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a b s t r a c t

This paper examines the idea that plasticity in farm management introduces resilience to change and
allows farm businesses to perform when operating in highly variable environments. We also argue for
the need to develop and apply more integrative assessments of farm performance that combine the use of
modelling tools with deliberative processes involving farmers and researchers in a co-learning process,
to more effectively identify and implement more productive and resilient farm businesses.

In a plastic farming system, farm management is highly contingent on environmental conditions. In
plastic farming systems farm managers constantly vary crops and inputs based on the availability of
limited and variable resources (e.g. land, water, finances, labour, machinery, etc.), and signals from its
operating environment (e.g. climate, markets), with the objective of maximising a number of, often com-
peting, objectives (e.g. maximise profits, minimise risks, etc.). In contrast in more rigid farming systems
farm management is more calendar driven and relatively fixed sequences of crops are regularly followed
over time and across the farm. Here we describe the application of a whole farm simulation model to
(i) compare, in silico, the sensitivity of two farming systems designs of contrasting levels of plasticity,
operating in two contrasting environments, when exposed to a stressor in the form of climate change
scenarios;(ii) investigate the presence of interactions and feedbacks at the field and farm levels capable of
modifying the intensity and direction of the responses to climate signals; and (iii) discuss the need for the
development and application of more integrative assessments in the analysis of impacts and adaptation
options to climate change.

In both environments, the more plastic farm management strategy had higher median profits and
was less risky for the baseline and less intensive climate change scenarios (2030). However, for the more
severe climate change scenarios (2070), the benefit of plastic strategies tended to disappear. These results
suggest that, to a point, farming systems having higher levels of plasticity would enable farmers to more
effectively respond to climate shifts, thus ensuring the economic viability of the farm business. Though,
as the intensity of the stress increases (e.g. 2070 climate change scenario) more significant changes in
the farming system might be required to adapt. We also found that in the case studies analysed here,
most of the impacts from the climate change scenarios on farm profit and economic risk originated from
important reductions in cropping intensity and changes in crop mix rather than from changes in the yields
of individual crops. Changes in cropping intensity and crop mix were explained by the combination of
reductions in the number of sowing opportunities around critical times in the cropping calendar, and
to operational constraints at the whole farm level i.e. limited work capacity in an environment having
fewer and more concentrated sowing opportunities. This indicates that indirect impacts from shifts in
climate on farm operations can be more important than direct impacts from climate on the yield of
lts su
individual crops. The resu

and opportunities for adaptati
levels than the crop or the fiel
systems operating in highly va
impacts and adaptation to clim
management decision rules, av
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. Introduction

The rate of on-going climate change (Rahmsdorf et al., 2007), its
ttributed impacts (Rosenzweig et al., 2008), and the likely event
hat insufficient mitigation action will lead to more than 2 ◦C of
lobal warming are making the need for planned adaptation ‘enor-
ous’ (Parry et al., 2009).
While the case for planned adaptation is overwhelming, iden-

ifying, evaluating and effectively initiating planned adaptation
ctions remain challenging. This is largely a function of the uncer-
ainty surrounding the trajectory of climate change, and the
utcomes of on-going autonomous adaptations. While these uncer-
ainties exist, addressing questions like – adapting to what?, by
hat extent?, and by when?, will remain challenging research

ssues.
The purpose of undertaking planned agricultural adaptation is

o effectively prepare and position practitioners to manage cli-
ate risks, improve profits and resource sustainability over the

oming decades as climates change (Howden et al., 2007). In the
ase of cropping systems, changes in practices at the crop level,
.e. via extension of existing climate risk management strate-
ies that mitigate present climate variability, will still be a key
omponent in adapting to climate change (IPCC, 2007). Farmers
ontinuously adapt their management practices in response to per-
eived changes in their operational environment (i.e. incremental
daptation). However, for farmers to successfully react/adapt to
hange, relevant experiential information needs to be available
Schwartz and Sharpe, 2006), so that feasible options can be evalu-
ted and their likely technological, social, economic or managerial
mpacts understood. An interesting problem therefore arises in
he absence of relevant experience, as when decision makers face
nprecedented changes. This is the particular case of farming hav-

ng to prepare for climate change and its uncertainties. In the case
f adapting to climate change, little or no experience might be
vailable to farmers to relate to, leaving them with limited ability
o choose the best possible actions. Therefore, in face of unprece-
ented change, medium and long term farm business planning will
equire far greater levels of support to ensure success. Addition-
lly, many farmers find long-term projections of climatic changes
rrelevant while under pressure to resolve more immediate day-to-
ay and season-to-season decisions. While attitudinally, accepting
hat present climatic trends are likely to continue in the future, and
hat existing projected climate changes are realistic and useful, will
equire time to be processed and incorporated in farmers’ planning
rocesses (Howden et al., 2007).

Under uncertainty the concept of resilience can help to
dentify feasible pathways to introduce adaptedness in a sys-
em while maintaining the necessary flexibility to respond to
hange and emerging opportunities (Nelson et al., 2007). Here
e define resilience as the ability of a farm business to absorb
isturbances while remaining productive and profitable, e.g. “the
apacity for self-organisation, and the capacity to adapt to stress
nd change” (IPCC, 2007). In addition, the concept of Adaptive
esilience adds flexibility in the face of an uncertain future to
he usual understanding of resilience (Mickey Glantz, 2011, pers.
om, http://www.fragilecologies.com/apr28 08.html). Resilience is
lso linked to the concepts of vulnerability and adaptive capacity.
ccording to Gallopin (2006), both resilience and adaptive capacity
re measures of the capacity of a system to respond and reduce vul-
erability when exposed to an external stress. Here we propose that
n important characteristic of resilient systems is their level of plas-
icity, i.e. the capacity of the system to opportunistically respond to

ariability; for the case of farm businesses this relates to their flex-
bility in tactical management and strategic planning. We define
lasticity in farm management as the outcome from flexible and
pportunistic management rules that moderate potential impacts,
search 124 (2011) 157–170

or benefit from the opportunities associated with operating in a
highly variable environment. Plastic farm businesses have higher
ability to respond, and profit from variability, by consciously or
automatically adjusting options to reliable clues from the environ-
ment in which they operate (natural, human).

