e. spatially independent variation); b1,11 (where superscript ‘1’
is an index) is the spatially autocorrelated variance; r is a distance pa-
rameter (rN0); v is a smoothness parameters (vN0); andKv is amodified
Bessel function of the second kind, of order v. Parameters r and v define
the effective range of the variogram, i.e. the separation distance where
γ1,1 reaches 95% of b1,10 +b1,1

1 . Substitution of the relevant subscripts
into Eq. (1) yields the auto-variogram for z2, or the cross-variogram of
z1 and z2.

Marchant and Lark (2007) demonstrated how to implement a
LMM when there are two or more response variables. Pringle et al.
(2008a,b) applied these methods to analyse, in a spatial context,
how the predictions of process models corresponded with observed
data. The response variables are joined to form the length-(n1+n2)
vector z=(z1T,z2T)T. The general form of the LMM is:

z ¼ Xβþ u; ð2Þ

where X is a (n1+n2)× f design matrix that contains the values at
each location of the f quantities which vary linearly with z; the
length-f vector β contains the parameters that describe the determinis-
tic relation betweenX and z; and the length-(n1+n2) vector u contains
a realisation of a second-order stationary, normally distributed, spatial-
ly correlated random function, U. Thus z is the sum of a deterministic
component (the ‘fixed effects’ or ‘trend’), and a random component
(the ‘random effects’). An (n1+n2)×(n1+n2) covariancematrix,V, de-
scribes the variation of u. The elements of V are determined by vario-
gram parameters. For k response variables there will be k(k+1)/2
variograms; for k=2 there will be two auto-variograms and one
cross-variogram. Central to the method of Marchant and Lark (2007)
is that the auto- and cross-variogram parameters form a linear model
of coregionalisation (LMCR). For two response variables the LMCR re-
quires that (Webster and Oliver, 2001):

bq1;1 ≥ 0
bq2;2 ≥ 0

bq1;2
��� ���≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bq1;1b
q
2;2

q
;

ð3Þ

for all q, where q=(0,1) according to theMatérn function (Eq. (1)). Ad-
ditionally, we need to ensure that the respective values of r and v are
common to all auto- and cross-variograms, and that, together, they con-
fer a sensible effective range. Under the LMCR the elements of V are
given by:

Vi;j ¼ b01;1 þ b11;1−γ1;1 hð Þ if z ið Þ∈z1 and z jð Þ∈z1
Vi;j and Vj;i ¼ b01;2 þ b11;2−γ1;2 hð Þ if z ið Þ∈z1 and z jð Þ∈z2;
Vi;j ¼ b02;2 þ b12;2−γ2;2 hð Þ if z ið Þ∈z2 and z jð Þ∈z2

where i and j respectively relate a particular row and column of V.
Under the assumption that U is normally distributed the residual

log-likelihood of the data conditional on the parameters of Eq. (2),
i.e. β and θ=(b1, 10 ,b1, 20 ,b2, 20 ,b1, 11 ,b1, 21 ,b2, 21 , r,v) is:

lR θ;X; Szð Þ ¼ c Xð Þ−1
2
log Vj j−1

2
log XTV−1X

��� ���−1
2

z−Xβð ÞTV−1 z−Xβð Þ:
ð4Þ

Note that the term Sz (where SX=0 and rank(S)=(n1+n2)−
rank(X)) shows that z has been projected into a residual space where
the fixed effects have zero expectation. This reduces bias in θ relative
to conventional log-likelihood estimation (Lark and Cullis, 2004). The
term c(X) is constant for a particular form of the design matrix. Vector
β is derived from generalised least squares:

β ¼ XTV−1X
� 	−1

XTV−1z: ð5Þ
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The values of θ that maximise lR(θ,X,Sz) are taken to represent the
best estimate for the LMM. Hence the term ‘residual maximum likeli-
hood’ (REML), the derivation of which was presented originally by
Patterson and Thompson (1971). In practice lR(θ,X,Sz) is generally
multiplied by −1 and minimised.

2.1. Selecting the most appropriate fixed effects

It is good practice to fit a variety LMMs with different numbers of
fixed effects, and then choose the most parsimonious combination for
z. In the context of likelihood estimators the choice is aided by likeli-
hood ratio tests that determine whether particular terms in the fixed
effects justify inclusion. We assume that a LMM contains two nested
groups of fixed effects such that β=(β0, β1), and X=(X0, X1). If the
expected value of the ‘full’ model is E[z]=Xβ and the expected
value of the ‘reduced’model is E[z]=X0β0, then the decision whether
to include β1 in the LMM is based on the difference between the like-
lihoods. However, with REML, z undergoes different projections
depending on the design matrix, therefore direct comparisons of like-
lihoods based on different X matrices are not valid. Welham and
Thompson (1997) found a way to address this problem. First, the re-
sidual log-likelihood is maximised for the full complement of fixed ef-
fects (Eq. (4)). Next, the residual log-likelihood is maximised for the
full complement of fixed effects using a modification of Eq. (4):

lR θ0;X0; Szð Þ ¼ c Xð Þ−1
2
log

���V���−1
2
log XTV−1X

��� ���−
1
2

z−X0β0 þ X1β1ð ÞTV−1 z−X0β0 þ X1β1ð Þ
ð6Þ

where, crucially, β1=0 and is held constant. The residual log-
likelihood test statistic is:

D ¼ −2 lR θ0; X0; Szð Þ−lR θ; X; Szð Þf g: ð7Þ

This gives a likelihood ratio for the null hypothesis that β1=0,
with D approximated by a chi-squared distribution with g degrees
of freedom, where g is the number of fixed effects in β1. If D is greater
than the inverse chi-squared distribution at a probability of P=0.05,
with g degrees of freedom, then β1 justifies inclusion in the LMM.

2.2. Cross-validation of the LMM

Having fitted an appropriately parsimonious LMM we use cross-
validation to check the plausibility of the assumption that U is nor-
mally distributed. To cross-validate, we visit each observed location
in z successively and use the EBLUP – an analogue of universal kriging
(Lark et al., 2006) – to predict the value as if the location had not been
sampled. For each location we then compute the standardised
squared prediction error (Webster and Oliver, 2001). At the ith loca-
tion of, for example, z1 this is:

θ1;i ¼ z1;i− ẑ�1;i

� 	2
=σ̂2

1;i; ð8Þ

where ẑ�1;i is the EBLUP prediction of z1 at the ith location when this
sample is withheld from z, and σ̂2

1;i is the EBLUP estimation variance.
If u is indeed multivariate normal then θ1 across all n1 locations will
have a chi-squared distribution with one degree of freedom. The
expected median (θ̃1) of this distribution will be 0.455 (Lark, 2000).
We can create a confidence interval about this value by simulating
many realisations of multivariate normal variables based on the pa-
rameters of the LMM, and then computing θ̃1 for each realisation, to
build a probability distribution. If θ̃1 of the observed data is outside
the bootstrapped confidence interval (as defined from the probability
distribution) it indicates that z1 is not multivariate normal, probably
due to the presence of outlying values.
2.3. Structural correlations

A useful by-product of the LMCR is the structural correlation of the
response variables:

bq1;2
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bq1;1 b
q
2;2

q
; ð9Þ

where, as before, q=(0,1). Structural correlations are analogous to
the conventional product–moment correlation, with the advantage
that they indicate the strength of the relationship at particular nested
spatial scales.

