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Abstract

The sailfish (Istiophorus platypterus) is a mobile epipelagic billfish whose range extends across the world’s tropical and subtropical
oceans. Once thought to be two allopatric species, respectively inhabiting the Indo-Pacific and Atlantic oceans, molecular analyses
support a single species with global distribution. Adequate sampling of widespread pelagic species presents considerable challenges,
and most previous studies on sailfish used small numbers of molecular markers. As such, our understanding of their global population
structure was limited. In this study, we collaborated with fisheries researchers and fishers to build a comprehensive genomic dataset
of single-nucleotide polymorphisms for sailfish spanning most of its range. Here, we examined genetic variation using three filtering
approaches: (i) the full-loci dataset, (ii) putatively neutral loci, and (iii) large-Fst loci for 590 sailfish from 20 locations to explore contem-
porary population structure and connectivity in a global context. Cluster analyses of all datasets indicated three discrete populations:
the Atlantic, eastern Pacific, and Indo-West Pacific oceans. For the first time, sailfish sampled from locations across the Indo-West Pa-
cific revealed genetic connectivity throughout this region. Analyses of a subset of large-Fst loci suggested a small reduction in gene
flow between the western and eastern Atlantic Ocean and between the western Indian Ocean and the rest of the Indo-West Pacific.
These insights into contemporary population structure can inform future stock assessments and cross-jurisdictional management of
this migratory marine species.

Introduction List, and population trends for most billfish species are either

Billfishes (Istiophoridae) are strongly mobile, pelagic preda-
tors with widespread ranges, patchy distributions, large fe-
cundities, and wide larval dispersal (Nakamura 19835). These
characteristics make them particularly challenging to study
and manage when assessing their population structure and de-
limiting boundaries of fisheries stocks (Graves and McDowell
2015). Billfishes are managed by regional fisheries manage-
ment organizations (RFMOs) across their transnational distri-
butions, where they interact with multiple fishery operations.
Sailfish (Istiophorus platypterus) occur in warm epipelagic
waters of tropical and subtropical oceans globally (Nakamura
1985). Most sailfish stocks are experiencing large amounts of
fishing mortality and stock statuses are uncertain due to a lack
of comprehensive catch data (Pons et al. 2017). In 2022, sail-
fish were assessed globally as Vulnerable by the IUCN Red

decreasing or data deficient (Collette et al. 2022). While they
are targeted commercially in some regions, fishing pressure is
also driven by artisanal fisheries and bycatch in commercial
longline and purse-seine fisheries (Pons et al. 2017).

Strong larval dispersal potential and adult movement abil-
ity in pelagic fishes, combined with few physical barriers in the
open ocean, result in substantial gene flow between popula-
tions that weakens population differentiation (Waples 1998).
Indeed, molecular techniques have provided strong evidence
for a single circumglobal species of sailfish (Graves and Mc-
Dowell 1995, Ferrette et al. 2023), where they were previ-
ously considered separate in the Atlantic (I. albicans) and
Indo-Pacific (I. platypterus) (Nakamura 1983). Several stud-
ies suggest population structure in sailfish both among and
within different ocean basins, including evidence for distinct
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Table 1. Sailfish genetic material source locations by region with sample numbers (n), date range, and codes for each location.

Smith et al.

Region Code Sampling location Date range n
Western Atlantic Ocean (WAO) Al Brazil (Espirito Santo & Cabo Frio) 2015-2017 49
A2 Venezuela 2015-2017 30
A3 Miami, Florida, USA 2015-2017 34
Eastern Atlantic Ocean (EAO) A4 Liberia 2015-2017 30
AS Ivory Coast 2015-2017 30
A6 Senegal 2015-2017 30
Western Indian Ocean (WIO) I1 Kenya (Kilifi Central) 2020-2021 42
12 Mozambique (Pemba & Beira Sofala) 2020-2021 23
13 Somalia (Bosaso, Berbera & 2020-2021 17
Mogadishu)
14 Tanzania (Nungwi) 2020-2021 40
Eastern Indian Ocean (EIO) 15 Western Australia (Broome, Exmouth, 2015-2022 50
Dampier)
Western Pacific Ocean (WPO) Coral sea, Australia:
P1 North Queensland (Townsville & 2013-2022 17
P2 Whitsundays) 2021-2022 16
Southern Queensland (Sunshine Coast)
P3 Northern Australia (Darwin & Gulf of 2013-2021 72
Carpentaria)
P4 Nha Trang, Vietnam 2015 13
P5 Kuala Rompin, Malaysia 2022 6
P6 Lae & Madang, Papua New Guinea 2022 4
P7 Philippine Sea, Taiwan 2017 50
P8 New Caledonia, Fiji, Marshall Islands 2001-2017 7
(SPC samples)
Eastern Pacific Ocean (EPO) P9 Cabo San Lucas, Baja California, 2012-2014 30