In agriculture, examples of more environmentally contingent
farming systems can be found in the USA’s Great Plains “dynamic”
cropping systems (Tanaka et al., 2002; Hansen et al., 2007); in
Australia’s “opportunistic cropping systems” (Hammer et al., 2001;
Armstrong et al., 2003; Sadras et al., 2003; Chataway et al.,
2003); and in Africa’s “response farming” (Stewart and Faught,
1984; Stewart and Kashasha, 1984; Wafula, 1995). In the Great
Plains of North America dynamic cropping systems were pro-
posed as a way to increase the sustainability of cropping systems.
In Australia, opportunistic cropping emerged as a strategy to
cope with the risks and opportunities from well-defined patterns
of inter-annual climate variability i.e. El Niño and the Southern
Oscillation Index (Stone et al., 1996). In Africa, “response farm-
ing” was proposed as an environmental contingent approach to
boosting crop yields and shedding poverty during good rainfall
seasons, while providing food security during low rainfall seasons
(http://responsefarming.org/). Apart from differences in terminol-
ogy and methodologies, all three examples suggest the need for
the development of more plastic production systems better able
to cope with highly variable production environments such as cli-
mate and markets. Despite the general acceptance that plasticity
might be good for adaptation in variable environments, so far there
has been no attempt to identify how plasticity could be achieved,
what are the trade-offs between plastic and not plastic farming sys-
tems, and how plasticity might translate into increased resilience,
adaptedness and reduced vulnerability.

Here we postulate that as in evolutionary ecology (DeWitt and
Schneider, 2004), plasticity in farming systems is a systems char-
acteristic that increases the resilience of farm businesses; and test
the hypothesis that farming systems that exhibit contrasting levels
of plasticity in their tactical and strategic management will achieve
different levels of resilience when exposed to a stressor such as a
climate change.

2. Methods

To test the hypothesis above we used an extended (whole farm)
configuration of the cropping systems model APSIM (Keating et al.,
2003) to study the sensitivity of a number of bio-economic param-
eters of four farm businesses having contrasting levels of “intrinsic
plasticity”, when exposed to a range of climate change scenarios.
The four farm designs were described in collaboration with farmers,
consultants and expert agronomists. Here, climate change scenar-
ios were used with the only aim of introducing stress i.e. hardship
in the operating environment of the farm businesses, and not with
the intention of predicting their future economic performance. By
studying the impacts of the disturbance on bio-physical and eco-
nomic performance indicators of the farm businesses we expected
to gain insights into whole farm sensitivities, constraints and
opportunities for change and improvement towards an increased
level of resilience.

2.1. The APSFarmmodelling approach

APSFarm (also in Power et al., 2011) is the extended whole
farm configuration of the farming systems model APSIM (Keating
et al., 2003). The motivation to develop APSFarm originated from

the need to simulate the impacts (i.e. economic, financial, environ-
mental), of the alternative allocation of limited resources (e.g. land,
labour, time, irrigation water, livestock, machinery, and finance),
across a number of alternative farm enterprises at the whole farm

http://www.fragilecologies.com/apr28_08.html
http://responsefarming.org/
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Fig. 1. Schematic representation of the original farming systems for Farm A-plastic
and Farm B-rigid as per interviews with the farm manager. Where, F is fallow, SF
D. Rodriguez et al. / Field Cro

evel. APSFarm is included in the 7.2 (and higher) releases of the
PSIM model available at http://www.apsim.info.

Here we used APSFarm in a participatory action research
PAR) study to support discussions on the design of more prof-
table and resilient farm businesses with groups of collaborating
armers. Our PAR approach involves interviews and discussions
ith case study farmers and their consultants with the objec-

ive of (i) describing the farm business i.e. resources, assets, rules
nd decision making processes farmers apply when managing
heir farm; (ii) identifying problems and potential opportunities
or improvement; and (iii) use the APSFarm model to research
pecific questions via What if? scenario analyses e.g. climate,
rice, management, and to quantify trade-offs between compet-

ng farmers’ objectives e.g. profit and economic risk. Simulation
utputs are then used to inform discussions with the participat-
ng farmers. Outcomes from these discussions include farmers
nd researchers having an increased understanding of the farm-
ng system under study, and an increased certainty on the likely
osts and benefits from the adoption of alternative adaptation
ptions.

.2. The APSFarm model

A key difference with APSIM is that in APSFarm the management
f the farming system is modelled as a set of state and transition
etworks, or finite state automata. In APSFarm, each field has a
urrent state e.g. fallow, wheat, sorghum, etc., and ‘rules’ allow the
ransitions between adjacent states, e.g. wheat – fallow – sorghum.
hese rules represent the capacity e.g. availability of machinery,
and, labour; capabilities e.g. agronomic and technical skills; and
references e.g. farm business strategies, risk attitude, of the farm
anager. Rules are expressed as a Boolean value (true for feasible,

alse for otherwise), and can also take real values, e.g. higher val-
es can represent the desirability of a particular action. Each day,
he model examines all paths leading away from the current state
o adjacent states, and if the product of all rules associated with
path is non-zero, it becomes a candidate for action. The highest

anking path is taken, and the process repeats until nothing more
an be done for that day. Rules can represent farm level criteria,
uch as sowing windows for each crop, definitions of “break of the

eason” such as mm of rainfall over a defined period of time, the
aximum farm area that could be sown to each crop. Examples of

eld level criteria include: minimum extractable soil water (ESW,
m) required for sowing a crop, definitions of a “sowing opportu-

Table 1a
Farm level variables and their threshold values in APSF
A-plastic.