3. Methods

3.1. Study site

The study site forms part of a long-term cattle-grazing trial at
Wambiana station (20°34′ S, 146°07′ E), 70 km southwest of Charters
Towers, north Queensland, Australia. Median annual rainfall for Tra-
falgar station, about 20 km from the study site, is 617 mm (1910–
2010). About two-thirds of the annual rainfall is received between De-
cember and March (the summer months), but is extremely variable
from year to year: for January and February the historical 1st decile of
rainfall is b30 mm, but the 9th decile is N250 mm.

The grazing trial was conceived to investigate appropriate stocking
strategies in open savanna, given such unreliable rainfall (O'Reagain
and Bushell, 1999). Ten paddocks of 92–115 ha are arranged as a rando-
mised block designwith two replicates offive treatments. In 1997when
the trial commenced, each paddock was randomly allocated to one of
five grazing treatments (for more details see O'Reagain et al., 2009,
2011). For the purpose of this study the two treatmentswith the greatest
contrast in grazing pressure were selected. These were the ‘heavy’ and
‘light’ stocking-rate treatments. Since the trial commenced the average
heavy stocking rate has been 5.41 ha/animal equivalent (defined as a
450-kg steer), and 9.03 ha/animal equivalent for the light stocking rate
(O'Reagain et al. 2009). Those responsible for running the trial have re-
cently deferred the term ‘light’ in favour of ‘moderate’ because it actually
reflects the long-term sustainable carrying capacity of the study area
(O'Reagain et al., 2011). In line with this recommendation we use ‘mod-
erate’ herein.

The paddocks of the grazing trial are configured to share similar
proportions of the main soil–vegetation associations of the area
(Table 1). At the start of the grazing trial a soil survey was conducted
using the soil associations defined by Rogers et al. (1999), but at a
finer scale than that original mapping. The dominant soil map unit
is actually a soil complex (Gunn et al., 1988) comprising brown sodo-
sol and yellow kandosol (Isbell, 2002). Although palatability of the
vegetation depends on growth stage and rainfall, the C4 tropical
grasses are generally considered more palatable than C3 species, i.e.
the trees and shrubs. Accordingly, grasses form by far the bulk of
the cattle diet, although C3 woody species are browsed in the late
dry season.

3.2. Soil sampling

We sampled the soil intensively from one replicate each of the
moderate and heavy stocking treatments (Fig. 1). The chosen pair of
treatments shared a common boundary, which minimised travelling
distances. To ensure that we represented each combination of grazing
treatments and soil types adequately, and to learn about the patterns
of spatial variation, we devised a set of nested grids. These grids im-
plied that model-based analysis with a LMM would be needed to es-
timate variance components. At the coarsest scale of nesting, soil
samples were collected at the nodes of a 250-m×200-m grid, over-
laid on each grazing treatment. Forty-six soil samples were collected



Table 1
General information for the soil and vegetation of the study site.

Australian soil
classificationa

World reference
baseb

Soil
associationc

Dominant vegetation Photosynthetic
pathway

δ13C (‰) in the…

root leaf twig

Brown sodosol Solonetz Liontown Eucalyptus brownii C3 −27.5e −26.5e

Carissa ovata C3 −26.1e

Chrysopogon fallax C4 −13.0d −12.8d

Bothriochloa ewartiana C4 −12.6e −13.9e

Yellow kandosol Ferralsol Boston Eucalyptus melanophloia C3 −28.1e −26.3e

Eriachne mucronata C4

Aristida spp. C4 −14.3d −13.9d

Chrysopogon fallax C4 −13.0d −12.8d

Heteropogon contortus C4 −13.1d −13.3d

Red kandosol Ferralsol Rangeside (As for Yellow kandosol)
Grey vertosol Vertosol Powlathanga Acacia harpophylla C3

Eucalyptus brownii C3 −27.5e −26.5e

Carissa ovata C3 −26.1e

Dicanthium sericeum C4

Bothriochloa ewartiana C4 −12.6e −13.9e

Eulalia aurea C4

a Isbell (2002).
b IUSS Working Group WRB (2007).
c Rogers et al. (1999).
d Krull and Bray (2005).
e Bray et al. (2006).
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at this scale (i.e. 2 grazing treatments×23 locations). For the interme-
diate scale of nesting we placed a 100-m×100-m square within the
polygon that defined each combination of grazing treatment and
soil type. We then subdivided each square into 25 cells of equal
area, and collected one sample at the centre of each cell. A total of
150 soil samples were collected at this scale (2 grazing treatments×3
soil types×25 locations). One sample location from the 1-ha square
was used as a starting point for the finest scale of nesting. This loca-
tion formed one corner of a 25-m×25-m square, which was subdi-
vided into 25 cells of equal area, with one sample collected at the
centre of each. A total of 144 soil samples were collected at this
scale (2 grazing treatments×3 soil types×24 locations). At four of
the five sample locations along a diagonal of the 25-m×25-m square
we took further samples on exponentially spaced transects (Pettitt
and McBratney, 1993). The sample intervals for these transects
were 0.1 m, 0.25 m, 0.5 m, and 1 m. A total of 96 samples were col-
lected in this way (2 grazing treatments×3 soil types×4 locations×4
intervals). The spatial arrangement of the sampled locations is illus-
trated in Fig. 1. A total of 436 locations were sampled.

Samples were collected in March–April 2009 using 0.042–0.044-m
internal diameter soil coring tubes, driven by a hydraulically operated
rig, to a maximum depth of 0.5 m. Where the rig was unable to reach
0.5 m due to an impenetrable layer the ultimate depth of the core was
noted. If the rig could not be positioned at the intended location due
to a tree, sampling was undertaken as close by as possible. A differen-
tial Global Positioning System was used to georeference the sampled
locations. Each core was divided into four depth intervals: 0–0.1 m,
0.1–0.2 m, 0.2–0.3 m, and 0.3–0.5 m. The soil sample associated
with each depth interval was bagged in situ, thus producing a total
of 1744 samples (herein, the term ‘sample’ denotes the soil associated
with one depth layer within one core). All soil samples were stored at
approximately 25 °C or cooler until the end of the sampling cam-
paign. They were then transferred at ambient air temperature to Bris-
bane, and refrigerated until processing. The time between collection
and processing was approximately three weeks.