Mexico

mtDNA clades between the Atlantic and Indo-Pacific, and
heterogeneity within the Indo-Pacific (Graves and McDowell
2003, Lu et al. 2014, Ferrette et al. 2021). Our current un-
derstanding of the global population structure of sailfish re-
mains limited due to challenges of sampling across their vast
range and the small number of molecular markers used in
earlier studies (Graves and McDowell 2015, Ferrette et al.
2021). Previous studies have focused on the west Atlantic
and east Pacific, which leaves unresolved questions about
structure within the Indo-Pacific (McDowell 2002, Rubio-
Castro et al. 2015, Ferrette et al. 2021). Heterogeneity be-
tween the east and west Pacific, as well as population struc-
ture across the west Pacific and Indian Oceans remains un-
clear (McDowell 2002, Lu et al. 2014, Graves and McDowell
2015).

Population structure in marine pelagic species can be driven
by reproductive or feeding behaviour, as well as physical or
physiological impediments to dispersal (Rocha et al. 2007,
Hirschfeld et al. 2021). Some barriers, such as strong gradients
in temperature or currents, may readily fluctuate over short
timescales, whereas physical barriers such as land bridges
may influence connectivity over multi-millennial timescales
(Rocha et al. 2007, Hirschfeld et al. 2021). Different molec-
ular markers will detect the influence of these barriers at dif-
ferent scales (Hirschfeld et al. 2021). Therefore, further re-
search using next-generation sequencing and a broader sam-
pling strategy are necessary to re-evaluate global sailfish pop-
ulation structure to enable their effective management (Fer-
rette et al. 2021). Here, we used a novel dataset of SNPs in
sailfish from across their circumtropical range to investigate
contemporary population structure and connectivity. First, we
assessed connectivity between the global ocean basins across
known biogeographic barriers to dispersal. Second, we deter-

mined whether population structure was present between and
within the Indo-Pacific and Atlantic oceans.

Methods

Sample collection and genotyping

Samples were collected from either caught-and-released sail-
fish as fin clips, or as muscle from landed sailfish from
2001 to 2022 (Table 1). DNA was extracted from 188 sam-
ples using either a DNeasy Blood and Tissue DNA extrac-
tion kit (Qiagen), or a salting out protocol (Sunnucks and
Hales 1996). Diversity Arrays Technology Pty Ltd (DArT) car-
ried out DNA extractions for 407 samples. Genotyping was
conducted using the DArTseq genome complexity reduction
method for medium density sequencing (Kilian et al. 2012).
Each plate contained individuals from at least two ocean
basins and a replicate individual to avoid ascertainment bias
during genotyping. Digestion of DNA was undertaken using
restriction enzymes PstI (recognition sequence 5'-CTGCA|G-
3’) and Sphl (5'-GCATG|C-3'), followed by adapter liga-
tion and amplification of small adapter-ligated fragments
(Kilian et al. 2012). A proprietary analytical pipeline was
applied by DArT to produce a SNP dataset (Kilian et al.
2012).

Quality filtering and data subsets

All visualization, manipulation, and analyses of the data were
conducted in R 4.4.1 (R Core Team 2024). Genotyping er-
rors were checked using radiator by assessing individual het-
erozygosity and the presence of duplicate genotypes (Gos-
selin 2023). Quality SNP filtering was applied to the global
dataset as well as to two geographical subsets: the Atlantic
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Figure 1. Global map of sampling locations with location codes as per Tab
InterAmerican Tropical Tuna Commission (IATTC), International Commissi

le 1. Jurisdictions of regional fisheries management organizations are included:
on for the Conservation of Atlantic Tunas (ICCAT), Indian Ocean Tuna

Commission (IOTC), and Western and Central Pacific Fisheries Commission (WCPFC).

