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Abstract
Soft-shell prawns (shrimps), which yield lower market value than their hard-shell counterparts, are currently identified 
through manual inspection—a subjective and inconsistent process. This study explores the use of shortwave infrared (SWIR; 
950–2515 nm) hyperspectral imaging (HSI) combined with machine learning as a real-time, non-destructive alternative for 
classifying prawn shell hardness. A total of 380 farmed prawns spanning four manually assessed hardness categories were 
scanned using a HSI camera. Two classification models—support vector machine (SVM) and partial least squares discrimi-
nant analysis (PLS-DA)—were trained on 50% of the total samples (training data set) to associate spectral signatures with 
shell hardness classes and evaluated using the remaining 50% (independent test data set). PLS-DA marginally outperformed 
SVM in overall classification accuracy, achieving 92.1%, compared to SVM’s 90% on the independent test set. Although 
SVM showed better performance for intermediate hardness classes, its higher misclassification rate for the extreme classes 
(hard and soft) made it slightly less reliable for practical application. Reduced sensitivity in the intermediate classes across 
both models likely stems from limited sample size and subjectivity in the manual reference classifications. These results 
demonstrate the potential of HSI as a consistent and objective tool for prawn classification, offering significant advantages 
for automating shell hardness assessment and sorting. Implementing this technology could enhance processing efficiency 
and product quality within the prawn industry.

Keywords  Automated seafood sorting · Food quality assurance technology · Machine learning classification · Shrimp post-
harvest assessment · Smart food inspection · Soft-shell prawn detection

Introduction

Soft-shell prawns, also known as shrimps, often resulting 
from soft shell syndrome or moulting, are typically consid-
ered low quality and command low market prices (Chong, 
2022). Rigorous quality control and screening are essential 
to ensure prawns are sorted into batches of consistent quality, 
maintaining market value and purchaser confidence. Current 

practices heavily depend on manual sorting, where skilled 
workers visually inspect and separate soft-shell prawns based 
on shell texture and softness. This process is labour-intensive, 
subjective and prone to inconsistencies (Tahmasbian et al., 
2024). Some studies have investigated the use of machine 
vision for monitoring the visual quality of prawns. For exam-
ple, machine vision has been used for grading prawns based 
on shape, size and weight (Balaban et al., 1995; Lee et al., 
2012; Luzuriaga et al., 1997; Pan et al., 2009; zhang et al., 
2014). While some studies also investigated the use of con-
ventional or greyscale images combined with machine and 
deep learning algorithms for detecting soft-shell prawns (Liu, 
2020; Liu et al., 2016), the visual similarities between soft 
and hard-shelled individuals limit the effectiveness of these 
methods. Methods using conventional images often require 
computationally intensive image processing and data anal-
ysis techniques to detect visual differences, if any, among 
the prawns, and minor visual variabilities may still affect 
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prediction accuracy. As a result, advanced imaging technolo-
gies that provide information beyond the visual properties 
may offer a solution to this issue.

Hyperspectral imaging (HSI) is a real-time, non-destruc-
tive method that uses spectral reflectance to assess the phys-
ical and biochemical properties of samples based on their 
spectral signatures (Menesatti et al., 2010; Sun, 2010). HSI 
combines near-infrared spectroscopy (NIRS) with imaging, 
leveraging the chemical sensitivity of NIRS and the spa-
tial resolution of imaging to enable non-destructive, high-
throughput analysis of complex biological samples (Manley, 
2014). The principles of HSI are rooted in vibrational spec-
troscopy, where absorption bands in the spectra of chemical 
compounds correspond to molecular vibrations. The large 
number of contiguous spectral bands acquired through HSI 
produces high-dimensional datasets, which are often difficult 
to interpret directly. To address this, chemometrics—apply-
ing multivariate statistical and machine learning methods to 
chemical data—is commonly employed to analyse the data 
and develop predictive classification models (Park & Lu, 
2015; Siesler et al., 2008). HSI combined with chemomet-
rics has been used to monitor the internal quality attributes of 
prawns. Applications include monitoring changes in chemical 
composition (Xi et al., 2025) moisture and elasticity during 
hot air drying (Xu et al., 2022), assessing freshness (Qu et al., 
2015; Ye et al., 2020), monitoring shelf-life (Siripatrawan & 
Makino, 2025), detecting environmental origin (Sun et al., 
2019) and evaluating the mechanical properties of peeled 
prawns (Dai et al., 2014). However, the application of HSI 
to identify soft-shell prawns has not yet been investigated.