3.3. Laboratory analyses

Samples were air-dried at 40 °C then ground to pass through a 2-
mm sieve. Soil pH (1:5 water) was measured according to the method
of Rayment and Higginson (1992). If, within a particular soil type, any
observed pH values were N7 then all samples associated with that soil
type were treated with HCl to remove carbonate-carbon (Fernandes
and Krull, 2008). The b2-mm fraction of soil was sub-sampled and
fine-ground (b0.1 mm) to determine organic C concentration (units
of %) and natural abundance 13C values. Analysis was undertaken
using an Isoprime isotope ratio mass spectrometer (IRMS), coupled
to a Eurovector elemental analyser (Micromass Isoprime–Eurovector
EA 3000). Approximately 20 mg of the fine-ground soil was weighed
into an 8-mm×5-mm tin (Sn) capsule and analysed against a known
set of standards (Acetanilide chemical standard for organic C, and
ANU Sucrose for 13C). The ratio of 13C in the soil relative to the 13C
in a Pee Dee Belemnite standard (Craig, 1953), in units of parts per
thousand (‰), was computed as:

δ13C ¼ Rsoil=Rstandard−1ð Þ×1000; ð10Þ

where R was the molar ratio of 13C/12C (Ehleringer et al., 2000).
The ≥2-mm fraction of soil comprised gravel and Fe–Mn concre-

tions. These components were separated visually then weighed. For
10 randomly selected samples we crushed the gravel and Fe–Mn con-
cretions to b0.1 mm, then measured each for organic C as above. The
total soil organic C concentration (units of %) of each sample was cal-
culated as:

C ¼ Cgravel ×mgravel þ C Fe–Mn×mFe–Mn þ Cb2�mm×mb2�mm

� 	

= mgravel þmFe–Mn þmb2�mm

� 	
;

ð11Þ

where: C gravel and C Fe–Mn were the mean concentrations of organic C
in the gravel and Fe–Mn concretions respectively; Cb2-mm was the
concentration of organic C in the b2-mm fraction of soil; and mgravel,
mFe–Mn and mb2-mm were the mass of each fraction in the sample.

Bulk density (ρ, units of Mg m−3) was determined following the
procedure of Linn and Doran (1984). A sub-sample of each sample
was used to measure the paddock-moist weight. Following drying
for 3 days at 105 °C the sub-sample was measured for oven-dry
weight, with ρ estimated as the mass of the oven-dry soil divided
by the volume of the soil core at the depth interval of the sample.

3.4. Material coordinate system

Gifford and Roderick (2003) and McBratney and Minasny (2010)
recommended reporting Cs as a function of soil mass (i.e. in a
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Fig. 1. (a) The study site comprised two paddocks: one with a historically moderate cattle-stocking rate (denoted Gm), and the other with a historically heavy cattle-stocking rate (Gh).
Closed circles indicate where soil was sampled. Background shading indicates the classes of the soilmap (Sb=black sodosol-yellow kandosol complex; Sg=grey vertosol; Sr=red kand-
sol). Inset: an asterisk indicates the location of the study site relative to Australia. (b) Enlargement of the detail in Fig. 1a. Open circles indicate where soil was sampled in a grid pattern;
closed circles indicate where soil was sampled on exponentially spaced transects.
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‘material’ coordinate system), rather than the more conventional
depth (a ‘spatial’ coordinate system). To do this, we modelled the
depth function of ρ for the soil profile at each location with an
equal-area quadratic smoothing spline (Bishop et al., 1999). The
smoothing parameter of the spline, λ, was set at 0.0005, which we de-
termined by visual inspection. The spline was then used to predict ρ
at 0.02-m increments within the profile to 0.5 m. The cumulative
soil mass (units of Mg ha−1) to a particular depth, d, in the profile
was computed as:

Md ¼ ∑
n

i¼1
ρ̂i× 0:02×10000ð Þ; ð12Þ
where n was the number of 0.02-m increments between the soil sur-
face and d, inclusive, and ρ̂i was the ith spline estimate of bulk density
in the profile. The depths of interest were d=(0.1 m, 0.3 m, 0.5 m). At a
particular depth the reference cumulative soil mass, Md,min, was taken
as the smallest value of Md found across all sampled locations.

The depth functions of C (Eq. 11) and δ13C were modelled at 0.02-
m intervals, as for ρ. This ensured that all three variables were at the
same scale when subjected to further analysis. Carbon stock (Cs, units
of Mg ha−1) associated with a particular Md,min was:

Cs ¼ ∑
n

i¼1
Ĉi=100× ρ̂i ×0:02×10000
� 	

; ð13Þ
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where, in this case, n was the number of 0.02-m increments between
the soil surface and the depth where Md,min was reached, and Ĉi was
the ith spline estimate of C in the profile. For δ13Cwe averaged the spline
predictions between the soil surface and the depth where Md,min was
reached.

We inspected Cs and δ13C at each Md,min for departures from nor-
mality. Webster and Oliver (2001) suggested that when a variable's
coefficient of skewness exceeds 1.0 a logarithmic transformation is
usually appropriate, to stabilise variance. The back-transformed
mean, z, of a log-transformed variable is (Zhou and Gao, 1997):

z ¼ exp zt þ σ2
t =2

� 	
; ð14Þ

where zt and σt
2 are the log-transformed mean and variance, respec-

tively. We applied no transformation to variables with a coefficient of
skewness b1.0.

3.5. Linear mixed models of Cs and δ13C

Throughout this section we denote Cs and δ13C as, respectively, the
length-n1 vector z1 and the length-n2 vector z2. As in Section 2, z=
(z1T,z2T)T.

3.5.1. Fitting the model
At a particular Md,min the most complex LMM possible was L1

(Table 2). For this model the design matrix, X, had 12 columns, pa-
rameters β0–β5 related to z1 (Cs), and parameters β6–β11 related to
z2 (δ13C). We specified that the effective range for the LMCR of the
random effects could not exceed 300 m, approximately half the smal-
lest dimension of the study area. We used a simplex algorithm
(Nelder and Mead, 1965) to find the optimum parameter estimates
for L1. If the constraints on the LMCR were violated at a particular
point in the simplex space we set − lR(θ,X,Sz) (Eq. (4)) to an arbi-
trary large number (much larger than the typical values of − lR(θ,X,
Sz)), to place the algorithm on an alternative path to a valid mini-
mum. This approach can create problems if the solution lies at the
edge of the parameter space but, in our experience, we have found
negligible difference to the outcome of other optimisation methods
such as simulated annealing. To reduce the risk of obtaining a solution
at a local minimum we fitted the LMM 200 times, with the initial
values of θ randomly perturbed to within 25% of the original guesses.
The LMM of the 200 candidates that returned the smallest value
of − lR(θ,X,Sz) was then chosen for further analysis.

