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Genomic prediction models that fit multiple environments globally are valuable tools for assessing
cultivar performance across diverse and variable growing conditions. We analyzed 2,064 strawberry
(Fragaria x ananassa) accessions genotyped with 12,591 SNP markers. Soluble solids content (SSC)
was measured in multi-year trials conducted at seven locations spanning the U.S., Europe, and
Australia. Population structure analysis grouped accessions into two major clusters corresponding to
subtropical and temperate origins, which was confirmed by significant differences in allele frequency
distributions. To improve prediction accuracy across environments, we developed factor analytic
models focusing on genotype-by-environment interactions rather than covariance between sub-
populations. We compared three genomic prediction approaches: (i) a standard GBLUP model (Gfa), (ii)
a GBLUP model incorporating principal component analysis eigenvalues and re-parameterization (Pfa),
and (iii) a multi-population GBLUP model that fits sub-population genomic relationship matrices (Wfa).
The Pfa and Wfa models achieved the highest prediction accuracy (r=0.8) for SSC, outperforming
individual environment models and the standard GBLUP. These findings demonstrate that accounting
for population structure and genotype-by-environment interactions enhances multi-environment
genomic prediction and supports practical implementation of genomic selection in global strawberry
improvement programs.
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Global genomic prediction has been proposed as a means to integrate datasets from diverse environments
and years in horticultural crops, thereby improving prediction accuracy and facilitating cultivar deployment
across locations!. Horticultural crops, including high-value fruit and nut species such as strawberry (Fragaria
x ananassa), depend on the adoption of improved germplasm that meets grower, consumer, and industry
demands®>. Genotype-by-environment (GXE) interactions are common in plants and must be understood to
optimize breeding strategies and cultivar deployment. However, many breeding programs rely on relatively

1Centre for Horticultural Science, University of Queensland, St. Lucia, QLD, Australia. 2Purdue University, West
Lafayette, IN 47907, USA. 3USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, USA. “Department
of Plant Pathology, Kansas State University, Manhattan, KS, USA. *Gulf Coast Research and Education Center,
Department of Horticultural Sciences, Plant Breeding Graduate Program, Institute of Food and Agricultural Science,
University of Florida, Wimauma, FL, USA. ®Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora,
Universidad de Malaga-Consejo Superior de Investigaciones Cientificas, Malaga 29010, Spain. “Unidad Asociada
de 1+D+i IFAPA-CSIC Biotecnologia y Mejora en Fresa, Malaga 29010, Spain. 8Centro IFAPA de Malaga, Instituto
Andaluz de Investigacién y Formacion Agraria y Pesquera (IFAPA), Malaga 29140, Spain. ®University of Kent,
New Road, East Malling, CT2 7NZ Canterbury, UK. *%Plant Sciences Group, Wageningen University and Research,
Droevendaalsesteeg 1. Gebouw 107, Wageningen 6708 PB, Netherlands. 'Department of Biological Sciences,
University of New Hampshire, Durham, NH, USA. 12Department of Horticultural Science, Michigan State University,
East Lansing, MI, USA. 3USDA-ARS Horticultural Crops Research Unit (USDA-ARS, HCRU), Corvallis, OR, USA.
L4“Formerly USDA-ARS, HCRUI, Spring Meadow Nursery, South Haven, MI, USA. ®*Queensland Department of
Primary Industries, Brisbane, QLD, Australia. “'email: mfikere@purdue.edu

Scientific Reports|  (2025) 15:40547 | https://doi.org/10.1038/s41598-025-24188-0 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-24188-0&domain=pdf&date_stamp=2025-10-21

www.nature.com/scientificreports/

narrow genetic bases derived from a limited set of founding ancestors, which can constrain the ability to capture
the full range of GxE interactions*>*. Leveraging historical datasets collected across global environments
enables breeders to better characterize GXE patterns, understand the genetic basis of complex traits, and identify
parents with broader adaptation.