According to Beer’s law, the amount of light absorbed or 
reflected by a substance at a particular wavelength is deter-
mined by its absorptivity or reflectivity, the length of the opti-
cal path and the substance’s concentration (Siesler et al., 2008). 
In prawns, soft- and hard-shell individuals differ in mineral 
composition, concentration and shell thickness (Baticados 
et al., 1986, 1987; Li & Cheng, 2012; Vijayan & Diwan, 1996), 
factors that influence the parameters of Beer’s law. Therefore, 
we hypothesised that variations in shell properties would 
affect the prawns’ spectral signatures, enabling differentiation 
between shell hardness levels. This study aimed to investigate 
the potential of HSI combined with machine learning for clas-
sifying prawns according to their shell hardness, enabling the 
accurate and consistent identification of soft-shelled individu-
als, with potential integration into automated sorting systems.

Materials and Methods

Samples

The prawn samples used in this experiment were com-
mercially farmed tiger prawns (Penaeus monodon). The 

prawns were sourced from Australian Prawn Farms Pty 
Ltd., located in Ilbilbie, Queensland, Australia, a region 
characterised by a subtropical climate.

A total of 380 prawn samples were harvested in May 
2023 from the same pond, where water quality remained 
constant (salinity = 31 to 32.5 ppt, pH = 7.2 to 7.6), and 
temperature was 25 °C. The only known variables between 
the samples were the level of shell hardness, including 
soft, just failed (JF), just passed (JP) and hard, and prawn 
sizes (small, medium, large and extra-large). Commer-
cially, JF prawns would still be classified as soft in manual 
sorting, while JP prawns would be classified as hard. Due 
to practical limitations, achieving a fully balanced dataset 
in terms of sample numbers across classes was not feasi-
ble; however, the two main classes—soft and hard—were 
nearly balanced (Table 1).

The hardness level of the prawns was manually deter-
mined by skilled workers through tactile inspection, a 
standard practice on prawn farms. The manual classi-
fication was carried out immediately after harvest. The 
prawn samples were then placed in resealable plastic bags, 
stored in a cool box with ice and shipped overnight to the 
HSI laboratory. Upon arrival, the samples were promptly 
scanned using a HSI camera.

Hyperspectral Image Acquisition

The HSI system used in this study was a shortwave infra-
red (SWIR) system, consisting of a 16-bit line scan SWIR 
camera (HySpex, SWIR-384, Norsk Elektro Optikk, Oslo, 
Norway) operating in the spectral range of 950–2515 nm, 
with spectral sampling intervals of 5.45 nm. The SWIR 
system included two linear DC halogen lights (100 W 
each) positioned at a 45° angle to illuminate the camera’s 
field of view, a translating stage and the Breeze software 
(version 2022.1.0; Umeå, Prediktera, Sweden). The setup 
of the SWIR HSI system is depicted in Fig. 1.

The prawn samples were placed on a black foam plat-
form on the translating stage of the camera and scanned 
(Fig. 1). A dark image was captured before and after each 

Table 1   Prawn sample numbers of different harness and size classes 
used in this study

Small: 68–88 prawns per kg; medium: 46–66 prawns per kg; large: 
35–44 prawns per kg; extra-large: 22–33 prawns per kg
JP just passed,,JF just failed.

Small Medium Large Extra-large Total

Hard 58 48 28 32 166
JP 0 36 0 0 36
JF 6 14 16 0 36
Soft 48 36 32 26 142



Food and Bioprocess Technology	

scan to measure and correct for sensor errors (Seidida-
myeh et al., 2024). A Zenith standard reflectance board 
with 50% reflectance was scanned before each sample 
to convert raw data into reflectance values and calibrate 
for light variations during the experiment. This process, 
known as image correction (dark and white correction), 
was performed using (1):

where R represented the corrected reflectance image; R0 
was the raw spectral image; D was the dark reference image; 
W was the white target image; RT was the reflectance per-
centage of the standard target.