Fa
Sowing window Sow

oppor
(m

Crops
Spring sorghum 15 Aug - 31 Oct 2
Early sorghum 1 Nov – 15 Dec 2
Sorghum 16 Dec – 15 Feb 2
Late sorghum 16 Feb – 28 Feb 1
Maize 15 Jan – 28 Feb 2
Wheat 31 Mar – 30 Jun 2
Chickpea 1 May – 15 Jun No
Cover crop After 30 Jun 1
* Required rainfall to be accumulated within four cons
♣ Maximum area to be sown to each crop as % of the w
♠ Maximum farm area the farmer can crop in one day. T

different farm activities.
summer fallow, WF winter fallow, S1,2,. . . and W1,2,. . . represent sorghum and wheat
crops, respectively, having contrasting managements, and where C is chickpea and
M is maize.

nity”, cropping history, soil type i.e. plant available water capacity
(PAWC), the level of ground cover, etc.

The results from actions having economic implications (e.g. vari-
able costs from the use of fertilisers, the need for seeds for planting
a crop, or the profits from harvesting a crop), are calculated based
on a list of expected costs and prices provided by the participat-
ing farmers. Fixed farm operational costs are also obtained from
the participating farmer and used in the calculation of farm prof-
its (i.e. before tax). Therefore, outputs from APSFarm include, but
are not limited to, production measures e.g. yields and crop areas;
economic measures e.g. production costs, crop gross margins, eco-
nomic risk, and farm annual profit; efficiency measures e.g. crop
and whole farm water use efficiency; and environmental measures
e.g. deep drainage, runoff, and erosion.

2.3. Case studies and simulated scenarios

The managers from two farm businesses having contrasting lev-
els of plasticity in their tactics and strategies, i.e. Farmer A-plastic,
and Farmer B-rigid, were interviewed, and a complete description of
the tactical and strategic management of their farms was obtained

(Fig. 1a and b, and Tables 1 and 2).

Farmer A-plastic (Fig. 1a) manages a rain-fed 2000 ha no-till
cropping farm, subdivided into ten management units, near Emer-
ald, Central Queensland, Australia (−23.53◦S, 148.16◦E). Farmer

arm as per interview with the manager of Farm

rm level variables
ing

tunity*
m)

Area to sow♣

(%)
Work capacity♠

(ha/h)

5 10
5 30
5 80
5 30 13-23
5 20
5 80

 rule 40
5 30

ecutives days for a successful sowing
hole farm
he farmer will have different work capacity for 

http://www.apsim.info/
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Table 1b
Field level rules, variables and their threshold values in APSFarm as per interview
with the manager of Farm A-plastic.

Field level variables

Soil water Historyc Soil type (mm)d

(mm)a (mm/mm)b

Crops
Spring sorghum >100 3
Early sorghum >80 3
Sorghum >80 3
Late sorghum >60 3
Maize >110 3 >140
Wheat >80 3
Chickpea >100 >0.7 1

a Available plant water in the whole soil profile.
b Available plant water for moisture seeking chickpea in the 0.1–0.2 m soil layer.
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Table 2b
Field level rules, variables and their threshold values in APSFarm as per interview
with the manager of Farm B-rigid.

Field level variables

Soil water Crop
historyc

Ground
cover (%)

(mm)a (mm/mm)b

Crops
Short fallow sorghum >100 2
Long fallow sorghum >100 2
Short fallow early wheat >80 0.8 2
Long fallow early wheat >80 0.8 2
Short fallow wheat >80 0.8 2
Long fallow wheat >80 0.8 2
Late wheat >80 0.8 2
Chickpea >80 0.8 1 >30

a Available plant water in the whole soil profile.
b

fed 3000 ha no-till cropping farm subdivided into 10 management
c Maximum number of years of monoculture.
d Soil plant available water capacity (mm).

-plastic was selected for this study as he has been member of
farming systems research and development project for more

han eight years and an extensive data set on soil properties, crop
equences, production costs and yields was already available. As
ost farmers in his region, Farmer A-plastic is highly opportunistic

n the tactical and strategic management of his farm, meaning that
e will constantly monitor environmental and market conditions

or opportunities to sow a crop or change practice and tactics aim-
ng to maximise profits and ground cover. Farmer A-plastic can be
efined as highly environmentally contingent. His farm comprises
hree major soil types of contrasting plant available water capacity
.e. low 120 mm on 30% of the farm, medium 150 mm on 40% of
he farm, and high 180 mm on the remaining 30%. In average the
armer cultivates c.a. one third of the area to winter crops i.e. wheat
nd chickpea, and two thirds to summer crops i.e. sorghum and
aize, though this ratio could vary to up to 80% of the area to each

f the individual enterprises (except maize and chickpea) depend-
ng on relative prices and seasonal conditions. Over the last few
ears the cropping intensity was rather high, though variable, in the
ange of 80 to 100%. Work capacity varies depending on the farm
ctivity from 13 to 23 ha/h (Table 1a). Fig. 1 and Tables 1a and 1b,
escribe the key dynamics, rules and threshold values that define

he farming system. Fig. 1a, shows the alternative states in which
ny particular management unit (i.e. field) can be found, while the
rrows represent the rules that need to be met for a transition to

Table 2a
Farm level rules, variables and their threshold values in
Farm B-rigid.