3.5.2. Hypothesis testing
Wewanted to know if the components of L1 that related to z1 (or z2)

showed: (i) no effect for either grazing pressure or soil type; (ii) an ef-
fect of grazing pressure but not soil type; (iii) an effect of soil type but
not grazing pressure; or, (iv) an interactive effect of both grazing
Table 2
The pool of linear mixed models needed for inference at Md,min. Following the notation
of Section 2, vector z is the concatenation of the observations of Cs and δ13C.

Model Form

L1
zi ¼ β0 þ Gm;iβ1 þ Sg;iβ2 þ Sr;iβ3 þ Gm;iSg;iβ4 þ Gm;iSr;iβ5 þ

β6 þ Gm;iβ7 þ Sg;iβ8 þ Sr;iβ9 þ Gm;iSg;iβ10 þ Gm;iSr;iβ11 þ ui

L2
zi ¼ β0 þ Sg;iβ1 þ Sr;iβ2 þ

β3 þ Gm;iβ4 þ Sg;iβ5 þ Sr;iβ6 þ Gm;iSg;iβ7 þ Gm;iSr;iβ8 þ ui

L3
zi ¼ β0 þ Gm;iβ1 þ Sg;iβ2 þ Sr;iβ3 þ Gm;iSg;iβ4 þ Gm;iSr;iβ5 þ

β6 þ Sg;iβ7 þ Sr;iβ8 þ ui

Key (following Eq. (2)): zi was the ith value of z; β• were parameters that related
particular combinations of grazing treatments and soil types to z; Gm, i was an
indicator for the presence of moderate grazing; Sg, i and Sr, i were indicators for the
presence of grey vertosol and red kandosol, respectively; and ui was the random
effect. Heavy grazing (Gh, i) and the brown sodosol-yellow kandosol complex (Sb, i)
were regarded implicitly as reference variables.
pressure and soil type. Section 2.1 introduced how likelihood ratio
tests can be used to compare nested LMMs. We could theoretically
make 5 comparisons between pairs of nestedmodels for each response
variable in L1. However, we suggest that a parsimonious form of the
model can be established with just two carefully selected comparisons
per response variable: we focussed initially on the effect of manage-
ment and tested whether grazing affected z1 (or z2); if it did, then we
tested whether this effect was different for different soil types; other-
wise, we tested whether soil type (in isolation) had an effect on z1 (or
z2). Thus we were able to determine which of (i)–(iv) listed above ap-
propriately described each response variable. More formally we estab-
lished three null hypotheses for each response variable:

The expected value of z1 or z2 for all grazing treatments is equal:

ðH1Þ

If (H1) is rejected then:

The expected value of z1 or z2 for
all soil types is equal for all grazing treatments:

ðH2Þ

If (H1) is not rejected then:

The expected value of z1 or z2 for all soil types is equal: ðH3Þ

The sequence of testing is illustrated in Fig. 2.Where a reducedmodel
was fitted, the description in Section 2.1 was followed, with − lR(θ0,X0,
Sz) (Eq. (6))minimised asdescribed in Section3.5.1, to determinewheth-
er β1=0. Models L2 and L3 (Table 2) were fitted as for L1, if required. For
L2, parametersβ0–β2 related to z1, and parametersβ3–β8 related to z2. For
L3, parameters β0–β5 related to z1, and parameters β6–β8 related to z2.

The outcome of the sequential testing allowed us to choose a par-
simonious combination offixed effects for afinal LMM(Lf) at eachMd,min.
Once fitted, Lf was cross-validated according to the procedure described
in Section 2.2. Pair-wise comparisons of individual soil types and grazing
treatments (depending onwhatwas present) were then done for z1 and
z2 in turn, using the procedure described in Section 2.1.

3.5.3. Decomposition of the random effects
The structural correlation of two variables (Eq. (9) is a useful sta-

tistic, but a scatterplot allows a more immediate, visual interpreta-
tion. To this end, the random effects of Lf can be decomposed into
the contributions that correspond to the two nested scales of varia-
tion in the Matérn function (Eq. (1)). For example, the ith observation
of z1 can actually be regarded as:

z1;i ¼ ∑
1

j¼0
zq1;i ð15Þ

where, as in Section 2, q indexes spatial scale. We obtained the values
of z1, i

q and z2, i
q using an EBLUP (Lark et al., 2006) analogue of factorial

kriging (Goovaerts, 1997, p. 161):

zq ¼ VqV−1 z−Xβð Þ ð16Þ

where z, X, β, and Vwere defined in Section 2, zq was a length-(n1+n2)
vector comprising the values of z at the qth spatial scale, and Vqwas anal-
ogous to V, but its elements had been determined using only the param-
eters of Lf associated with the qth structure of the Matérn function.

3.6. Sampling for Cs

The parameters of the random effects of Lf were used to devise a
design-based sampling scheme for Cs at a particularMd,min. We estab-
lished four hypothetical square-shaped polygons, denoted W, with
areas 0.04 ha, 1 ha, 100 ha, and 2500 ha respectively. These polygons



Fig. 2. The procedure followed to test null hypotheses (H1)–(H3). Response variables Cs and δ13C are denoted z1 and z2 respectively. Formulae for L1, L2 and L3 are presented in Table 2.
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represented the extents expected for units of uniform soil type and
grazing management in the tropical rangelands of Australia. Within
each polygon we intended to sample Cs at n=(4,9,16,25,36,49,100)
locations, where n=100was taken as a pragmatic upper limit for feasi-
bility. Bulking was not considered, i.e. each soil core was to be analysed
separately. Samples were taken from three contrasting designs: simple
random sampling (denoted SI), stratified simple random sampling
(denoted ST), and systematic randomsampling (denoted SY) (deGruijter
et al., 2006). Under SI all locations have equal probability of being allo-
cated to a sample. Under ST the area is divided into a pre-specified num-
ber of sub-units (‘strata’), then all locations within each stratum have
equal probability of being allocated to a sample. Using the R statistical
software (R Development Core Team, 2011), stratification was done
on the basis of spatial coordinates, with a constraint that the strata
have equal area (Walvoort et al., 2010). Design SY is a grid whose origin
has been chosen at random.

