From Aust Soed Sci Newsletter 1:22 1975

- 22 -

Screening Pasture Species for Optimum Germination Temperatures Using a One-Way Thermogradient Germination Plate

A locally designed and built thermogradient germination plate has been used extensively over the past 4 years to make a rapid assessment of the optimum temperature for germination of a range of native and exotic pasture species for which little information is available. Though only constant temperatures could be used and light was almost completely excluded, it was felt that this technique offered the quickest results at a time when a minimum of seed was available.

The maximum temperature extremes which could comfortably be maintained on the plate were 42° and 10°C, which gave a temperature gradient of 4°C per 10 cm. However the actual range experienced was averaged over the full 21-day test period from daily readings, and intermediate values were calculated assuming a linear temperature gradient along the insulated plate. Three replicates of 25 seeds were arranged in rows at 10-cm intervals down the plate for each test run. The seeds were placed on an absorbent material (either cloth or paper) which ran the full length of the plate and germination counts were made at regular intervals, more frequently over the first few days.

The two tables (Tables 1 and 2) give a summary of the results to illustrate a number of the important findings. Firstly there were some species which could not easily be induced to germinate under the conditions imposed on that particular batch of seed, namely Aerva javanica (kapok bush), Schmidtia bulbosa (Kalahari couch) on some occasions, Aristida jerichoensis (a wire grass), Chenopodium auricomum (Queensland bluebush), Digitaria species, Monachather paradoxa (mulga oats), Panicum decompositum (native millet), Paspalidium rarum, and caryopses of Thyridolepis mitchelliana (mulga Mitchell). Note only the first two species mentioned are exotic species and there were no legumes in the list of poor germinators. reasons for poor germination have been largely elucidated since, in many cases, the seed was too fresh, e.g. Digitaria spp. and A. jerichoensis. The two native grasses M. paradoxa and T. mitchelliana are badly attacked by fungi and bacteria when germinated as caryopses. However in the case of P. decompositum later tests indicate a strong requirement exists for alternating temperatures or light in the higher temperature ranges.

TABLE 1

Native Species

.:	Species	Seed condition				.temp. ^O C day test)	Possible temp. extremes (°C)	Maximum viability recorded
	Aristida jerichoensis Astrebla lappacea Astrebla pectinata Chenopodium auricomum Dactyloctenium radulans Digitaria ammophila Digitaria ammophila Digitaria diminuta Digitaria diminuta Monachather paradoxa Monachather paradoxa Panicum decompositum	natural natural caryopses perianth removed caryopses natural natural natural natural natural natural caryopses natural	6 11 36	33 30 23 34 30 25 27 31 27 - 23-3	4	16 23 23-34 10-16 27 27 21 27 20-30 23 17 21 16	(°C) 40-12 41- - 3712 40-12 42-11 34-14 40-12 38-12 23-13 38- 28-	recorded (%) 27 69 91 40 80 49 16 17 43 7 3 9 47
•	Paspalidium rarum Psoralea eriantha Psoralea tenax Rhynchosia minima Thyridolepis mitchelliana Thyridolepis mitchelliana		42 13 35 30 18 11	23-3 16-2 20-3 23-2 24-2 30	0 0 7	23 11-27 11-30 20-27 13-27 30	38-13 41- - 41-11 35- 41-11	5 99 95 93 93 54

TABLE 2
Exotic Species

Species and strain	Seed condition		.temp. ^O C Op day test)(21		Possible temp. extremes (°C)	Maximum viability recorded (%)
Anthephora pubescens CPI 43713	caryopses	23	24-28	24-28	-	84
Anthephora pubescens CPI 43713	fascicles	18	24	17-21	41-	55
Aerva javanica 'Cloncurry'	natural	2 ,	32	32	41-12	8 .
Aerva javanica 'Cloncurry'	fluff removed	2	32	21	-11	31
Aerva javanica 'Kununurra'	fluff removed	60	24	24	42–12	15
Cenchrus ciliaris cv.Biloela	caryopses	48	28	21-28	- ' '	96
Cenchrus ciliaris Q10077	fascicles	17	28	NA	-· ·	>50
Cenchrus ciliaris Q10077	caryopses ?	17	24	21	·	96
Cenchrus ciliaris Q10087	fascicles	17	32	24	-12	· 69
Cenchrus ciliaris Q10087	caryopses	17	24-28	NA .	-12	>95
Clitoria termatea Q4116	scarified	10	28	17-32	41-	100
Dactyloctenium giganteum Q10091	caryopses	42	39	39		65
Eragrostis curvula CPI 30379	caryopses	21	32	32	41-	91
Eragrostis curvula CPI 33944	caryopses	18	24-38	21-24	41-	97
Melilotus alba var. annua	scarified	24	20-27	10-31	37-	100
Rhynchosia minima CPI 36696 🕙	scarified	24	27-31	20-31	40~	93
Schmidtia bulbosa CPI 43715	fascicles	19	28	17-21	~	53
Schmidtia bulbosa CPI 43715	caryopses	12.	28-31	17-24	-	93
Schmidtia bulbosa CPI 43715	caryopses	9	32	32	-12	24
Stylosanthes mucronata CPI 41219	scarified	20	20	17-20	-	81

Optimum temperatures for rapid germination were generally higher than for total viability at 21 days or had a higher maximum to the optimum range. Whether this is a real effect or due to greater pathogen damage at the higher temperatures as time increased is not known for certain, but pathogens are felt to be the cause. There were no species with a marked peak germination at a particular temperature and in fact a surprisingly wide range of temperatures was suitable for high germination of most species, particularly the legumes. Both Dactyloctenium species had comparatively high optimum temperatures for rapid germination and showed a distinctly lower germination in the range 25° to 32°C than at temperatures above and below this range.

The range of temperatures over which germination would occur for most species was quite large, usually in the vicinity of $12\text{-}40^{\circ}\text{C}$. However some species germinated over the entire range used, notably *Psoralea tenax*, *Stylosanthes mucronata*, and some of the exotic grass species. In general the legumes would not germinate well at high temperatures, particularly the *Melilotus* sp., which is a winter annual. The two *E. curvula* lines showed a very strong dislike for temperatures of 41°C even though they germinated almost fully at 38°C . Spikelets of *T. mitchelliana* showed a much narrower range of preferred temperatures for germination than its caryopses and this observation would apply also to fascicles of *C. ciliaris* and *A. pubescens*.

In summary the native species presented more germination difficulties than the exotics and the grasses were harder to germinate than the scarified legume seeds, with our present state of knowledge. Fresh seed or grass seeds with their floral appendages intact were often difficult to germinate. Seed coats also appeared to reduce the temperature range over which germination would occur. Adaptability to a wide range of temperatures for germination was exhibited by most species but very high temperatures certainly did not suit most species, despite their tropical origins.

R.G. Silcock and Lynn M. Williams Department of Primary Industries, Queensland