Sowing window

Crops
Short fallow sorghum 1 Sep – 16 Dec
Long fallow sorghum 1 Dec – 16 Dec
Short fallow early wheat 26 Apr – 7 May
Long fallow early wheat 26 Apr – 7 May
Short fallow wheat 8 May – 1 Jun
Long fallow wheat 8 May – 1 Jun
Late wheat 2 Jun – 9 Jun
Chickpea 14 May – 30 May
* Required rainfall to be accumulated within four cons
♣ Maximum area to be sown to each crop as % of the w
♠ Maximum farm area the farmer can crop in one day. T

different farm activities
Available plant water for moisture seeking wheat and chickpea, i.e. volumetric
soil water content in the 0.1–0.2 m soil layer

c Maximum number of years of monoculture.

occur (Tables 1a and 1b). This farmer grows four crops, i.e. sorghum,
maize, wheat and chickpea, though sorghum can be considered as
four enterprises having different genotypes, sowing rules, nitrogen
managements, sowing windows, and maximum sowing areas i.e. as
proportion of the whole farm. For example, spring sorghum is sown
between 15th August and 31st of October, if: (i) there is a sowing
opportunity i.e. accumulation of at least 25 mm of rainfall over four
consecutive days and there is no rain on the sowing day; (ii) the
existing area sown to spring sorghum does not exceed 10% of the
farm area; (iii) there is more than 100 mm of available plant water
in the soil profile; (iv) sorghum was not grown more than twice in
the last three years on that field; and (v) the tractor is available for
sowing the crop (Tables 1a and 1b). In case any of those five rules
would not be met, the sowing for spring sorghum would not pro-
ceed, and the model would then consider sowing early sorghum
after the 1st of November. When more than one crop would be
available for sowing at any particular day, the model would assign
the use of the tractor to sow first the field having the highest value
of soil available water (as per farmer’s feedback).

Farmer B-rigid (Fig. 1b, and Tables 2a and 2b) manages a rain-
units, near Goondiwindi, Southern Queensland, Australia (−28.55
◦S, 150.31◦E). Farmer B-rigid is managed by a well-known private
consultant from the Goondiwindi region that maintains an excel-

APSFarm as per interview with the manager of

Farm level variables
Sowing

opportunity*
(mm)

Area to 
sow♣

(%)

Work 
capacity♠

(ha/h)

20 20
20 80

Deep sowing 20
Deep sowing 20 8-20
Deep sowing 80
Deep sowing 80
Deep sowing 10
Deep sowing 20

ecutive days for a successful sowing
hole farm
he farmer will have different work capacity for 
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ent database of farm records including soils, climate, farm inputs
nd outputs. The manager of Farm B-rigid, is less opportunistic in
is tactics and strategies and tends to follow a relatively more fixed
otation of cropping enterprises. Farm B-rigid can be defined as
ore “calendar-driven”. The farm also comprises three major soil

ypes of contrasting plant available water capacity i.e. low 140 mm
n 20% of the farm, medium160 mm in 60% of the farm, and high
80 mm in the remaining 20%. In average the farmer crops c.a. two
hirds of the area to winter crops i.e. wheat and chickpea, and one
hird to summer crops i.e. sorghum, this ratio is rather constant irre-
pective of changes in relative prices or seasonal conditions. The
ropping intensity is consistently close to 80%. There are a num-
er of different sorghum and wheat enterprises characterised by
ontrasting fallow lengths and sowing windows, encompassing dif-
erent genotypes, nitrogen managements, and allocated farm areas
Tables 2a and 2b).

Even though the difference in management strategies between
arm A-plastic and Farm B-rigid are significant, both farm man-
gers are considered leading farmers in their respective regions,
perating at the upper end of achievable productivity. These
armers constantly test and adopt the latest technologies avail-
ble, participate in well organised and supported farming systems
rojects, access and use technical and climate risk manage-
ent information and climate risk management tools from a

ange of reliable sources (http://www.longpaddock.qld.gov.au/;
ttp://www.climatekelpie.com.au/). Therefore, these farms are
lready well buffered against the high level of environmental vari-
bility in which they operate, so small differences in performance
ould be expected from different scenarios tested here. A key dif-
erence between the two managements though, is that Farm B-rigid
as a more risk-averse management strategy preferring to achieve
igher yields with fewer crops i.e. lower crop intensity, in a way
o minimise the chance of negative returns i.e. down side risk or
robability of a negative return.

In order to compare plastic and rigid farm businesses within
ach agro-ecology, two additional (hypothetical) farm businesses
ere described with the help of expert local agronomists i.e. A

armer A-rigid, and a Farmer B-plastic, and simulated with APSFarm.
o create a hypothetical Farmer A-rigid we: (i) increased the mini-
um value of available soil water required to sow a crop i.e. a more

isk averse strategy; (ii) reduced the maximum area of land that any
articular crop could be sown i.e. less opportunistic; and (iii) elim-

nated the technical possibility of deep sowing chickpea crops i.e.
owing into subsoil moisture when the top 0.1 m of soil is dry.

To create a hypothetical Farmer B-plastic we: (i) reduced the
inimum value of available soil water required to sow a crop i.e. a

ess risk averse strategy; (ii) increased the maximum area of land
hat any particular crop could be sown i.e. more opportunistic; (iii)
oth wheat and chickpea had the technical possibility of deep sow-

ng into subsoil moisture; and (iv) the rotational system was relaxed
y allowing double cropping to occur i.e. two consecutive crops
rown after a very short fallow.

The four farm businesses were implemented in APSFarm and
he model outputs (over 20 years of historical data) were vali-
ated against farmers’ estimates of expected yields, the advice from
xpert local agronomists, and for the case of Farm A-plastic from two
ong term rotation trials (not shown – available from the authors
pon request).

The stressor, in the form of climate-change projections, was
erived from likely Special Report on Emissions Scenarios (SRES)
rojections for 2030 (A2 and A1T), and 2070 (A2 and A1F) (IPCC,
007), and the outputs from the a single global circulation model

adCM3, by modifying monthly values in temperature and rain-

all downscaled to the daily series of 100 years of climatology
Crimp et al., 2007). The scenarios introduced a 4.2, 6.3, 9.3, and
4.3% reduction in annual rainfall, and a 0.45, 0.8, 1.5, and 2.48 ◦C
search 124 (2011) 157–170 161

increase in median annual temperature, respectively. The method-
ology assumes no changes in rainfall or temperature variability,
though the natural variability in the historical records was pre-
served. CO2 levels were unique to each projection, i.e. A2 year 2030
(451 ppm CO2) and year 2070 (635 ppm CO2), and A1T year 2030
(440 ppm CO2), and A1F year 2070 (716 ppm CO2).