Genomic best linear unbiased prediction (GBLUP) using a genomic relationship matrix (GRM) derived
from entry-by-marker genotype data®” is widely applied in global genomic prediction because it offers a flexible
mixed-model framework®. However, population structure caused by inbreeding, genetic drift, migration,
or isolation can influence prediction accuracy by producing differences in allele frequencies and possibly in
QTL effects among genetic groups’ '2. Population structure can be quantified from geographic or breeding
origin'3, pedigree records!?, or molecular markers'2. If unaccounted for, these differences can inflate variance
estimates and bias genomic estimated breeding values (GEBVs), heritability, and predictive ability”. Explicitly
incorporating population structure into genomic prediction models may therefore improve accuracy and reduce
bias.

PCA-based approach

One approach to account for population structure is to incorporate principal components (PCs) or principal
coordinates (PCos) derived from genomic data into prediction models'®. Fitting these components as fixed
effects can correct for major sources of structure, but because PCs are derived from the same GRM used in
the model, this method may result in “double counting” genetic information'®!”. Janss et al.'® addressed this
by reparameterizing the GBLUP model, partitioning genetic variance across and within subpopulations using
eigenvalues from PCA. This PCA-derived relationship matrix in a Gaussian GBLUP framework has been shown
to yield higher prediction accuracies than ridge regression or Bayesian methods (BayesA, BayesB)'®, with dairy
cattle studies reporting slightly higher accuracies compared to the standard GRM!°-21.

Population-specific GRM approach

Another strategy is to construct a GRM using population-specific allele frequencies rather than overall means,
thereby accounting for differences in allele distribution among subpopulations'®?2. This method can capture
situations where causal variants segregate in only one population. Simulated data suggest that this approach
improves prediction accuracy by ~ 2% compared to the standard GRM. These findings underscore the potential
benefits of accounting for population structure, while also indicating that performance gains may vary by species
and dataset.

Cultivated strawberry (E x ananassa) originated in 18th-century France from a hybridization between
FE. virginiana(North America) and E chiloensis (South America)?. Today, strawberry is a $15.9 billion global
industry®*, supported by numerous regionally focused breeding programs. Diversity analyses show that F
x ananassa has a broadly shared genetic base, with structure often aligned to geography or major breeding
programs®>?. For example, germplasm from the University of Florida, University of California-Davis, and
globally distributed “Cosmopolitan” material form distinct groups®. Additional fine-scale structuring within
the USDA-ARS collection further highlights the need to account for population structure when modeling GXE
interactions in strawberry®.

Strawberry flavor is a balance of sugars, acids, and aroma compounds , with sweetness a key driver of
consumer preference®*-3*. Soluble solids content (SSC), measured by refractometry, is widely used as a proxy
for sweetness because sugars comprise 80-90% of SSC*. SSC is a quantitative trait controlled by many minor-
effect loci, with few stable across environments?’ 2>, It can also be negatively correlated with other desirable
traits such as firmness and size?”?°, making simultaneous improvement challenging. Genomic prediction offers
ameans to account for environmental and design-related variation, improving selection for SSC while managing
trade-offs with other fruit quality traits>’.

Only a few studies have applied genomic selection in strawberry®®3°3°, but results indicate it can shorten the
breeding cycle from three to two years by enabling earlier selection of parents based on GEBVs. Osorio et al.*0
reported that predictive ability averaged 0.35 for five polygenic traits when training and validation sets shared
individuals, but dropped to 0.24 when they did not, underscoring the role of relatedness.

In this study, we investigate the effect of population structure on genomic prediction for SSC in a large,
diverse strawberry panel combining germplasm from breeding programs in the USA, Europe, and Australia.
To our knowledge, this is the first genomic prediction study for SSC in strawberry using such a broad and
genetically diverse dataset. The results provide insights for the practical implementation of genomic selection for
complex traits in strawberry and strategies to effectively control for population structure in global GS datasets.