(AO) and Indo-Pacific (IPO). This stratification was based on
previous molecular studies that showed clear genetic differ-
entiation between these areas (Graves and McDowell 2003,
Ferrette et al. 2021). Filtering of SNPs was performed using
dartRverse 1.0.2 (Gruber et al. 2018, Mijangos et al. 2022).
Details on the order of steps and thresholds applied in the fil-
tering process are provided in Table S1. In addition, putatively
neutral datasets were generated by identifying and remov-
ing loci putatively under selection to avoid violating the as-
sumptions of neutrality (Whitlock and Lotterhos 2015). Two
genome scan methods were implemented using OutFLANK
0.2 and pcadapt 4.3.5 with a g-value threshold of 0.05 (Whit-
lock and Lotterhos 2015, Privé et al. 2020). Datasets with a
subset of large-Fst loci were employed to increase discrim-
inatory power with low levels of population differentiation
to distinguish patterns within ocean basins (Jansson et al.
2023). The 300 loci with the largest Fst values in OutFLANK
were subset for global, IPO, and AO individuals (Whitlock
and Lotterhos 2015). In total, nine datasets were produced,
which included applying three filtering approaches to each
set of the global, IPO and AO samples: (i) full-loci dataset,
(i) putatively neutral loci, and (iii) large-Fst loci. Missing
data were imputed using nearest-neighbour prior to further
analyses.

Genetic diversity and differentiation

Sampling locations were grouped into larger geographic re-
gions to provide insights into broad patterns of genetic varia-
tion and to ensure sufficient sample sizes. Regions were based
on stock boundaries defined by REMOs and include the west
Atlantic Ocean (WAQ), east Atlantic Ocean (EAO), west In-
dian Ocean (WIO), east Indian Ocean (EIO), west Pacific
Ocean (WPO), and east Pacific Ocean (EPO) (Table 1, Fig. 1).
Population diversities were estimated from the full-loci dataset
for each region and sampling location using dartRverse with
1000 bootstraps (Nei 1978). A hierarchical analysis of molec-
ular variance estimated variance among and within each ge-
netic population, ocean basin and individual using the global
full-loci dataset with 1000 permutations in poppr 2.9.6 (Kam-
var et al. 2014). Statistical significance for the molecular vari-
ance components was calculated using 999 permutations in
ade4 1.7-22 (Dray and Dufour 2007). Pairwise Fsr and sta-
tistical significance values between sampling locations and be-
tween regions were calculated from global full-loci and large-

Fsr loci datasets with 1000 bootstrap intervals using StAMPP
1.6.3 (Weir and Cockerham 1984, Pembleton et al. 2013).
Partial mean migration rates within and between AO, EPO,
and Indo-West Pacific (IWP) were estimated using the full-loci
dataset with a modified version of BayesAss 3.0.4 (Wilson and
Rannala 2003). BA3-SNPS-autotune allows handling of large
SNP datasets and was used with default settings for 1 million
generations with 10% burn-in and a sampling interval of 100
(Mussman et al. 2019).

Population clustering analyses

Principal Coordinates Analyses (PCoAs) were performed on a
Euclidean distance matrix of allele frequencies between indi-
viduals in dartRverse (Legendre and Legendre 1998). PCoAs
were performed using both full-loci and large-Fst loci on
the global dataset, and then on AO and IPO subsets to dif-
ferentiate clusters within ocean basins. Admixture analyses
were performed with sparse non-negative matrix factoriza-
tion (SNMF) in LEA 3.16.0 (Frichot and Francois 2015). The
SNMF analyses assign individuals to ancestral populations
(K) without a priori geographical information. Individual ad-
mixture coefficients and allele frequencies for K = 1-20 were
estimated by SNMF using 10 repetitions for each K and 200
iterations, and entropy criteria were estimated using cross-
validation to evaluate the quality of fit (Frichot and Francois
2015). Ancestry matrices of the runs with the smallest cross-
entropy were visualized with popbelper 2.3.1 (Francis 2017).
SNMEF analyses were also performed using both full-loci and
large-Fst loci for each of the global dataset and AO and IPO
subsets.