Impacts and sensitivities of the four different farm strategies
were evaluated in terms of simulated changes on individual crop
yields (annual median values over the whole farm are presented),
changes in cropping intensity, changes in the mix of crop enter-
prises, enterprise diversification, farm profits and down side risks.

3. Results

3.1. Farm crop yields

Crop mixes and crop yields within each farm responded dif-
ferently to the projected changes in climate (Figs. 2–5). For the
original Farm A-plastic, median sorghum and maize yields were
reduced by 19% and 34%, respectively, in response to the warmer
and drier conditions assumed by the 2070 A1F scenario (Fig. 2a and
b). For the same strategy and scenario wheat and chickpea yields
were increased by 51 and 45%, respectively, (Fig. 2c and d). A more
rigid management strategy (Farm A-rigid), resulted in larger reduc-
tions in median sorghum yield (26%) and similar (33%) maize yield
losses for the same future scenario (Fig. 3). Increases in mean wheat
and chickpea yields in response to climate change were also lower
than under the more plastic strategy (i.e. increases of 22 and 42%,
respectively), (Fig. 3c and d).

For the original Farm B-rigid, median sorghum and chickpea
yields were reduced by 9% and 3%, respectively, in response to
the assumed climate from the 2070 A1F scenario, (Fig. 4a and c).
For the same strategy and scenario wheat yields were increased by
4%, (Fig. 4b). For the hypothetical Farm B-plastic, median sorghum,
chickpea, and wheat yields were reduced by 31%, 15% and 1%,
respectively, i.e. comparing the baseline with the 2070 A1F sce-
nario, (Fig. 5a–c).

3.2. Cropping intensity and cropping mix

Cropping intensities and cropping mix were also affected by
the climate change scenarios, though differently across crops, farm
business strategies and regions (see number of simulated crops at
the top of Figs. 2–5).

For the original Farm A-plastic, cropping intensity was reduced
by 19% and 27% for the 2030 A1T and 2070 A1F scenarios, respec-
tively, (Fig. 2a–d). Relative to the baseline scenario, summer
cropping increased by 16% and 8%, and winter cropping decreased
by 28% and 15%, for the 2030 A1T and 2070 A1F scenarios, respec-
tively, (Fig. 2a–d). For the hypothetical Farm A-rigid, cropping
intensity was reduced by 4% and 15% for the 2030 A1T and 2070
A1F scenarios, respectively, (Fig. 4a–d). Relative to the baseline
scenario, summer cropping increased by 5% and 3%, and winter
cropping decreased by 14% and 8%, for the 2030 A1T and 2070 A1F
scenarios, respectively, (Fig. 4a–d).

For the original Farm B-rigid, cropping intensity was reduced by
9% and 26% for the 2030 A1T and 2070 A1F scenarios, respectively,
(Fig. 4a–c). Relative to the baseline scenario, summer cropping
decreased by 11% and 28%, and winter cropping increased by 5
and 13%, for the 2030 A1T and 2070 A1F scenarios, respectively,
(Fig. 4a–c). For the hypothetical Farm B-plastic, cropping intensity
was reduced by 8% and 16% for the 2030 A1T and 2070 A1F sce-

narios, respectively, (Fig. 5a–c). Relative to the baseline scenario,
summer cropping decreased by 8% and 30%, and winter cropping
increased by 3 and 10%, for the 2030 A1T and 2070 A1F scenarios,
respectively, (Fig. 5a–c).

http://www.longpaddock.qld.gov.au/
http://www.climatekelpie.com.au/
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Fig. 2. Box plots for simulated farm grain yields of sorghum (a), maize (b), wheat (d) and chickpea (d), for Farm A-plastic for the Baseline, A2 2030, A1T 2030, A2 2070 and
A1F 2070 climate change scenarios. The numbers on top of each box plot indicates the number of crops simulated within 10 fields over 20 year simulations. The box plots
show the minimum and maximum observed values (filled circles), the 5th, 25th, 50th, 75th, and 95th percentiles.

T
P
B

able 3
ercentages of failures to sow a crop as explained by the failure of individual sowing rules.
old numbers indicate an increase in the percentage relative to the baseline scenario.

Crop Available soil watera Work capa

Baseline Wheat 33 2
Chickpea 37 2
Maize 31 6
Spring sorghum 38 2
Early sorghum 37 8
Sorghum 35 8
Late sorghum 23 8

2030 A1T Wheat 33 2
Chickpea 38 1
Maize 32 6
Spring sorghum 38 1
Early sorghum 37 7
Sorghum 36 8
Late sorghum 23 9

2070 A1F Wheat 35 1
Chickpea 36 0
Maize 31 7
Spring sorghum 40 1
Early sorghum 37 6
Sorghum 34 7
Late sorghum 23 11

a Available plant water in the whole soil profile.
b Maximum farm area the farmer can crop in one day. The farmer will have different w
c Maximum area to be sown to each crop as % of the whole farm.
d Required rainfall to be accumulated within four consecutive days for a successful sow
e Maximum number of years of monoculture.
Simulations are for a Baseline, 2030 A1T, and 2070 A1F scenarios for Farm A-plastic.

cityb Area sownc Sowing opportunityd Crop historye

0 47 0
10 4 2

6 41 0
0 42 4
0 45 4
0 49 6
0 48 7

0 47 0
7 30 2
0 41 0
4 42 3
0 46 4
0 50 5
0 51 5

0 46 0
8 31 4
7 42 0
4 43 5
0 49 6
0 50 7
0 51 11

ork capacity for different farm activities.

ing.
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The impact of the climate change scenarios on the simulated
ropping intensity and crop mix were explained by changes in the
ailure of individual sowing rules i.e. availability of soil water at
owing, availability of machinery (work capacity), maximum area
own to any particular crop, sowing opportunity, and crop history
.e. the maximum number of years of monoculture (Tables 3 and 4).