Assuming that the variogram for a polygon is known, the model-
based estimation variance of the sample mean under SI is (Domburg
et al., 1994):

σ2
SI μSIð Þ ¼ γ W;Wð Þ

n
; ð17Þ

where μSI represents the sample mean, and γ W;Wð Þ is the dispersion
variance (i.e. the expected variance of a single realisation of the ran-
dom function of Cs, defined by the parameters of Lf) across polygon
W (see Webster and Oliver, 2001, p. 151), computed from 1000 ran-
domly generated pairs of locations within the polygon.
Under ST the estimation variance of the sample mean is (Domburg
et al., 1994):

σ2
ST μSTð Þ ¼ ∑

H

h¼1
k2h=nh×γ Wh;Whð Þ

n o
; ð18Þ

where μST represents the sample mean, H is the number strata, and,
for the hth stratum: kh is the areal proportion of the stratum within
W; nh is the number of random samples (we used nh=2 throughout);
and, γ Wh;Whð Þ is the dispersion variance, computed as for γ W;Wð Þ
above. The specification of nh=2meant that an even number of sam-
ples was required for the polygon overall, in which case we sub-
tracted 1 from the odd-numbered instances of n, to thereby ensure
a conservative estimate for σST

2 (μST).
Under SY the estimation variance of the sample mean is (de Gruijter

et al., 2006):

σ2
SY μSYð Þ ¼ γ W;Wð Þ−γ w;wð Þ; ð19Þ

where μSY represents the sample mean, and γP w;wð Þ is the dispersion
variance of the n locations in the grid. We actually computed σSY

2 (μSY)
as themean of 20 gridswith randomorigins and spacings thatmanaged
to fit n locations into W.
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Weconverted the respective values ofσSI
2(μSI),σST

2 (μST) andσSY
2 (μSY)

to Minimum Detectable Difference (MDD) (Zar, 1999):

MDD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i μið Þ

q
t0:025;n−1 þ t0:8;n−1

� 	
; ð20Þ

where: i=(SI,ST,SY); twas Student's t value; ‘0.025’ indicated the con-
fidence level for a two-sided test; n−1 was the degrees of freedom;
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and, ‘0.8’ was the desired statistical power. MDD can be thought of as
the smallest difference that can be detected between an observation
and its ‘true’ value with the specified amount of confidence (Garten
and Wullschleger, 1999).
4. Results

4.1. Modelling of depth functions

The three values of Md,min used herein were found to be M0.1,min=
977Mg ha−1, M0.3,min=3334Mg ha−1, and M0.5,min=5826Mg ha−1.
Fig. 3 presents, for one exemplary location, observed values of C (%) in
the profile. The predictions of the spline function at 0.02-m increments
are also shown, as are the increments where each Md,min was reached.
The location used for Fig. 3 had substantially heavier soil compared
with the locations that defined the reference masses: the estimate of Cs
at M0.1,min required application of Eq. (13) to 0.06 m depth only, while
Cs at M0.5,min was reached at 0.34 m. The spline function of Bishop et al.
(1999) required that there were no missing observations at any depth;
otherwise the location had to be excluded from further analysis. From a
maximum of 436 locations, there were 427 and 428 completely sampled
locations for Cs and δ13C respectively.

The histograms of Cs at each Md,min showed strong positive skew-
ness (not shown), suggesting that as the mean increased so too
did the variance. Transformation of Cs to natural logarithms reduced
the skew in each case. The histograms of transformed Cs did not sug-
gest the presence of outliers (Fig. 4a). The histograms of δ13C showed
increasing negative skew as the cumulative soil mass increased
(Fig. 4b), though not serious enough to justify transformation.
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Table 3
The sequence of hypothesis tests for the fixed effects of the linear mixed models for Cs
and δ13C.

Variable ‘Full’ model Test lR(θ, X, Sz) lR(θ0, X0, Sz) g D

(a) M0.1,min

Cs L1 (H1) −322.6 −331.1 3 17.0⁎⁎⁎

L1 (H2) −322.6 −343.2 4 41.2⁎⁎⁎

δ13C L1 (H1) −322.6 −326.0 3 6.8
L3 (H3) −316.7 −322.6 2 11.8⁎⁎

(b) M0.3,min

Cs L1 (H1) −312.3 −316.9 3 9.3⁎

L1 (H2) −312.3 −330.1 4 35.6⁎⁎⁎

δ13C L1 (H1) −312.3 −314.7 3 4.9
L3 (H3) −304.5 −313.6 2 18.2⁎⁎⁎

(c) M0.5,min

Cs L1 (H1) −338.0 −340.0 3 4.8
L2 (H3) −331.9 −351.3 2 38.9⁎⁎⁎

δ13C L1 (H1) −338.0 −339.7 3 4.9
L3 (H3) −329.5 −338.2 2 17.4⁎⁎⁎

⁎ Significant at P=0.05.
⁎⁎ Significant at P=0.01.
⁎⁎⁎ Significant at P=0.001.
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4.2. Linear mixed modelling of Cs and δ13C

The sequence of likelihood ratio tests (Table 3) indicated that, for
M0.1,min andM0.3,min, Cs was influenced significantly by an interaction
between grazing pressure and soil type, i.e. the full complement of
fixed effects was justified in each case. At M0.5,min however there
was a significant effect of soil type on Cs but no effect of grazing pres-
sure. For δ13C the tests indicated a strong effect of soil type at each of
the three cumulative soil masses, but no effect of grazing pressure. The
final, parsimonious LMMs for Cs and δ13C at M0.1,min and M0.3,min took
Table 4
Values of the final linear mixed model fitted to Cs (ln Mg ha−1) and δ13C (‰) at M0.1,min.

(a) Parameters of the fixed effects

Variable β0 β1 β2

Cs 1.92×100 −1.10×10−1 −4

β6 β7 β8

δ13C −20.1×100 3.81×10−1 5.3

(b) Fitted values for each combination of grazing and soil type
Variable Grazing

Cs
a Gm

Gh

δ13C Gm, Gh

(c) Parameters of the random effectsh

Variable b0

Cs δ13C

Cs 3.97×10−2 −4.2
δ13C (−0.24) 7.7

(d) Cross-validation
Variable

Cs
δ13C

aCs has been back-transformed to Mg ha−1 (Eq. (14)).
b–gWithin variables, values with a common letter are not significantly different at P=0.05.
hStructural correlations are in brackets in the lower triangle of each matrix.
the form:

Lf ¼ β0 þ Gm;iβ1 þ Sg;iβ2 þ Sr;iβ3 þ Gm;iSg;iβ4 þ Gm;iSr;iβ5 þ β6
þ Sg;iβ7 þ Sr;iβ8;

ð21Þ

where parameters β0–β5 related to Cs, and parameters β6–β8 related to
δ13C. At M0.5,min the final LMM was:

Lf ¼ β0 þ Sg;iβ1 þ Sr;iβ2 þ β3 þ Sg;iβ4 þ Sr;iβ5; ð22Þ

where parameters β0–β2 related to Cs, and parameters β3–β5 related to
δ13C.