Results

SNP genotyping and filtering

Sampling included 590 individuals at 20 locations across the
pantropical range of the sailfish that can be grouped into six
regions across the three ocean basins (Table 1, Fig. 1). DArT-
seq genotyping produced 33 871 SNPs from 567 sailfish. After
quality filtering, the global dataset included 500 individuals
with 8069 SNPs. The IPO dataset included 328 individuals
and 7268 neutral loci, and the AO dataset included 174 in-
dividuals and 7838 neutral loci. Genome scans identified few
outliers, which were unlikely to truly represent adaptive loci.
Therefore, the full-loci dataset was used in subsequent analy-
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Table 2. Diversity estimates for each region using the global full-loci dataset including number of individuals (n), observed heterozygosity (Hp) and expected
heterozygosity (Hg) with standard error in parentheses, inbreeding coefficient (Fs), and Fs confidence interval (Cl).

Region n HO HE F]s F]s CI

WAO 87 0.095 (4+0.002) 0.102 (£0.002) 0.059 0.050-0.062
EAO 84 0.093 (£0.002) 0.100 (£0.002) 0.060 0.053-0.060
WIO 96 0.087 (£0.002) 0.093 (£0.002) 0.050 0.039-0.053
EIO 105 0.089 (40.002) 0.092 (£0.002) 0.042 0.029-0.033
WPO 110 0.091 (£0.002) 0.094 (£0.002) 0.039 0.033-0.044
EPO 18 0.081 (40.002) 0.087 (£0.002) 0.077 0.052-0.057
AO 171 0.094 (£0.002) 0.101 (£0.002) 0.060 0.055-0.064
Iwp 311 0.089 (£0.002) 0.094 (£0.002) 0.044 0.040-0.049

Table 3. Hierarchical analysis of molecular variance for the full-loci dataset showing variations across oceans, populations (IWP AO, and EPO), and

individuals.
Variance Percent

df Sum sq. components (o) variation P Phi (®)
Between oceans 2 11176 0.343 0.084 0.346 0.001
Between populations 1 1440 16.603 4.088 0.001 0.041
within oceans
Between individuals 496 204788 23.689 5.833 0.001 0.061
within populations
Within individuals 500 182751 365.501 89.995 0.001 0.100
Total 999 400155 406.136 100.000

ses. An overview of each filtering step and its influence on the
number of loci and individuals in each dataset is provided in
Table S1.

Broad-scale trends
Genetic diversity and variation

Genetic diversity varied little among regions [observed het-
erozygosity (Hp) 0.081-0.095 and expected heterozygosity
(Hg) 0.087-0.102] (Table 2). All regions had small inbreed-
ing coefficients (Fig = 0.039-0.077) (Table 2). The smallest
Ho and Hg and the largest Fis were found in the EPO re-
gion, represented by a single location (Mexico) and a smaller
sample size (Table 2). Genetic variation between ocean basins
was reduced (0.08%), and 4.1% was attributed to popula-
tions within ocean basins (Table 3). Most variation was within
individuals (90.0%), compared to 5.8 % variation between in-
dividuals within populations (Table 3).

Genetic differentiation and migration analyses among ocean
basins

Pairwise Fst between regions were relatively small in the full-
loci dataset (Fst < 0.08) but were larger in the large-Fst loci
dataset (Fst < 0.268) (Fig. 2). Both datasets had significant
differentiation in pairwise Fst between AO and EPO, AO and
IWP, and IWP and EPO (Fig. 2). Pairwise Fsy were larger
between EPO and AO than between EPO and IWP (Fig. 2).
Pairwise Fst between sampling locations (Fig. 3) reflected the
broad patterns seen between regions (Fig. 2). Mexico (EPO)
differed significantly from all other locations and all locations
in the Indo-West Pacific also differed significantly from all At-
lantic locations (Fig. 3). Inferred migration rates were small
between AO, IWP and EPO (Table 4). As such, each popula-
tion consisted mostly of residents (68.3%-99.6%) (Table 4).
The IWP to EPO had greater migration (30.2%), compared to
all other directions (0.2%-1.6%) (Table 4).