Data Preparation

Background pixels were identified and removed based 
on reflectance thresholds at 1515 nm < 1.4% and 1951 
nm < 2%, with these wavelengths selected through visual 
observation. The remaining sample images were cropped 
into smaller sections, each containing a single prawn. The 
prawn images, representing various sizes and hardness lev-
els, were randomly split into the calibration and independ-
ent testing groups, each comprising 50% of the samples. 
Data transformation, including Savitzky–Golay smoothing 
filter, standard normal variate (SNV) and the first deriva-
tive was used individually and combined for increasing the 

(1)R (%) =
R0 − D

W − D
× RT

signal to noise ratio and improve the accuracy (Gama et al., 
2024). The calibration images were used to train models 
by correlating their spectral data with the pre-determined 
hardness levels, ensuring each class included samples from 
all available size categories.

Classification Modelling

We developed and compared two classification models 
including support vector machine (SVM) and partial least 
square discriminant analysis (PLS-DA). SVM and PLS-
DA are among the best performing and widely used clas-
sifiers for spectral data in food science (Lu et al., 2025; 
Seididamyeh et al., 2024; Siripatrawan & Makino, 2024; 
Tahmasbian et al., 2021; zhang et al., 2016).

An optimised-SVM classification model with different 
kernel functions was trained using the calibration data set. 
The Bayesian optimisation method was used with a K-fold 
cross-validation (K = 10) to optimise the model parameters 
and improve the model’s accuracy. The kernel functions 
included Gaussian, linear, quadratic and cubic. The pro-
cess was repeated with transformed data. The SVM mod-
els were developed using Statistics and Machine Learn-
ing Toolbox for MATLAB (version R 2021a; The Math 
Works, Natick, USA).

The PLS-DA classification model was also trained using 
the same calibration data set. The PLS-DA model was opti-
mised based on the coefficient of determination (R2) in the 
cross-validation (K = 10) set by selecting the latent variable 
(LV) that produced the highest R2. The PLS-DA classifica-
tion modelling was conducted using Breeze software (ver-
sion 2022.1.0; Umeå, Prediktera, Sweden).

Evaluation

The classification models’ performance was assessed on the 
independent test data set using a confusion matrix and the 
statistical metrics defined in (2) to (6).

(2)

Classification accuracy(%) =
TP + TN

TP + FP + TN + FN
× 100

(3)Sensitivity (%) =
TP

TP + FN
× 100

(4)Specif icity (%) =
TN

TN + FP
× 100

(5)Precision (%) =
TP

TP + FP
× 100

Fig. 1   The shortwave infrared (SWIR, 950–2515 nm) HSI system 
used for scanning prawns in the current study
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where TP is true positive; TN is true negative; FP is false 
positive; and FN is false negative. The F1 score ranges from 
0 to 1, with values closer to 1 indicating better classification 
performance (Chicco & Jurman, 2020).

Results

Spectral Features

The spectral signatures of prawns with different shell hard-
ness levels were relatively similar; however, the differences 
between the hardness classes were distinguishable across 
multiple wavelengths (Fig. 2). Three major spectral regions 
were identified, where significant deviations between the 
hardness classes occurred: 950–1130 nm (Region 1), 
1163–1310 nm (Region 2) and 2204–2515 nm (Region 3) 
(Fig. 2). The difference between the shell hardness classes 
was more pronounced in Region 1, where a downward peak 
occurred at 989 nm, followed by an upward peak at 1059 
nm (Fig. 2). Slightly smaller differences were observed 
in Region 2, where the second downward and upward 

(6)F1 score = 2 ×
Precision × Sensitivity

Precision + Sensitivity

peaks occurred at 1207 nm and 1277 nm, respectively. In 
Region 3, the differences between the reflectance of the 
hardness classes were less pronounced than in Regions 1 
and 2. However, a shift in the spectral signatures was noted 
in this region, with soft-shell prawns reflecting less than 
hard-shell prawns. While this shift occurred at 1387 nm, 
the distinction between soft- and hard-shell prawns was 
more noticeable within Region 3.

The average spectral signatures of the JP and JF classes 
did not fall between those of the soft and hard classes. The 
average spectral signature of the JF class was consistently 
lower than that of the other three classes. The JP class, how-
ever, generally positioned between the soft and hard classes, 
with the exception of Region 1 (Fig. 2).