For Farm A-plastic reductions in winter cropping were driven
y an increase in the number of failures to sow due to (i) lack of a
owing opportunities (in particular for chickpea), and (ii) low val-
es of available soil water. In the model a sowing opportunity for
hickpea was defined by the availability of soil humidity for deep
owing, i.e. at least 70% of plant available water capacity at 0.15m;
or wheat a sowing opportunity was defined as the accumulation
f at least 20 mm of rainfall over five consecutive days (Table 3).
eductions in summer cropping were also affected by reductions

n the number of sowing opportunities, and as the cropping system
ecame more summer dominated, by crop history, maximum areas
own, and availability of machinery (Table 3).

In Farm B-rigid reductions in summer cropping (sorghum) were
rimarily driven by an increase in the number of failures to sow
ue to lack of sowing opportunities (Table 4).

.3. Farm profits

Simulated annual operating returns (AU$/ha) were also affected
ifferently by the climate change scenarios, between farm business
trategies, regions and simulated scenarios (Figs. 6 and 7). For Farm

the more flexible farm business strategy was clearly more advan-

ageous for the baseline and A2 2030 scenario (a scenario of warmer
nd marginal rainfall change). Under condition of more significant
ainfall decline (e.g. A1T 2030), the more flexible strategy provided
chickpea (d), for Farm A-rigid for the Baseline, A2 2030, A1T 2030, A2 2070 and A1F
r of crops simulated within 10 fields over 20 year simulations. The box plots show

d 95th percentiles.

a smaller benefit, to the point that tended to become counterpro-
ductive for the A1F 2070 scenario (Fig. 6e). For Farm B instead, a
more plastic farm business strategy would be more advantageous
for all simulated scenarios (Fig. 7a–e).

Cumulative profits, at the end of 20 year simulated period for
each scenario analysed, indicated that the plastic strategy was
always more profitable. For Farm A the difference in cumulative
profits, over 20 years, between the plastic and rigid strategies
ranged from AU$1104/ha, for the Baseline scenario, to AU$293/ha
for the A1T 2030 scenario. For Farm B the difference in cumula-
tive profits, over 20 years, between the plastic and rigid strategies
ranged from AU$996/ha, for the A2 2070 scenario, to AU$690/ha
for the Baseline scenario.

Economic risk (i.e. down side risk) was mostly unaffected by the
climate change scenarios, and farm business strategies. For Farm A-
plastic the values of down side risk were28%, 29%, 29%, 33% and
35% for the Baseline, A2 2030, A1T 2030, A2 2070 and A1F 2070,
respectively; versus 29%, 31%, 32%, 38%, and 39% for the Baseline,
A2 2030, A1T 2030, A2 2070 and A1F 2070, respectively. For Farm
B-plastic the values of down side risk were26%, 24%, 26%, 21% and
26% for the Baseline, A2 2030, A1T 2030, A2 2070 and A1F 2070,
respectively; versus down side risk values of 21%, 23%, 23%, 24%,
and 32% for the Baseline, A2 2030, A1T 2030, A2 2070 and A1F
2070, respectively.

4. Discussion
These findings provide evidence that for environments and farm
business structures similar to those studied here, farm managers
that apply a higher level of plasticity in their tactical and strate-
gic management are likely to achieve higher levels of farm profit
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Fig. 4. Box plots for simulated farm grain yields of sorghum (a), wheat (b) and chickpea (c), for Farm B-plastic for the baseline, A2 2030, A1T 2030, A2 2070 and A1F 2070
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limate change scenarios. The numbers on top of each box plot indicates the numb
inimum and maximum observed values (filled circles), the 5th, 25th, 50th, 75th, a

nd resilience when exposed to a stressor such as climate change.
owever, in the tested case studies the magnitude of the bene-
t of a more plastic strategy seemed to depend on the intensity
f the stress imposed on the system. For Farm A, the differences
etween a plastic and rigid strategy tended to disappear for the
riest/warmest scenario. This result resembles the presence of a
ipping point in the system, for plasticity to be a beneficial attribute
n the management of the business. As this tipping point is reached,

ore important transformational changes might be needed to
ore dramatically reframe the business strategy. Our findings also

ighlight benefits from the development and application of more
ntegrative and interdisciplinary systems technologies to evaluate
mpacts, and opportunities for adaptation to climate variability and
hange.

.1. Plasticity as an important attribute of resilient systems

Ecologists have long identified that phenotypic plasticity is a
ey element in the functioning of organisms in variable environ-
ents (DeWitt et al., 1998). Theories of phenotypic plasticity all

eal with adaptation to variable environments. Here we used some
f these concepts to argue that, as in natural systems, more plas-
ic farm management tactics and strategies, (i.e. managers that
espond adaptively or opportunistically to “environmental” cues
uch as climate), enhance resilience and fitness in risky and uncer-
ain environments. For the two environments studied here, the
lastic strategies proved to be more profitable (Figs. 6 and 7), and

ess risky than the more rigid comparisons. These results show that,
n principle, more plastic business designs and decision rules enable
armers to respond better to environmental shifts, thus ensur-
ng the economic viability of the farm business when exposed to
crops simulated within 10 fields over 20 year simulations. The box plots show the
th percentiles.

externalities. However, the benefit from the more plastic strategies
tended to disappear as the stress imposed on the system increased,
particularly for the case of Farm A (Fig. 6e).

Even though the presence of variability is necessary for plas-
ticity to be a beneficial attribute in farm businesses, the answer
to when or whether a more plastic strategy should be favoured
over a more rigid one remains open, as social, personal or practical
issues are brought into consideration. The benefit from more plastic
over more rigid farm business management strategies are likely to
depend on: the level of variability in the operating environment;
the nature and impact of the changing variable; the presence of
feasible alternative management options; the presence of trade-
offs between competing objectives in the farm business; benefits
that outweigh the costs of plasticity; and of course, farmers’
preferences.