Population clustering among ocean basins

The PCoA separated global sailfish into three main clusters:
IWP, AO, and EPO (Fig. 4). The first two PCoA axes ex-
plained 5.7% of genetic variation in the full-loci dataset (Fig.
4a); however, the PCoA using large-Fst loci increased the ex-
plained variation to 26.9% (Fig. 4b). Ancestry matrices from
SNMF analyses also separated sailfish in IPO from AO (Fig.
5). Separation of individuals in EPO from IWP was resolved
at K = 4 for the global datasets (Figs 5a, 5b). Minimum
cross-entropy for the full-loci dataset suggested an optimum
of K =5 and K = 24 for the large-Fst loci (Fig. S2).

Patterns within ocean basins

Genetic differentiation within ocean basins

Pairwise Fst between sampling locations revealed finer-scale
patterns within ocean basins. In most cases, trends within the
full-loci dataset were reflected in the large-Fst loci (Fig. 3).
Within AO, very small yet significant differences (Fst < 0.01)
appeared between several locations in both datasets (Fig. 3).
Brazil (WAO) was significantly different from all other AO lo-
cations, and Venezuela (WAO) had significant differences with
Liberia and Ivory Coast (EAO) (Fig. 3). There were no signif-
icant differences within EAO locations (Fig. 3). Small differ-
ences were observed between locations within the Indo-West
Pacific in both full-loci (Fst < 0.01) (Fig. 3a) and large-Fst
loci (Fst < 0.04) datasets (Fig. 3b). However, these differences
were not always consistent between datasets (Fig. 3). For ex-
ample, Somalia (WIO) had significant pairwise Fst with most
IWP locations in the full-loci dataset (Fig. 3a), which are not
fully reflected in large-Fst loci (Fig. 3b). The full-loci dataset
also showed small differences between Mozambique (WIO)
and WPO locations in south Queensland, Papua New Guinea,
and Malaysia (Fig. 3a); however, these differences were not
significant in the large-Fst loci (Fig. 3b).
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Figure 2. Heatmap matrix plot of pairwise Fst between regions for (a) full-loci dataset and (b) large-Fst loci dataset with region acronyms as defined

in Table 1. Asterisks denote P < 0.01.

Population clustering within ocean basins

Individuals within the IPO subset clustered into EPO and IWP,
which represented most of the variation in PCoA axes for
the full-loci dataset (1.9%) and large-Fst loci (11.1%) (Fig.
4d). Large-Fst loci showed a slight spread of WIO individu-
als compared to EIO and WPO sailfish in the cluster (Figs 4d,
S3). In contrast, IWP sailfish were more tightly clustered in
the full-loci dataset, aside from several sailfish from Somalia
(WIO) (Figs 4a, S3). There was no overlap of 90% of indi-
viduals in EAO and WAO for the AO subset of large-Fst loci,
with 7.8 % explained variation (Fig. 4f). However, the full-loci
dataset showed more clustering and had 2.4% variation ex-
plained by PCoA axes (Fig. 4e).

Ancestry matrices for the IPO subset clearly delineated EPO
in both datasets, and indicated substantial shared ancestry be-
tween EIO, WIO, and WPO (Fig. 5c, d). Large-Fsr loci in the
AO subset suggested ancestral differences between sailfish in
WAO and EAO at K = 2 (Fig. 5f). However, this was not
reflected in the full-loci dataset (Fig. Se). Differences within
AO were noticeable in samples from Brazil (A1) across most
datasets (Fig. 5).

Discussion

Key findings

Our comprehensive assessment of population structure for
sailfish revealed genetic connectivity throughout the IWP,
based on novel high-throughput SNPs sampled across their
global distribution. This connectivity suggests long-distance
dispersal despite the absence of comparable movement pat-
terns in tagging or fisheries data. AO, IWP, and EPO popu-
lations were genetically distinct. However, large-Fst loci in-
dicated reduced gene flow between the EAO and WAO, and
between the WIO and the rest of the IWP. Nevertheless, the
observed differentiation was insufficient to justify considering
the EAO and WAO or the WIO as separate populations with
different demographic histories at an evolutionary timescale.
Heterozygosity was consistent with the average genome-wide
heterozygosity found previously in sailfish and other billfish
(Ferrette et al. 2023). Our findings highlight a need to revise
boundaries for sailfish stocks managed by RFMOs.