We converted the fixed effects of Lf atM0.1,min,M0.3,min, andM0.5,min

(Tables 4a, 5a and 6a, respectively) to fitted values for Cs and δ13C
(Tables 4b, 5b and 6b, respectively). At allMd,min, Cs for the red kandosol
was significantly smaller than for the other two soil types, for both
moderate and heavy grazing. At M0.3,min, Cs of the brown sodosol-yel-
low kandosol complex and the grey vertosol was not significantly dif-
ferent when subjected to moderate grazing (Table 5b). At M0.1,min and
M0.3,min a change frommoderate grazing to heavy grazing significantly
decreased Cs for the grey vertosol and the red kandosol, but significantly
increased Cs for the brown sodosol-yellow kandosol complex. At all
threeMd,min the brown sodosol-yellow kandosol complex had a signifi-
cant depletion of δ13C compared with the other two soil types, i.e. the
greatest C3 contribution to soil organic carbon. The organic carbon con-
tributions fromC4 grasseswere significantly greater for the red kandosol
at M0.3,min andM0.5,min compared with the other two soil types.

The parameters of the random effects (Tables 4c, 5c, 6c) revealed
four interesting insights. First, the effective range of the autocorre-
lated variation of Cs and δ13C was small relative to size of the study
area (~13 m on average). This result might not have been apparent
if we had used a non-nested sampling design. Unfortunately it implies
that the adjunct to the second aim of our study – i.e. mapping of Cs
and δ13C at a within-paddock scale – is not practical because the re-
quired sampling effort would be too great. Second, Cs and δ13C
β3 β4 β5

.10×10−1 −6.52×10−1 2.38×10−1 3.68×10−1

5×10−1

Soil type
Sb Sg Sr

6.48b 5.44c 4.88d

7.23e 4.79f 3.77g

−20.09b −19.72c −19.56c

b1

Cs δ13C

0×10−2 7.18×10−2 −2.78×10−1

1×10−1 (−0.79) 1.73×100

(r=7.0 m, v=0.33) (Effect. range = 18.0 m)

θ̃ 95% CI

0.44 0.35–0.57
0.45 0.35–0.56



Table 5
Values of the final linear mixed model fitted to Cs (ln Mg ha−1) and δ13C (‰) at M0.3,min.

(a) Parameters of the fixed effects
Variable β0 β1 β2 β3 β4 β5

Cs 2.81×100 −5.49×10−2 −1.59×10−1 −4.84×10−1 1.51×10−1 1.31×10−1

β6 β7 β8

δ13C −19.4×100 4.38×10−1 8.13×10−1

(b) Fitted values for each combination of grazing and soil type
Variable Grazing Soil type

Sb Sg Sr

Cs
a Gm 16.21b 16.08b 11.40c

Gh 17.13d 14.61e 10.56f

δ13C Gm, Gh −19.43b −18.99c −18.61d

(c) Parameters of the random effectsg

Variable b0 b1

Cs δ13C Cs δ13C

Cs 2.49×10−2 −6.47×10−2 3.92×10−2 −1.18×10−1

δ13C (−0.52) 6.12×10−1 (−0.65) 8.50×10−1

(r=2.9 m, v=0.79) (Effect. range = 10.8 m)

(d) Cross-validation
Variable θ̃ 95% CI

Cs 0.41 0.37–0.55
δ13C 0.46 0.36–0.55

aCs has been back-transformed to Mg ha−1 (Eq. (14)).
b–fWithin variables, values with a common letter are not significantly different at P=0.05.
gStructural correlations are in brackets in the lower triangle of each matrix.
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showed the greatest magnitude of variation at M0.1,min. Third, Cs and
δ13C were correlated negatively (i.e. Cs decreased as δ13C tended to
increase; in other words, the relative contribution of C4 vegetation C
to Cs decreased). Fourth, the strength of the structural correlation
Table 6
Values of the final linear mixedmodel fitted to Cs (lnMg ha−1) and δ13C (‰) atM0.5,min.

(a) Parameters of the fixed effects
Variable β0 β1 β2

Cs 3.13×100 −3.39×10−2 −4.39×10−1

β3 β4 β5

δ13C −19.0×100 5.70×10−1 9.71×10−1

(b) Fitted values for each combination of grazing and soil type
Variable Grazing Soil type

Sb Sg Sr

Cs
a Gm, Gh 23.57b 24.38b 15.19c

δ13C Gm, Gh −19.05b −18.48c −18.08d

(c) Parameters of the random effectse

Variable b0 b1

Cs δ13C Cs δ13C

Cs 2.90×10−2 −6.58×10−2 2.83×10−2 −6.35×10−1

δ13C (−0.54) 5.08×10−1 (−0.43) 7.61×10−1

(r=2.4 m, v=1.29) (Effect.
range = 10.8 m)

(d) Cross-validation
Variable θ̃ 95% CI

Cs 0.38 0.37–0.56
δ13C 0.43 0.35–0.57

aCs has been back-transformed to Mg ha−1 (Eq. 14).
b–dWithin variables, values with a common letter are not significantly different at
P=0.05.
eStructural correlations are in brackets in the lower triangle of each matrix.
(Eq. (9)) changed with depth and with spatial scale: as cumulative
soil mass increased the negative correlation at the ‘nugget’ scale (i.e.
distances b0.1 m) strengthened, but the negative correlation at the
‘autocorrelated’ scale (i.e. between 0.1 m and ~13 m) weakened. At
M0.1,min, the correlation of Cs with δ13C at the autocorrelated scale
was particularly strong (Fig. 5), which suggested that the broad spa-
tial pattern of variation in Cs was mirrored closely by δ13C. The sign
of the correlation agrees with the findings of Powers (2006). A nega-
tive correlation reflects how the C4 grasses of the study site have con-
tributed less C to Cs than the C3 trees and shrubs. This is expected
since C4 grasses would have been preferentially consumed by cattle,
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particularly during the dry years of 2001–2005. The implication for
grazing management is that, while relatively more carbon might be
sequestered into the soil when there is an increased density of
woody species, forage production might decline due to competition
from trees. Aside from reducing the potential to grow cattle, this
could also lead to land degradation as the cattle place greater pres-
sure on the remaining pasture. The θ̃ statistics (Tables 4d, 5d, 6d) in-
dicated that the assumption of multivariate-normal random effects
was plausible at each Md,min.
4.3. Sampling for Cs

Design-based sampling was the most appropriate option to ex-
plore. Had the spatial correlations (Tables 4c, 5c, 6c) continued over
a longer range we could have estimated mean Cs by geostatistical
methods. However for the observed spatial correlations this would
have likely required thousands of observations, even if an optimised de-
sign (Marchant and Lark, 2006; McBratney and Webster, 1981; van
Groenigen et al., 1999) had been used.