27-29

Materials and methods
Phenotypic data
Soluble solids content was assessed via refractometry (McRoberts 1932) on 2,064 accessions planted in nine
trials at seven locations across the U.S.A., Europe, and Australia (Tables 1 and 2). These locations were within
regions considered both temperate and subtropical. Below details of experimental design:

Further details regarding the experimental trials are provided in Supplementary Note 1.

RosBREED trials (Corvallis, OR & Benton Harbor, MI) As part of RosBREED*!, 425 clonal strawberry entries
were evaluated at USDA-ARS (Oregon) and Michigan State University (Michigan), with 399 and 369 genotypes
assessed, respectively. Plantings included cultivars and bi-parental populations in randomized designs (2010-
2011), with two adjacent clones per genotype forming one experimental unit. Ripe fruits were collected once
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Trial ID | Location Planting Year | nG |Y nObs | ave | var
B1/2 Benton Harbour MI USA | 2011 369 |2011/12 | 505 |10.52 | 4.47
C1/2 Corvallis OR USA 2011 399 |2011/12 | 599 7.85 | 2.33
F4 Balm FL USA 2014 572 | 2014 1667 7.37 | 145
F5 Balm FL USA 2015 552 | 2015 1651 7.63 | 1.04
K8 East Malling Kent UK 2018 288 | 2018 458 9.63 | 3.57
M4 Milaga Spain 2014 63 | 2014 284 | 10.16 | 6.62
M5 Milaga Spain 2015 62 | 2015 286 8.57 | 5.64
N8 Nambour QLD AUS 2018 121 | 2018 463 8.39 | 1.74
w8 Wandin VIC AUS 2018 70 | 2018 120 7.84 | 1.6

Table 1. Summary for the 9 trials (Trial ID) included in this study. Where: number of accessions in each trial
(nG), Year(s) of assessment (Y), number of observations (nObs), average of observations (ave), and variance of
observations (var).

Benton 11 | Benton 12 | Corvallis 11 | Corvallis 12 | Balm 04 | Balm 05 | Ken 18 | Malaga 04 | Malaga 05 | Nambour 08 | Wandin 08
Benton 11 147 136 133 89 1 2 1 1 1
Benton 12 136 358 278 229 1 2 4 4 1 1
Corvallis 11 | 133 278 328 200 3 5 2 2 1 1
Corvallis 12 89 229 200 271 3 4 4 4 1
Balm 04 1 1 3 3 572 6 1
Balm 05 2 2 5 4 6 552 1
Ken 18 255
Malaga 04 1 4 2 4 63 61
Mélaga 05 1 4 2 4 61 62
Nambour 08 1 1 1 1 1 1 150
Wandin 08 1 1 70

Table 2. Number of accessions within, and in common, across trials (Trial ID are defined in Table 1).

per plant during peak season and stored at — 20 °C. Soluble solids content (SSC) was measured from thawed,
homogenized fruit using a handheld refractometer.

UF trials (F4 & F5, Balm, Florida) Conducted in 2014-2015 using randomized block designs with five blocks.
Ripe berries were sampled from each plant in December-January, macerated, and SSC measured with a refrac-
tometer. Values were averaged over five sampling periods.

NIAB-EMR trial (East Malling, UK) Clonal genotypes were planted in five blocks (two screenhouses) using a
randomized design in 2018. SSC was measured on up to three ripe berries per plant and averaged per plant.

IFAPA trials (Mdlaga, Spain) Two trials evaluated 66 genotypes in randomized plots. Two ripe fruits per plant
were measured for SSC and averaged.

QLD-DAF trials (Australia) Two trials were held in 2018 N8 (subtropical, Queensland) with 121 genotypes in
two-replicate incomplete blocks, and W8 (temperate, Victoria) with 70 genotypes in randomized blocks. SSC
was measured at three harvests; for N8, fruit was frozen, thawed, and homogenized, while for W8, juice was
measured immediately.