Classification Properties

The best performance of the optimised SVM classification 
model was achieved with the linear kernel function and SNV 
transformed data. The SVM parameters were selected at the 
lowest observed classification error (Fig. 3a). Classification 
accuracy of the SVM in the calibration and test sets were 
92.30% and 90.00%, respectively.

The SVM model achieved 94.74% accuracy in clas-
sifying hard-shell prawns, with 2.44% misclassified as 

Fig. 2   Average reflectance (spectral signature) of the prawns with 
different shell hardness levels quantified in the shortwave infrared 
(950–2500 nm). The Regions 1–3 show the areas, where the differ-

ences between the soft- and hard-shell prawns were considerable. JP 
represents just passed, and JF represents just failed classes
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either JP or soft (Table 2.). The classification accuracy 
for soft-shell prawns was lower at 92.11%, with 8.33% of 
these prawns misclassified as hard, indicating confusion 
between the extreme classes. The highest misclassifica-
tion rate was observed in the JF class, where 27.78% of 
samples were incorrectly classified as either soft or hard, 
resulting in a class accuracy of 95.26%. This was followed 
by the JP class, where 11.11% of samples were misclassi-
fied as JF or soft, resulting in a class accuracy of 97.89%. 
Notably, no samples remained unclassified when using the 
SVM model (Table 2.).

The PLS-DA model achieved optimal performance at 10 
latent variables (LVs) (Fig. 3b). The classification accuracy 
was 94.21% for the calibration dataset and 92.10% for the 
independent test dataset (Table 2.). The summary of the 
model performance in classifying the prawn samples in the 
independent test dataset is presented in Table 2..

In general, the PLS-DA model outperformed the 
SVM, achieving 2.10% higher overall classification accu-
racy (Table 2.). The PLS-DA model correctly classified 
97.37% of the soft-shell prawns and 99.47% of the hard-
shell prawns. The sensitivity of the PLS-DA model was 

Fig. 3   Parameter optimisation of a support vector machine (SVM) 
and b partial least squares discriminant analysis (PLS-DA) using 
Bayesian optimisation and coefficient of determination (R2) in the 

cross-validation dataset, respectively. The SVM parameters and PLS-
DA latent variables (LV) were selected at the minimum classification 
error (MCE) and highest R2, respectively

Table 2   Confusion matrix of prawn classifications by the support vector machine (SVM) and the partial least square discriminant analysis (PLS-
DA) model versus actual classes in the test set, with performance metrics for shell hardness classification

Accuracy, precision, sensitivity and specificity are expressed as percentages (%). Bolded values indicate the number of correctly classified sam-
ples for each class
JP just passed, JF just failed, UC unclassified

Total SVM PLS-DA

Hard JP JF Soft UC Hard JP JF Soft UC

Actual classes Hard 82 80 1 - 1 - 82 - - - -
JP 18 - 16 1 1 - - 16 - - 2
JF 18 2 - 13 3 - 1 - 9 1 7
Soft 72 6 1 3 62 - - - - 68 4
Precision 90.91 88.89 76.47 92.54 98.80 100 100 98.60
Sensitivity 97.56 88.89 72.22 86.11 100 88.90 50 94.40
Specificity 92.59 98.84 97.67 95.76 99.10 100 100 99.20
F1 score 94.12 86.67 78.05 89.21 99.39 94.12 66.67 96.45
Class accuracy 94.74 97.89 95.26 92.11 99.47 98.95 95.26 97.37
Overall accuracy 90.00 92.10
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significantly lower than that of SVM in the intermediate 
class of JF (50% vs. 72.22%). Unclassified samples had 
the largest contribution to the low sensitivity (true positive 
rate) of the JF class, with 38.90% of the JF samples remain-
ing unclassified. Additionally, misclassifications between 
the JF and both the hard and soft classes occurred at a rate 
of 5.55% each. Notably, the PLS-DA model showed no 
confusion between the JF and JP classes or between the 
hard and soft classes (Table 2.).

In the PLS-DA model, the contribution of LVs to class 
separation was assessed using the score plots (Fig. 4). 
The first three LVs explained 73% of variations, primar-
ily contributed to distinguishing the extreme hard and 
soft classes (Fig. 4a), whereas LVs six to 10 were mainly 
responsible for clustering the intermediate JP and JF 
classes (Fig. 4b–d).