Table 7 presents the results for design-based sampling of Cs in
grazed land, inferred through the LMM, assuming of course that the
variogram parameters can be extrapolated at locations outside the
study site. We have concentrated on sampling at M0.1,min and M0.3,min.
These equate to nominal depth intervals of 0–0.1 m and 0–0.3 m in
the soil profile; the former is expected to be the most responsive to
changes in grazing management, while the latter is an internationally
recognised standard for reporting of Cs (IPCC, 1996; p. 5.44). This table
should be appraised with thresholds in mind that confer adequate de-
tection of Cs. We used thresholds of ±10% and ±20% of the true
mean of Cs (n.b. Mg ha−1), which, when transformed, corresponded
to 0.100 ln Mg ha−1 and 0.203 ln Mg ha−1, respectively. At M0.3,min
Table 7
Minimum detectable difference (MDD) for Cs (ln Mg ha−1) at two cumulative soil
masses, for simple (SI), stratified simple (ST), and systematic (SY) random sampling
schemes.

W
(ha)

n MDD at M0.1,min MDD at M0.3,min

SI STa SY SI STa SY

0.04 4 0.65 0.63 0.58 0.50 0.49 0.46
9 0.33 0.33 0.27 0.26 0.25 0.22

16 0.23 0.21 0.18 0.18 0.16 0.14
25 0.18 0.16 0.14 0.14 0.12 0.11
36 0.15 0.13 0.11 0.12 0.09 0.09
49 0.13 0.11 0.07 0.10 0.08 0.06

100 0.09 0.07 0.06 0.07 0.05 0.04
1 4 0.69 0.69 0.68 0.53 0.52 0.52

9 0.35 0.37 0.34 0.27 0.28 0.26
16 0.25 0.24 0.23 0.19 0.19 0.18
25 0.19 0.19 0.17 0.15 0.15 0.14
36 0.16 0.15 0.14 0.12 0.11 0.11
49 0.14 0.13 0.11 0.10 0.10 0.09

100 0.09 0.08 0.07 0.07 0.07 0.06
100 4 0.69 0.69 0.69 0.53 0.53 0.53

9 0.36 0.38 0.35 0.27 0.29 0.27
16 0.25 0.25 0.25 0.19 0.19 0.19
25 0.19 0.20 0.19 0.15 0.15 0.15
36 0.16 0.16 0.16 0.12 0.12 0.12
49 0.14 0.14 0.13 0.10 0.10 0.10

100 0.09 0.09 0.09 0.07 0.07 0.07
2500 4 0.69 0.69 0.69 0.53 0.53 0.53

9 0.36 0.38 0.35 0.27 0.29 0.27
16 0.25 0.25 0.25 0.19 0.19 0.19
25 0.19 0.20 0.19 0.15 0.15 0.15
36 0.16 0.16 0.16 0.12 0.12 0.12
49 0.14 0.14 0.13 0.10 0.10 0.10

100 0.09 0.09 0.09 0.07 0.07 0.07

a MDD for ST was computed with n−1 when n was an odd number.
the threshold of ±0.100 ln Mg ha−1 was generally met when approxi-
mately 50 samples were collected per unit. Accepting a larger threshold
of ±0.203 ln Mg ha−1 (i.e. intentionally reducing the accuracy with
which mean Cs can be characterised) greatly reduced the sampling ef-
fort, generally to between 9 and 16 samples. At a nominal depth interval
of 0–0.1 m, the sampling requirement slightly increased in all cases due
to the increased variability of Cs.

It can be seen in Table 7 that systematic random sampling (SY)
was a more statistically efficient procedure than stratified simple ran-
dom sampling (ST), which was itself more efficient than simple ran-
dom sampling (SI). The difference between the three designs was
less pronounced as the area of interest increased. We recommend
ST (with equal-area geographic strata) as the most viable option for
baseline sampling of Cs. Design SI can be deferred on the basis of inef-
ficiency. Design SY, while more efficient than ST when construed
through model-based analysis, is not suitable for design-based infer-
ence because the user will ultimately have to rely on an approxima-
tion to the estimation variance; no exact design-based expression
exists. The user might instead compute the design-based estimation
variance as if the samples had been collected under SI, which will over-
estimate the true value and therefore lead to conservative inference (de
Gruijter et al., 2006). The argument for ST is that, while moderately ef-
ficient, the user will know the estimation variance exactly, which is ul-
timately the key quantity for detecting a change in Cs through time
(Dick Brus, pers. comm.).
4. Discussion

We contend that a more complete understanding of below-
ground carbon dynamics in a cattle-grazing system will be attained
by measuring the soil simultaneously for Cs and δ13C. At a coarse spa-
tial scale, we have shown how soil type and 12 years' of continuous
grazing pressure influence the mean of Cs, and how soil type influences
the mean of δ13C. The null result for the effect of grazing on mean δ13C
suggests that 12 years might be too short a period to see a definitive
coarse-scale effect (Krull and Bray, 2005; Krull et al., 2005), although
the drought of 2001–2005 might also have influenced this result
through its effect on biomass production. Our finding that, at the spatial
scale of autocorrelated variation, Cs might increase to the detriment of
forage production has self-evident implications for grazing manage-
ment. Each of these results was only apparent because linear mixed
models were able to separate the ‘fixed’ effects of grazing and soil
type from other ‘random’ sources of variation (Section 2).

The soil type effect on Cs can be explained by textural differences.
The red kandosol, which has a relatively coarse texture (Ben Harms,
pers. comm.), recorded the smallest Cs, while the finer-textured ver-
tosol and sodosol were associated with larger Cs (Tables 4b, 5b, 6b).
Generally, fine-textured soil stores more plant-available water, re-
tains more nutrients, and provides better soil structure for plant
growth, and consequently, has more plant-C input than coarse-tex-
tured soil. For the vertosol and sodosol it is likely that the relative
abundance of deeper-rooted C3 vegetation, as shown by the depletion
of δ13C (Tables 4b, 5b, 6b), utilised water and nutrients more effi-
ciently for biomass production than the red kandosol. Moreover, soil
organic C in a coarse-textured soil has a faster decomposition rate, be-
cause it lacks the protection generally afforded by an abundance of
clay particles (Chan et al., 2010; Hassink, 1997). We speculate that,
to a nominal depth of 0.3 m, the complexity of the soil-grazing inter-
actions (Tables 4b and 5b) relates to the increased prevalence of
(generally unpalatable) native shrub Carissa ovata, at the expense of
C4 grasses. Although ground-based observations show an increase in
Carissa cover over the entire site in the last decade, this increase has
been by far the largest on the brown sodosol-yellow kandosol com-
plex, where its cover now exceeds N25% in many parts. This could ex-
plain the increase in Cs seen for this soil type under heavy grazing. In
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contrast, the increase of Carissa ovata on the red kandosol has been
far smaller (Peter O'Reagain, unpublished data).