Genotypic data, curation, and imputation

Genotyping for the Oregon USDA (ORUS) and Michigan State University (MSU) breeding programs (trials
C1/2 and B1/2) was performed using the 90 K Strawberry Axiom array (Thermo Fisher, Santa Clara, CA, USA)%,
while all other programs employed the IStraw35 384HT Axiom array, developed from a subset of probes on the
90 K array?®. Allele calling was conducted using the Axiom Analysis Suite software (Thermo Fisher), and a total
of 12,591 SNPs shared between the two arrays were retained for analysis.

Data curation involved removing markers not present on the IStraw35 array from the ORUS and MSU
datasets, followed by filtration based on Axiom Analysis Suite quality classifications. Only markers classified
as “poly high-resolution,” “no minor homozygous,” or “monomorphic high-resolution” across all datasets were
retained!®. Accessions appearing in multiple studies were compared for identity; those differing at > 5% of
markers were considered distinct and assigned unique accession names (e.g., the ‘Mara des Bois’ genotype in
Spain differed from the same cultivar in Michigan and Oregon). For accessions with < 5% differences, consensus
genotypes were created by converting discordant calls to missing data. Markers with > 25% missing data and
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accessions with > 20% missing data were excluded, resulting in a final dataset of 2,064 samples and 12,591 SNPs
for downstream analyses.

Missing genotypes were imputed using FImpute v3%, applied both across the entire population and
within sub-populations. Imputation accuracy was assessed by masking 2,000 genotypes, imputing them, and
calculating Pearson correlations and concordance rates across 10 repetitions. SNP distribution was evaluated in
1 Mb windows (~ 830 Mb genome) using CMplot in R, providing a genome-wide view of marker density and
ensuring adequate representation of genomic variation.

343

Population structure
Population structure was characterized using two complementary approaches: ADMIXTURE and principal
coordinate analysis (PCoA) based on the genomic relationship matrix. ADMIXTURE analysis was performed
with K=2 ancestral populations, and individuals with >90% ancestry assigned to a single cluster were classified
as “non-admixed,” while those with <90% ancestry were considered “admixed” PCoA was conducted using
classical multidimensional scaling of the genomic relationship matrix, followed by k-means clustering (K=2)
on the first two principal coordinates. Cluster assignments from both methods were compared to assess
concordance. For downstream genomic prediction, ADMIXTURE-based clusters were retained due to their
clearer biological interpretability and direct estimation of ancestry proportions, with admixed individuals
treated as a separate category.

The optimal number of clusters (K) was evaluated using two criteria: (i) the silhouette method (R package
factoextra’>, where the k maximizing average silhouette width was selected, and (ii) ADMIXTURE v1.3.0%
with 20-fold cross-validation, where the K with the lowest cross-validation error was chosen.

Statistical methods

General mixed model

A general linear mixed model was analyzed using ASReml-R55, incorporating data from all trials and
environments.:

y=Xb+ Zga+Zyu+e

where y is the vector of phenotypic observations, X is the design matrix for fixed effects (trial x season, block
within environment), and b is the vector of fixed effects. The matrix Zg links observations to additive genetic
effects a, while Z, links to non-additive effects u. The residual term is e. Certain fixed or random effects were
omitted depending on trial design; details are provided in Table 3.

Additive genetic effects and GxE covariance
Additive genetic effects were modelled as a genotype-by-environment (GxE) term:
a~ N0, Xa® G),
where G is the genomic relationship matrix among individuals and X 4 is the additive covariance matrix across

environments. To parsimoniously capture cross-environment correlations, a factor-analytic (FA) decomposition
was applied to ¥ a:

SAa=AAT + O

TrialID | Fixed Random Residual | logl AIC

Bl y~-1+Y AID R -1731.3 3467
C1 y~-1+Y AID R —-1970.2 3944
K8 y~-1+B AID R -1567.2 3138
M4 y~-1+ AID R -1061.0 2126
M5 y~-1+ AID R -1057.8 2120
N8 y~-1+H AID R —-1482.5 2969
F4 y~-1+B+B:D | (AID,B:D:X)+C | R -5311.5 | 10,631
F5 y~-1+B+B:D | AID+C R —-4928.6 9863
w8 y~-1+ AID R —343.8 692
M y~-1+T AID +at(T): C R -2017.3 4045
F Y~ —1+T+T, p | AID+ T, R -10210.9 | 20,430