Rainfall variability in Australia is an important source of variabil-
ity in the production of food and fibre crops, farm income, and in
fact, Australia’s farm commodity exports. During the 2002 El Niño
drought Australia reduced commodity exports by 3.7% and eco-
nomic growth by 0.75% (ABARE http://www.abare.gov.au), while
the economic impact of the 2010–2011 La Niña floods and cyclone
Yasi are expected to be 0.5%of Australia’s gross domestic prod-
uct – about $6 billion (http://moneybasics.nab.com.au). In Australia
the frequency of widespread droughts is usually of about one per
decade, though more frequent and prolonged droughts have been
recorded in recent times (Timbal, 2009; Hayman et al., 2010). In
response to variability, Australian farmers have developed farm-

ing systems that are highly buffered against variations in rainfall.
Flexible rules e.g. sowing and crop choice selection, split appli-
cations of nitrogen fertilisers, changes in the mix of summer and
winter crops, changes in cropping intensities, fallow duration, sup-

http://www.abare.gov.au/
http://moneybasics.nab.com.au/
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ig. 5. Box plots for simulated farm grain yields of sorghum (a), wheat (b) and ch
limate change scenarios. The numbers on top of each box plot indicates the numb
inimum and maximum observed values (filled circles), the 5th, 25th, 50th, 75th, a

lementary irrigation, and changes in the allocation of land to grain
nd grazing enterprises are usually made contingent to observed
r expected changes in seasonal and inter decadal climate condi-
ions (Meinke and Stone, 2005). Even though variability is intrinsic
o most Australian farming systems, not all farmers adjust their
actics and strategies to match this heterogeneity. From the two
xamples reported here, even though these farmers are considered
bove average operators, their farm businesses contrast in the level
f plasticity in tactical and strategic management. In Australia, an
mportant cost of plasticity is time (Doole et al., 2009), as a more
nvironmentally contingent management strategy would require
requent monitoring of a number environmental and market clues
sed to trigger changes on the farming system. Work capacities
s indicated in this study (Tables 1b and 2b) were obtained dur-
ng interviews with the participating farmers and represent the
equired time to perform sowing, spraying, and harvesting activi-
ies based on existing machinery and labour. The farm A-Plastic is

anaged by two young and highly motivated brothers that share
he activities on the farm, while farm B-Rigid management is based
n the managers preference for minimising loses, though accept-
ng that this might involve missing some of the good opportunities
ssociated with the best seasons.

.2. Impacts of climate change: farm crop yields – just half of the
tory

Crop farm yields reported in this study are derived from a num-
er of thoroughly tested APSIM crop modules (i.e. sorghum, wheat,

hickpea, and maize) (Reyenga et al., 1999; Keating et al., 2003;
sseng et al., 2004) running under APSIM’s whole farm systems
odel configuration. Therefore, the distribution of yields presented

n Figs. 2–5 are farm yields, i.e. all the crops grown across the farm-
(c), for Farm B-rigid for the Baseline, A2 2030, A1T 2030, A2 2070 and A1F 2070
crops simulated within 10 fields over 20 year simulations. The box plots show the
th percentiles.

fields over the simulated period. Irrespective of the farm strategy,
at Farm A median yields from the summer crops (C4 metabolism)
were relatively stable until the 2070 scenarios, while for Farm B,
median yields of sorghum were also reduced at the earlier 2030 sce-
narios. Instead, median yields of the winter crops (C3 metabolism),
tended to increase at Farm A, particularly for the 2070 scenarios,
while remained largely unaffected at Farm B. In general for both
Farm A and Farm B the rigid strategies tended to produce higher
median yields than the plastic strategy, clearly driven by changes
in cropping intensity and crop mix.

The analysis of changes in median farm yields and farm yield
variability provided insight on potential adaptation options for the
original Farm A-plastic and Farm B-rigid. In the case of Farm A-plastic,
maize is a highly opportunistic crop only grown on the best sea-
sons and on the best soils of the farm (Tables 1a and 1b). Fig. 2b
shows that in addition to important reductions in median yields,
the good seasons i.e. opportunities for high yields tend to disap-
pear indicating the need to revisit the sowing rules for the crop
in view of shifts in cropping windows and sowing opportunities.
In the case of chickpea, a winter crop that can be sown into deep
wet soil using modern moisture seeking sowing technologies (i.e.
deep sowing), seems to provide good opportunities for increas-
ing returns in drier autumns, in particular with the reduction in
the proportion of wheat crops (i.e. lack of sowing opportunities),
as wheat is not deep sown due to its smaller seeds. Though foliar
and root diseases usually prevent growing more than one crop of
chickpea per field every two or three years, an increased propor-
tion of chickpea in the rotation would increase the risk of erosive

summer rains due to the poor ground cover left by the crop after
harvest. An interesting adaptation for the region might involve
developing technological solutions to make wheat crops germi-
nate and establish on drier top soils e.g. improved deep sowing
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Table 4
Percentages of failures to sow a crop as explained by the failure of individual sowing rules. Simulations are for a Baseline, 2030 A1T, and 2070 A1F scenarios for Farm B-rigid.
Bold numbers indicate an increase in the percentage relative to the baseline scenario.

Crop Available soil watera Work capacityb Area sownc Sowing opportunityd Crop historye

Baseline Short fallow early wheat 3 22 0 34 9
Short fallow wheat 4 17 0 28 10
Long fallow early wheat 2 18 0 28 7
Long fallow wheat 4 15 0 26 9
Late wheat 6 11 0 68 15
Short fallow early sorghum 11 6 0 45 0
Short fallow sorghum 11 6 0 45 0
Long fallow early sorghum 12 7 0 49 0
Long fallow sorghum 12 7 0 49 0
Chickpea 5 20 21 32 12

2030 A1T Short fallow early wheat 4 44 0 54 13
Short fallow wheat 9 39 0 50 13
Long fallow early wheat 4 44 0 54 13
Long fallow wheat 9 39 0 50 13
Late wheat 11 20 0 95 13
Short fallow early sorghum 26 13 0 94 1
Short fallow sorghum 26 13 0 94 1
Long fallow early sorghum 26 13 0 94 1
Long fallow sorghum 26 13 0 94 1
Chickpea 10 40 34 48 23