Eastern Pacific sailfish are a discrete population

The strongest signal in our results was the differentiation be-
tween EPO and AO sailfish, consistent with the suggestion of
Ferrette et al. (2021) that gene flow between Pacific and AO
populations ceased ~6 million years ago. Dispersal of tropical
marine species between the WAO and EPO has been largely
prevented since the formation of the Isthmus of Panama at
least 3 million years ago (O’Dea et al. 2016), although sep-
aration may have begun earlier during the gradual closure
of the seaway and resulting oceanographic changes (Bacon
et al. 2015). Our findings show EPO sailfish are genetically
distinct from those in the IWP, which is supported by studies
of mtDNA and nuclear microsatellites (McDowell 2002, Lu
et al. 2014, Ferrette et al. 2021). Several studies of other bill-
fishes have also found a distinct EPO population from the rest
of the Pacific, including for striped marlin and swordfish (Lu
et al. 2016, Mamoozadeh et al. 2019). Evidence for reduced
gene flow and support for discrete stocks between the east and
west Pacific has also been found using SNPs for skipjack, yel-
lowfin, and bigeye tunas (Grewe et al. 2015, Barth et al. 2017,
Grewe et al. 2019).

Although sailfish are capable of long-distance movements,
no direct evidence from either tagging or fisheries data indi-
cates crossings of ocean basins (Nakamura 1985, Braun et
al. 2015, Lam et al. 2016). Sailfish associate with produc-
tive coastal waters on continental shelves rather than the open
ocean (Ortiz et al. 2003, Lam et al. 2016). The east and west
Pacific are not separated by a land barrier; however, the Pa-
cific is the world’s largest ocean, and the East Pacific Barrier is
a well-known biogeographic break (Briggs and Bowen 2012).
This barrier represents 5000-8000 km of deep water between
the central Pacific islands and the continental shelf of the east-
ern tropical Pacific. Although the EPO population in our study
was represented only by sailfish off Mexico, low levels of ge-
netic differentiation have previously been found across several
locations in the EPO (Rubio-Castro et al. 20135, Ferrette et al.
2021).

The Benguela Current is a barrier to dispersal

Separation of sailfish between the Indian and Atlantic oceans
is evident in this study, which is well-supported by previous
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Figure 3. Heatmap matrix plot of pairwise Fst between all sampling locations for (a) full-loci dataset and (b) large-Fst loci with region acronyms as
in Table 1. Asterisks denote P < 0.01.

molecular studies (e.g. McDowell 2002, Ferrette et al. 2023). (Barth et al. 2017, Mullins et al. 2018, Weist et al. 2024).
Yellowfin, albacore, and bigeye tunas have similar circum-  Africa is considered a barrier to movement for tropical ma-
tropical distributions to sailfish, and SNP analyses have also  rine species between the Indian and Atlantic oceans, due the
shown a clear separation between AO and IPO populations  strong and cold Benguela Current off the southwest coast of
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Table 4. Estimated posterior mean migration rates between and within populations with standard deviation in parentheses.

Source population

wp EPO

AO
Sink population AO 0.9960 (£0.0027)
Iwp 0.002 (£0.0015)
EPO 0.0159 (£0.0153)

0.0019 (£0.0019)
0.9950 (£0.0023)
0.3020 (£0.0210)

0.0019 (£0.0019)
0.0033 (£0.0019)
0.6830 (£0.0153)

Shaded values represent the proportion of individuals (or alleles) that originated from within the same population. Unshaded values represent the proportion
of individuals in a sink population that originated from a particular source population.

Africa. Sailfish are restricted to warm waters with a preference
for >22°C and are therefore unlikely to cross the Benguela
Current (Braun et al. 2015, Lam et al. 2016). However, one
study has suggested that sailfish may occasionally move from
WIO to the EAO (Ferrette et al. 2021), which has also been
proposed for yellowfin tuna (Barth et al. 2017, Mullins et al.
2018). Longline fisheries records show that black marlin have
occurred in the Cape of Good Hope area and occasionally mi-
grated into the AO, which is outside of their [PO range (Pen-
rith and Cram 1972). Rare vagrants may cross from the WIO
when warm-core eddies are shed into the AO by the Agulhas
Current (Penrith and Cram 1972, Nakamura 1983).