Table 3. Log likelihood for the single-location individual trial (see Table 1 for key to TrialID) and single-
location multi-trial models. Results are based on the most parsimonious models. Where: AID =entry name;
D =number of bed; C=number of clonal replication; B=block; Y =year; X =rrow within bed; T =trial; and
AIC = Akaike information criteria.
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where A is the environment-by-factor loading matrix and ¥ is diagonal, containing environment-specific
variances. Competing FA models (FA1-FA3) were compared using AIC, and the most parsimonious was
selected. Importantly, the FA was applied to 3 4 (the additive covariance).

Genetic correlations between trials
Additive genetic correlations between environments ¢ and j were estimated from X a:

EA(Z’])
X a(iyi) X a4, 5)

gC orry; =
These additive correlations reflect the consistency of heritable effects across trials and are directly relevant for
genomic prediction.

Genomic relationship matrices
To assess the impact of population structure, three approaches were used to construct G:

1. Standard GBLUP: G was computed from centered genotypes using allele frequencies across the entire

population:

. MMT
2> api(l —ps)

where M is the centered marker matrix (columns = loci, rows = individuals) and p; is the allele frequency at
locus i. When required, G was bent to be positive-definite?°.

G

2. P-GBLUP: Principal components (PCs) derived from G were included as fixed covariates to control for
population structure. Enough PCs were retained to explain ~ 99% of the genetic variance. This model is
equivalent to standard GBLUP with PCA covariates.

3. Population-specific GRM: Separate GRMs were built for each subpopulation using population-specific al-

lele frequencies!?:

T
SpopSpop

Zj 2pj,pop(1 — Pj,pop)

Gpop =

where Spop is the centered genotype matrix for the subpopulation and p;,pop is the allele frequency at locus j
in that group.

Within-trial genomic environments were defined as combinations of seasons within a location that exhibited
homogeneous additive variance and near-unity pairwise additive correlations. Single-trial models were first fit
to define environments and then combined across trials using the FA parameterization of ¥ 4.

Generalized genomic heritability

Generalized genomic heritability was estimated to quantify the proportion of trait variability attributable to
genetic differences. Heritability was calculated for each trial following the method described by Hardner et al*.
The heritability for trial ¢ was computed as:

—2
~ 5]

2x 04 At
where 7% A,¢ is the mean variance of the difference of additive predictions at the t*" trial, estimated from the

prediction error variance matrix of additive effects and 53 At is the estimated additive genetic variance at the
" trial.

Prediction accuracy
Expected accuracy
Expected prediction accuracy for an individual was computed as:

where A is the predicted additive effect, A is the true additive effect, and o % , is the additive genetic variance
at trial ¢.
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Realized accuracy

Realized accuracy was assessed by k-fold cross-validation within and across environments. For each fold,
individuals in the validation set were excluded from model fitting, marker effects were estimated from the
training set, and genomic breeding values were predicted for the validation set. Accuracy was calculated as the
Pearson correlation between predicted breeding values and reference genotypic values®’ . To account for the
imperfect reliability of the phenotypes, this correlation was further divided by the square root of the generalized
heritability at the corresponding trial.

Results

SNP distribution, allele frequency and imputation

SNP markers were evenly distributed across the genome in 1 Mbp windows (Figure S1), with an average density
of 84 SNPs per 1 cM. The largest physical gaps between adjacent markers were observed on chromosomes 6
and 3 (up to 35 cM), while the smallest gaps occurred on chromosomes 1, 5, and 7. Allele frequencies differed
markedly between the two sub-populations (SP1 and SP2), with 98% pairwise dissimilarity (Figure S3) and a
fixation index (Fst) of 0.35. Across populations, 12.5% of loci contained missing genotypes (10% in SP1 and 15%
in SP2). Genotype imputation achieved 90% concordance when performed population-wide but nearly 99%
when performed within populations, and the latter results were used for downstream analyses.