2070 A1F Short fallow early wheat 3 42 0 51 15
Short fallow wheat 2 35 0 52 16
Long fallow early wheat 3 42 0 51 15
Long fallow wheat 2 35 0 52 16
Late wheat 2 16 0 96 15
Short fallow early sorghum 28 7 0 96 2
Short fallow sorghum 28 7 0 96 2
Long fallow early sorghum 28 7 0 96 2
Long fallow sorghum 28 7 0 96 2
Chickpea 2 36 30 50 30

a Available plant water in the whole soil profile.
b Maximum farm area the farmer can crop in one day. The farmer will have different work capacity for different farm activities.
c
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Maximum area to be sown to each crop as % of the whole farm.
d Required rainfall to be accumulated within four consecutive days for a successf
e Maximum number of years of monoculture.

achinery, and breeding wheat cultivars with longer coleoptiles
hat would allow the crop to emerge when sown deeper into wetter
oil. This will be particularly important for the long term sustain-
bility of increasingly summer rainfall dominated environments,
here wheat stubble in no till cropping is required to minimise ero-

ion and increase infiltration during high intensity rainfall events. It
s also important to notice that even though farm crop yields were
ositively or negatively affected by the different climate change
cenarios, cropping intensity was consistently reduced. This indi-
ates that farm profitability and sustainability would be most at
isk from having fewer crops to harvest and increasing the costs
f maintaining fallowed land free of weeds, than from changes
n individual crop yields. In summary, these results indicate that
ecent trends and expected shifts in climate bring challenges and
pportunities for these farms. The challenge is how to maintain the
ropping intensity of stubble producing winter crops e.g. wheat;
nd the opportunity how to maximise the use of resources from
n increasing concentration of the annual rainfall during the sum-
er months e.g. summer grain and legume intercrops and relay

ropping systems are starting to be tested in the region to intensify
ummer cropping.

.3. A case for the need of more integrative and interdisciplinary
uantitative approaches

Even though important advances in the understanding of cur-

ent and expected impacts (IPCC, 2007; Rosenzweig et al., 2008),
nd possible options for adaptation (Howden et al., 2007) have
een outlined, most impact assessments have been derived from
odelling studies on extremely simplified and hypothetical farm-
ing.

ing systems, usually single crop simulation analyses (Tubiello and
Ewert, 2002; Asseng et al., 2004; IPCC, 2007; Garnaut, 2008;
Challinor and Wheeler, 2008). This ignores the fact that farmers
manage complicated farms rather than just crops, where changes
in one enterprise at any point in time can limit options spatially
across the farm e.g. due to land, labour or machinery constraints;
and temporally across seasons (e.g. due to follow on implications
on soil water and nutrients availability, or the need for breaks for
pests or diseases between successive crops). A typical example
is shown in Tables 3 and 4, where we found that small changes
in rainfall seasonality at key times in the cropping calendar (i.e.
drier autumns in the environment of Farm A, and drier springs in
the environment of Farm B – not shown), reduced the number of
sowing opportunities for winter and summer crops, respectively.
This resulted in changes in the proportion of winter and summer
crops; increased the demand for labour and machinery during nar-
rower sowing windows and fewer sowing opportunities; reduced
the cropping intensity; increased costs due to the need to maintain
fallows free of weeds; reduced the availability of wheat stubble to
provide ground cover; and reduced the diversity of crops on the
farm. These changes in the farming system reduced the profitabil-
ity of the farms and tended to increase their risk profile. This is the
first time the impact of the interactive effects from multiple con-
straints at the whole farm level were quantified to demonstrate
that the interactions between the components in the farming sys-
tem can be more important than the impacts at the single crop

level.

At the farm level, small changes in rainfall seasonality coincident
with key activities in the cropping calendar can have important
implications on the cropping system, e.g. on the demand for labour,
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ig. 6. Cumulative probability of simulated farm profits (i.e. annual operating retu
070 and A1F 2070 climate change scenarios.

or machinery, and final farm output (i.e. ground cover, grain pro-
uction, cash flow and profits; Tables 3 and 4, and Figs. 6 and 7).
ome of these interactions for the farm case studies analysed here
re shown in Fig. 8, where we represent the complex nature of farm
usinesses, including external drivers, internal interactions and the
ultiple objectives farmers juggle with while managing their busi-

ess. This shows, as also mentioned by others (Tubiello and Ewert,

002; Challinor et al., 2009; Meinke et al., 2009), that there is much
o be gained from looking at opportunities to adapt and increase
he resilience and productivity of farm businesses using whole farm
nalyses.
U$/ha) for Farm A-plastic and Farm A-rigid, for the Baseline, A2 2030, A1T 2030, A2

Here we presented an example of a participatory modelling inte-
grated assessment that helped us and the participating farmers
to:

• better understand the implications from current and expected
changes in climate with more realistic implications on the farm

business and the farmer

• develop relevant and actionable information that promoted co-
learning through better informed debates between scientists and
practitioners, and
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Fig. 7. Cumulative probability of simulated farm profits (i.e. annual operating returns, AU$/ha) for Farm B-plastic and Farm B-rigid, for the Baseline, A2 2030, A1T 2030, A2
2

•

•

070 and A1F 2070 climate change scenarios.

bridge gaps between the more incremental changes in practices
and tactics, with the more fundamental transformational changes
and changes in business strategies – required for the design of
more resilient and productive farm businesses.

We conclude that:
plasticity in farm management can be an important source of
resilience in face of uncertainty. It is likely that the value of plas-
ticity as a strategy for adaptation to variability will depend on
the nature and intensity of the change; the presence of feasible
environmentally contingent alternatives; a low cost for plasticity
to be implemented; and farmers’ preferences.

• More integrative whole farm modelling approaches can be use-
ful tools to identify systems characteristics that could introduce
resilience into farming systems in face of uncertainty.
• We recommend that impact assessments and the identification
of opportunities for adaptation to climate change should be con-
ducted at scales most relevant to the decision maker; this is
paramount in order to adequately account for the large num-
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