Three key implications of our study relate to practical sampling is-
sues for Cs in the rangelands of tropical Queensland. The first is that
baseline sampling for Cs should be done to a cumulative soil mass of
3334 Mg ha−1 (i.e. a nominal depth interval of 0–0.3 m) in the pro-
file. Inclusion of soil from beyond this mass will smooth the baseline
Cs signal such that, in the future, it may be difficult to show if there
has been a significant change in Cs due to grazing management, the
effects of which would concentrate at the top of the profile. The sec-
ond key implication is that the interaction between soil type and
grazing pressure creates a difficulty for efficient baseline sampling
of Cs. Prior to collecting the baseline samples a soil surveyor will
need to know where the classes of a soil map intersect with paddock
boundaries. According to Table 7, the surveyor should look to place an
adequate number of samples in every unit of the resulting intersec-
tion, but unfortunately few grazing properties in the Australian ran-
gelands have a soil map as detailed as the trial site at Wambiana
station. This lack of detail will lead to under-sampling of the land-
scape, which will increase the estimation variance and ultimately
make it harder to detect a temporal change in Cs due to grazing man-
agement. There is obviously an urgent need for improved pedological
mapping at a spatial scale relevant to the graziers of the Australian
rangelands. A high-throughput analytical method like diffuse reflec-
tance spectroscopy of the soil cores (Viscarra Rossel et al., 2006)
could be used as part of the sampling campaign, with the aim of im-
proving the soil classification in an area. Furthermore, our results sug-
gest that some sampling efficiencies can be made: for example, at a
nominal depth interval of 0–0.3 m in the profile, Cs for the brown
sodosol-yellow kandosol complex and the grey vertosol are equiva-
lent under moderate grazing (Table 5b), and so they might be aggre-
gated into a single sampling unit. The third key implication for
sampling is that, in general, 25 samples in a landscape unit should
be sufficient to characterise mean Cs (to within 20% of the true value)
for nominal depth intervals of 0–0.1 m and 0–0.3 m. It is arguable that
the ‘grey area’ of 20% is too large for a viable carbon-monitoring scheme
but a smaller target, say 10% of the true mean, entails a sampling effort
that is likely to be prohibitive. We recommend the use of stratified sim-
ple random sampling, with strata of equal area defined by geographic
coordinates (Walvoort et al., 2010), and at least two samples collected
per strata.

We reiterate that the depth intervals we have cited throughout are
only nominal: the results relate strictly to soil mass in the profile,
which Gifford and Roderick (2003) and McBratney and Minasny
(2010) recommended for reporting of Cs. But while Gifford and
Roderick (2003) recommended 4000 Mg ha−1 as a rule-of-thumb
for the 0–0.3 m interval – the internationally recognised standard for
reporting of Cs (IPCC, 1996; p. 5.44) – we instead derived reference
values that were specific to our own dataset. By using these references
we ensured that the equal-area quadratic smoothing spline (Sec-
tion 3.4) was only ever used to interpolate observed data, never for ex-
trapolation. A disadvantage of the spline of Bishop et al. (1999) is that
the soil layers sampled must be adjacent, with no intermediate layers
missing. Fortunately, this requirement did not adversely influence our
study, with only about 2% of the sampled locations were found to be
unusable. Malone et al. (2009) presented a generalised spline that can
deal with non-adjacent layers, which should be used in the future. An
obvious complication is that bulk density will be unknown at the time
of sampling, and so the investigator will not know how far to drill the
soil core. As a solution Gifford and Roderick (2003) recommend drilling
0.1 m beyond the nominal depth required; practically, this implies that
soil cores at Wambiana station should be drilled to 0.4 m depth to en-
sure that a soil mass of 3334 Mg ha−1 is attained.

With a view to improving future analyses we acknowledge four
limitations of our study. First, due to the sampling design, our results
draw on, in strict terms, an unreplicated treatment comparison. In
hindsight it would have been more statistically efficient to spread
the 436 samples over both replicates of each treatment, using, for exam-
ple, a series of exponentially spaced transects to capture the spatial var-
iability (Pettitt and McBratney, 1993). Second, we have assumed that
the covariance of Cs with δ13C is constant across the study region. This
might not be plausible: for example, Wiesmeier et al. (2009) demon-
strated how grazing homogenises bulk density and the organic carbon
concentration, reducing their spatial variability compared with
ungrazed areas. A non-stationary LMM (Marchant et al., 2009) would
allow us to investigate whether the assumption of constant variance is
justified. Third, while we found no effect of grazing pressure on the
mean of δ13C for total organic carbon, it might be possible to enhance
the sensitivity by size-fractioning the C prior to isotopic analysis. Krull
et al. (2005) and Krull and Bray (2005) have shown, for two separate
sites in the rangelands of tropical Queensland, how δ13C for particulate
organic carbon (N53 μm and b200 μm) and for the b53 μm fraction of
organic carbon vary substantially from that of total organic carbon,
and how these differences can be related to historical vegetation man-
agement. Finally, the locational andmeasurement errors inherent in ob-
serving bulk density, organic carbon concentration, and δ13C are an
inevitable source of uncertainty. If we could reduce the magnitude of
these errors then we would be able to detect even smaller soil type
and grazing effects.
5. Conclusions

For a long-term cattle-grazing trial in the tropical rangelands of
Australia, we have used linear mixed models to elucidate: (i) the ef-
fect of soil type (delineated by pedological survey) and grazing pres-
sure (sustained over a 12-year period) on soil carbon stock (Cs) and
the stable carbon isotope ratio of soil organic carbon (δ13C); (ii) the
spatial covariation of Cs and δ13C; and, (iii) an optimal sampling
scheme for Cs. The linear mixed models revealed that soil type and
grazing pressure interacted to influence Cs to a nominal depth of
0.3 m in the soil profile; the effect of grazing on Cs was not seen at a
nominal depth of 0.5 m, but the soil type effect on Cs at this depth
was significant. Soil type influenced δ13C to a nominal depth of
0.5 m but there was no effect of grazing on δ13C at any depth in the
profile to 0.5 m. Linear mixed models showed the strong negative
correlation of Cs with δ13C, particularly at a nominal depth of 0.1 m
in the soil profile. This suggested that the C4 grasses of the study
site contributed less to soil carbon than the C3 trees and shrubs, pre-
sumably because the C4 vegetation is preferentially consumed by the
animals. One inference is that Cs may increase at the expense of for-
age availability, reducing carrying capacity. Our sampling recommen-
dation for grazing properties of the tropical rangelands of Australia is
to: (i) divide the property into units of apparently uniform soil type
and grazing management; (ii) use stratified simple random sampling
to spread at least 25 soil sampling locations about each unit, with at
least two samples collected per stratum.
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