Population structure

Clustering results from ADMIXTURE and PCoA were largely concordant, with the majority of individuals
assigned to the same clusters across methods (Fig. land Figure S2). ADMIXTURE analysis (K=2) with 20-fold
cross-validation revealed two primary genetic clusters and a subset of individuals showing substantial mixed
ancestry, defined here as having less than 90% ancestry assigned to either cluster (i.e., more than 10% from both
clusters). Using this threshold, 1,111 individuals (54%) were classified as Cluster 1 (SP1), 387 individuals (19%)
as Cluster 2 (SP2), and 566 individuals (27%) as admixed (Fig. 1C&D). In parallel, principal coordinate analysis
(PCoA) of the genomic relationship matrix, followed by k-means clustering (K=2) of the first two coordinates,
produced similar groupings, with most discrepancies occurring near cluster boundaries and involving the
admixed group identified by ADMIXTURE (Fig. 1B & S1). Across the 2,064 accessions planted in seven locations,
these genetic clusters were also geographically structured (Figure S1C): SP1 consisted primarily of accessions
tested in Florida (P), forming a distinct subclade with only a few accessions from Australian trials (Nambour,
QLD [N], and Wandin, VIC [W]), whereas SP2 was composed almost entirely of accessions tested in Benton
Harbor, MI (B); Corvallis, OR (C); East Malling, UK. (E); and Malaga, Spain (M). The admixed group included
accessions from multiple locations, consistent with their intermediate genetic composition. Silhouette analysis
supported K=2 as the optimal number of clusters (Figure S1A) and cross-validation error from ADMIXTURE
(Figure S1C), with average silhouette widths of 0.09 for SP1 and 0.22 for SP2, indicating moderate within-cluster
cohesion. Given the clearer biological interpretability and direct representation of ancestry proportions, we used
ADMIXTURE-defined clusters including the admixed category for downstream genomic prediction to more
accurately capture population structure and admixture in the dataset.

Standard GBLUP

Single location GBLUP

We have reduced the complexity of the models by removing factors, interactions and combining trial within
locations (Table S3, Table 3). There was no interaction between genetic effects and year for the most parsimonious
individual trial models (Table 3 and Table S1 & S3). Variance component estimates for the single-trial model
were presented in Fig. 2 and Table S1. In some trials, the estimated additive genomic variance (vA) was relatively
higher than the residual variance (VR), indicating that additive genetic effects contributed more to the observed
variation in those specific cases (Fig. 2 and Table S1). In addition, genetic correlations between individual trials
(Fig. 3) provide key insights into the stability of genetic values across environments. High positive correlations
(such as those observed between the Nambour and Wandin trials with other individual trials) indicate strong
consistency in genetic effects, suggesting shared genetic control and the potential for joint or across-environment
model selection. In contrast, correlations close to zero (e.g., between the Corvallis and Kent trials) reflect minimal
genetic overlap, implying that these environments differ substantially in their genetic architecture and may need
to be analyzed separately in downstream applications. The proportion of total genomic variance explained by
additive genomic effects was more variable for the single-trial models for Malaga and Balm, FL trials (Fig. 2 and
Table S1). Generalized heritability was highest for the Florida trial (h?=0.45) followed by Mélaga trial (h*=0.41)
and the lowest was recorded at East Malling, U.K. and Benton Harbor, MI (h?=0.16 and 0.18, respectively) (Fig.
4). Realized prediction accuracy (square root of reliability) ranged from 0.44 at the Benton Harbor, MI trial to
0.72 for the Balm, FL trials (Fig. 4).