Genetic connectivity across the Indo-West Pacific

While EPO was identified as a separate population from WPO,
our study provides evidence for gene flow across the TWP.
Despite the geographic spread of sampling spanning the east
coast of Africa to Taiwan, our findings indicated genetic con-
nectivity was maintained within this region. This connectiv-
ity reinforces findings from prior genomic analyses of high-
coverage SNPs, but fewer samples and locations (Ferrette et
al. 2023). Adult sailfish can disperse widely and spawn exten-
sively across regions (Nakamura 1985, Graves and McDowell
2015), which may have maintained gene flow of sailfish across
the TWP.

Gene flow across the WPO and Indian oceans has been sug-
gested for several tunas and billfishes (Graves and McDowell
2015, Moore et al. 2020). A lack of stock structure within
the IPO has been noted for blue marlin, which are larger and
more migratory than sailfish (Graves and McDowell 2015,
Williams et al. 2020). Analysis of SNPs in yellowfin and big-
eye tunas did not show genetic separation between the Indian
and Pacific Oceans (Barth et al. 2017, Weist et al. 2024). An
IPO study of SNPs in striped marlin concluded that fish from
WPO and EIO belonged to the same population, although
some genetic differentiation was found between the EIO and
WIO (Mamoozadeh et al. 2019). Finer-scale structure was re-
ported for black marlin, with SNPs identifying three discrete
populations within IWP, which was suggested to be driven by
reproductive philopatry (Williams et al. 2015). A lack of pop-
ulation structure in sailfish in this region is surprising given
tagging studies have reported more restricted movements in
sailfish compared to other species of billfishes and tunas (Or-
tiz et al. 2003, Braun et al. 20135).

Site fidelity has been proposed for both sailfish and black
marlin (Ortiz et al. 2003). However, this behaviour in sail-
fish may result from seasonal migrations into coastal subtrop-
ical waters to feed rather than from spawning-site fidelity and
reproductive philopatry as in black marlin (Williams et al.
2015). Unlike black marlin, sailfish form feeding aggregations
and hunt cooperatively for teleosts and squid (Herbert-Read

et al. 2016). We suggest that black marlin have more defined
spawning grounds and timing compared to sailfish (Domeier
and Speare 2012). Sailfish are thought to spawn throughout
the year in equatorial waters, and during summer months in
the subtropics (Nakamura 1983, Buenafe et al. 2022). If sail-
fish spawning is linked to favourable environmental condi-
tions rather than defined spawning grounds, then this may in-
crease gene flow. Long-distance dispersal of both larval and
adult sailfish in the IWP may be facilitated by currents, such
as the Kuroshio Current, where sailfish have been known to
spawn (Nakamura 1983).

The warm waters of the Indonesian Throughflow Current
might aid dispersal of sailfish from WPO into EIO. Biogeo-
graphic barriers for marine species between WPO and Indian
oceans are at smaller scales and more permeable than those be-
tween AO and IPO (Briggs and Bowen 2012, Hirschfeld et al.
2021). Gene flow in the region may have been reduced when
Pleistocene glaciations led to cooler waters, and the Sunda and
Sahul shelves formed land bridges among Indonesian islands
and Australia and Papua New Guinea (Voris 2000). Sailfish
may have continued intermixing between WPO and EIO dur-
ing interglacial periods of the Pleistocene given that shallow
waters do not appear to be a barrier to sailfish dispersal, as
they are regularly found in shallow gulfs, such as the Gulf of
Carpentaria and Arabian Gulf (Hoolihan et al. 2004). After
the Pleistocene, sailfish populations across IWP expanded and
established secondary contact (Ferrette et al. 2021).