Multi-location GBLUP

Compared to the single location models, narrow sense heritability (h?) and prediction accuracy values were
higher for the multiple locations standard GBLUP approach for all trials (Fig. 2 and Figure S4). Under the multi-
location models, heritability was highest for the Florida trial (h=0.61) and lowest for the East Malling, UK.
and Benton Harbor, MI U.S.A. trials (h?=0.27 and 0.28, respectively). This reflects what was observed when
modeling environments individually. On average, the multi-location approach increased h? estimates by 0.16.
Prediction accuracies ranged from 0.53 at the Wandin, AUS trial to 0.75 at the Nambour, Australia. On average,
prediction accuracies increased by 0.06 when incorporating multiple environments into the model.
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Fig. 1. Comparison of population structure inferred by ADMIXTURE and Principal Coordinates Analysis
(PCoA) in strawberry samples. Panel (A) shows the ADMIXTURE bar plot where individuals are represented
by their ancestry proportions from two clusters. Individuals with less than 90% ancestry from any single cluster
are classified as “Admixed,” shown as mixed proportions rather than a solid color. Panel (B) presents the PCoA
scatter plot, where samples are grouped into three categories: Cluster 1 (blue), Cluster 2 (green), and Admixed
(purple). Panel (C) compares the number of samples assigned to each category by ADMIXTURE and PCoA
using side-by-side barplots. Panel (D) displays a confusion heatmap illustrating the correspondence between
ADMIXTURE and PCoA group assignments, including the admixed group, highlighting both concordance
and discrepancies between these complementary approaches. Information on the optimal K value is provided
in Figure S2.
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Fig. 2. Variance component estimates for the single-location single-trial model (details in Table S1 and Figure
S2).

P-GBLUP (Janss PCA method)

The relative size of realized prediction accuracy among trials for the GBLUP model that used a reparametrized
GRM based on eigen decomposition (P-GBLUP) was similar to that observed for the standard multi-
environment approach, where the Nambour and Wandin trials had the highest (r=0.79) and lowest (r=0.56)
prediction accuracies, respectively (Fig. 4). The P-GBLUP model explained approximately 76% of the phenotypic
variance. For all trials, realized prediction accuracies obtained from the GBLUP + PCA model were higher than
the standard GBLUP (Fig. 4).

Population specific GRM approach

Realized genomic prediction accuracy for the multi-population model that accounted for population structure
through the kinship matrix displayed the same relative prediction accuracy as the standard GBLUP + PCA
approach. The population specific (Wfa) model explained approximately 39% of the phenotypic variance.

Comparing the multi-location approaches

In a multi-location model, the lowest prediction accuracies were achieved in the standard model (Gfa) whereas
the two approaches that account for population structure in the prediction model (Pfa and Wfa) achieved higher
and more stable accuracies across trials than the standard GBLUP approach (Figs. 4 and 5 and Figure S4).
The total genomic correlation matrix across genomic environments estimated from the most parsimonious
multivariate for SSC assessed across breeding trials. Genomic environments are defined as groupings of trial-by-
seasons such that genomic variance is homogeneous, and genomic correlations are 1 within environments. The
factor analytic (FA) model was selected after comparing FA1 to FA3, with the most parsimonious model chosen
for subsequent genomic prediction scenarios (Table S2). In addition, the BLUP distribution and correlation
between the multi-populations further confirmed the presence of variation in BLUP predictors (Figs. 4 and 5). A
strong positive correlation of BLUPs was observed between the Gfa, Pfa, and Wfa approaches for the Florida (F;
r=0.83-0.96), Mélaga (M; r=0.75-0.9), and Corvallis, OR (r=0.7-0.8) trials; whereas unstructured distribution
and low correlation between BLUPs were observed across the multi-population approaches for the Nambour
and Wandin trials (Fig. 5 & Figure S4). Genomic heritability followed the same trend as the prediction accuracy
estimates with the exception of the Nambour, AUS trial. For this trial, heritability was noticeably lower for the
Pfa and Wfa approaches compared to the standard multi-location GBLUP approach.
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Fig. 3. Genetic correlations between individual trials. These estimates are central to the study, as they indicate
the stability of genetic values across environments. Positive correlations suggest shared genetic information
and potential for model selection, while correlations near zero indicate limited genetic overlap, implying that
environments should be treated independently for downstream analysis.

In most cases, the models that accounted for population structure (standard GBLUP + PCA [Pfa] and multi-
population [Wfa]) approaches) generated the highest prediction accuracies (r=~0.8) and showed the lowest
variation across trials. Similarly, genomic heritability followed the same pattern as prediction accuracy, where
the multi-population approach exhibited high heritability estimates.

Discussion
This study evaluated strategies to account for population structure in genomic prediction models, using a large
and diverse panel of global strawberry clones for soluble solids content (SSC). We found that models explicitly
accounting for population-specific genomic relationships (multi-population GBLUP) achieved higher prediction
accuracies compared to standard GBLUP models that ignore structure. Prediction accuracy varied considerably
across environments in the single-trial univariate models, with the highest accuracy observed in the Florida
trials (F4 and F5) and the lowest in Benton Harbor, MI. Combining trials from the same location in a multi-trial
model increased the size of the reference population and improved prediction accuracy. Further improvements
were obtained when population structure was incorporated into the multi-trial analysis, highlighting the benefit
of using population-specific genomic relationship matrices rather than a single matrix for the entire population.
Analysis of global genetic relatedness revealed two major sub-populations (SP1 and SP2), broadly associated
with subtropical and temperate growing environments. This structure was consistent with previous findings?>®
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Fig. 4. Genomic heritability (h?) and reliability (A) for individual environment (IE) and multi-trial models.
(B) * Trials from the same locations were combined (IE-M4&5 = M; [E-F4&5 = F) when genomic heritability
and prediction accuracy are estimated. IE =individual environment (italic); Gfa=factor analytic model (FA)
based on standard GBLUP model; Pfa =factor analytic model (FA) based on standard GBLUP + PCA model;
Wrfa =factor analytic model (FA) based on multi-population model (detail description of the model is provided
in M&M section).

and is likely the result of historical germplasm exchange, particularly between the Florida and Australian breeding
programs. Genetic diversity between the two groups was further supported by differences in allele frequency
distributions, which have implications for the unbiased estimation of genetic correlations*’. Accounting for this
structure proved critical for improving genomic prediction. In our data, correcting for population structure
increased prediction accuracy by up to 20% in single-location models and by about 10% in multi-location
models. Similar results have been reported in maize, wheat, and cattle, where ignoring structure reduced
accuracy, particularly for across-population predictions”*10:13:48-52,

Our results confirm that population structure between temperate and subtropical germplasm directly
influences prediction accuracy, and models such as Pfa and Wfa generally improved reliability. However,
performance gains were not uniform across all locations, indicating that environmental and genetic factors
may interact in complex ways. The observed variability in model performance underscores the importance of
tailored model development. Environments with low BLUP correlations likely reflect situations where additional
covariates or interaction terms are needed. Future research should aim to identify these location-specific factors
to further refine model robustness and generalizability.

The implication in breeding

Strong population structure can lead to biased predictions if not addressed, potentially causing false positives and
false negatives in marker-trait associations. Best practice involves evaluating population and family structure
prior to genomic prediction, using population-specific allele frequencies to construct GRMs, and adopting
reduced-dimensionality approaches to handle complex genotype-by-environment covariance structures. Equally
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Fig. 5. Distribution of best linear unbiased prediction (BLUP) of the Multi-location model (i.e., standard
GBLUP model (Gfal), standard GBLUP + PCA (Pfal), and population specific model (Wfal) model) and
additional information is provided in Table S2. (A) Distribution between Gfal BLUP values vs Pfal BLUP
values (B) Gfal BLUP values vs Wfal BLUP values (C) Gfal BLUP values vs Pfal BLUP values.
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important is the use of diverse and representative training populations to ensure shared genetic backgrounds
between training and prediction sets®.

Data availability
Input and output data and codes used to analyze genomic prediction using strawberry global collection can be
accessed: GitHub: [https://github.com/DrMulusewFikere/StrawberryGP].
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