Support for reduced gene flow across ocean basins

In sailfish, geographic separation across basins of the Indian
Ocean and AO may have resulted in reduced dispersal, but
not enough separation to result in distinct populations. The
distances across these ocean basins are shorter compared to
distances across the Pacific. Previous molecular studies and
results from full-loci analyses in our study do not provide
support for multiple populations of AO sailfish (McDowell
2002, Ferrette et al. 2021, Ferrette et al. 2023). However, we
found subtle genetic differentiation in large-Fst loci between
the EAO and WAO, where sailfish off Brazil showed the great-
est differences in both pairwise Fst and ancestry matrices with
EAOQ sailfish. Similar analyses of large-Fs SNPs in yellowfin
tuna also showed differentiation between the EAO and WAO,
despite a lack of structure in neutral loci analyses (Pecoraro
et al. 2018). The expanse of deep water known as the mid-
Atlantic barrier could contribute to reduced gene flow be-
tween the east and west (Briggs and Bowen 2012, Hirschfeld
et al. 2021).

Previous studies have not identified genetic structure for
sailfish within the Indian Ocean, except for the Arabian Gulf,
which is a semi-enclosed basin with limited mixing with the
broader WIO (McDowell 2002, Hoolihan et al. 2004, Fer-
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Figure 4. Principal coordinates analysis (PCoA) plots with ellipsoid encompassing 90% of individuals. Datasets are compared for global (a) full-loci
dataset and (b) large-Fst loci, Indo-Pacific (c) full-loci dataset and (d) large-Fst loci, and Atlantic (e) full-loci dataset and (f) large-Fst loci. Individuals are

coloured by region as in Table 1.

rette et al. 2021). However, these studies used fewer molecular
markers and had geographically limited sampling within the
Indian Ocean. Suitable habitats for sailfish span the north-
ern Indian Ocean off Sri Lanka, the Maldives, and the Sey-
chelles and may facilitate dispersal of occasional migrants
across this ocean basin. Minor genetic differences between the

WIO and the rest of the IWP arose in our findings based on
large-Fst loci that were not evident in the full-loci dataset.
Regional selective pressures, such as environmental hetero-
geneity, may contribute to genetic differences in marine fishes
at ecological scales (Klein et al. 2024). Genetic differences
have been found using putatively adaptive SNPs in both
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Figure 5. Ancestry matrices of global dataset with K= 3-5 for the (a) full-loci dataset and (b) large-Fsr loci, the Indo-Pacific dataset for (c) full-loci dataset
and (d) large-Fst loci dataset with K= 3, and the Atlantic dataset for (e) full-loci dataset and (f) large-Fsr loci dataset with K= 2. Region acronyms and

location codes as per Table 1.

striped marlin within the Indian Ocean (Mamoozadeh et al.
2019), and yellowfin tuna within the Pacific (Grewe et al.
2015).

Conclusion and implications for management

Our study provides the most thorough genomic assessment of
sailfish population structure to-date with increased represen-
tation of IPO samples. The implications of this study are im-
portant for organizations that manage recreational, artisanal
and commercial fisheries around the world. We have reviewed
the alignment of genetic populations with operational fisheries
management stocks given continued global fishing pressure
on sailfish. We suggest that REMOs in the Pacific and Indian
oceans should work together to ensure consistency in the man-
agement of sailfish across the IWP as they are a single genetic
population. Although long-distance dispersal will counter the
effects of genetic drift and loss of genetic diversity, overhar-
vesting of seasonal aggregations of sailfish in one region can
affect geographically distant but connected areas if they are
part of the same population.

We suggest that sailfish should continue to be managed as a
separate stock in EPO, given they are genetically distinct from
the rest of the Pacific. Reduced genetic diversity within this
region and its geographic isolation may make these sailfish
more vulnerable to climate change, such as the predicted in-

crease in oxygen minimum zones (Rubio-Castro et al. 2015,
Logan et al. 2022). Populations in the EAO and WAO are
currently managed as separate stocks. Our findings suggest
that reduced dispersal between EAO and WAO sailfish popu-
lations may be at recent ecological timescales. However, this
pattern is not reflected at evolutionary timescales, as shown in
our full-loci results and in studies of mtDNA, microsatellites,
and whole-genome sequencing (McDowell 2002, Ferrette et
al. 2021, 2023). We suggest that AO sailfish could be man-
aged as east and west stocks that are recognized as genetically
connected.

In summary, results from this study provided evidence for
connectivity across the IWP and a discrete EPO population.
We confirmed strong genetic differentiation between AO and
IPO with an indication of reduced gene flow between EAO
and WAQO. We anticipate that our study will inform the de-
lineation of biologically meaningful sailfish stocks in fisheries
management.
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