The PLS-DA loading plots revealed wavelength regions 
contributing most to shell hardness classification (Fig. 5). 
The first two latent variables (LV1 and LV2) showed their 
highest absolute loadings in the 2488–2515 nm range, 
followed by LV3 and LV4, which were dominated by 
peaks between 1926 and 1948 nm. LV5 and LV6 exhibited 
maxima in the 1250–1474 nm region, while LV7 and LV8 
placed greater emphasis on 1408–1419 nm. The final two 
components, LV9 and LV10, displayed prominent features 
between 2308 and 2423 nm, along with secondary contri-
butions near 1910 nm.

Due to its overall higher accuracy, the PLS-DA model is 
selected for further analysis and applied to individual pix-
els of the test prawns to visualise the classification results, 
as shown in Fig. 6.

Fig. 4   Three-dimensional PLS-DA score plots illustrating prawn 
clustering based on transformed spectral data. Plot a shows the scores 
for latent variables (LVs) 1 to 3, while plots b, c and d display scores 
for LVs 4 to 6. The axes t[1] to t[10] represent PLS-DA scores for the 
respective LVs. Coloured circles indicate prawn texture categories: 

hard (green), just passed (JP, blue), just failed (JF, yellow) and soft 
(red). Numbers in the legend indicate the number of samples in each 
category. The LVs 1 to  10 explained 60.9%, 8.32%, 3.78%, 4.56%, 
3.5%, 2%, 1%, 0.8%, 1.5% and 1.2% of the variations, respectively
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Fig. 5   PLS-DA loading plots 
highlighting wavelength contri-
butions to prawn shell hardness 
discrimination in latent vari-
ables 1 to 10
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Discussion

Technical Aspects

The findings of this study demonstrate the potential of HSI 
as an objective tool for classifying prawns based on shell 
hardness. This aligns with our hypothesis that variations in 
shell properties influence the prawns’ spectral signatures.

The combined interpretation of the score and loading 
plots indicates that the primary separation between the hard 
and soft classes was driven by LV1 to LV3, which assigned 
the greatest weight to the 2488–2515 and 1926–1948 nm 
regions. In contrast, differentiation of the intermediate JP 
and JF classes was associated with LV5 to LV10, where 
the dominant loadings occurred in the 1250–1474 and 
2308–2423 nm ranges. These findings suggest that the hard 
and soft classes are mainly distinguished by reflection in 
the longer wavelength regions, whereas the finer separation 
of JP and JF relies more on variations across the shorter 
wavelengths.

The observed spectral differences between shell hardness 
classes likely arise from biochemical and structural changes 
in the prawn shells during hardening and mineralisation. 
Hard- and soft-shell prawns differ in the biochemical compo-
sition and structural properties of the shell and surrounding 
tissues throughout the hardening process (Baticados et al., 
1986, 1987; Lemos & Weissman, 2021; Li & Cheng, 2012).

Prawn shells are primarily composed of calcium carbonate 
(CaCO3), chitin and protein (Gbenebor et al., 2016), which 
contribute functional groups such as N–H, O–H, C–H and 
C = O (Gbenebor et al., 2016; Rollin et al., 2025). In this 
study, the three major spectral regions (regions 1 to 3 in 
Fig. 2) correspond to bond vibrations associated with stretch-
ing, bending and overtone modes of these groups (Burns & 
Ciurczak, 2007; Curran, 1989). The observed spectral differ-
ences between shell hardness classes may therefore reflect 
variations in tissue hydration, chitin content and protein dep-
osition within the chitin matrix during post-moulting stages 

(Lemos & Weissman, 2021). Soft-shell prawns, immediately 
post-moult, tend to be more hydrated, whereas hard-shell 
prawns have reduced water content and more structurally 
organised protein (Lemos & Weissman, 2021).

Variations in the inorganic composition of prawn shells 
across moulting stages have also been reported. For instance, 
calcium and magnesium concentrations differ significantly, 
with soft-shell prawns exhibiting lower levels of both ele-
ments (Li & Cheng, 2012; Vijayan & Diwan, 1996). More 
recently, calcium and strontium were shown to increase 
progressively from their lowest levels immediately after 
moulting to peak values at the intermoult stage (Rollin et al., 
2025). Structural differences have also been observed, with 
the cuticular layers of soft-shell prawns displaying a rough 
or wrinkled surface that is often disrupted and detached from 
the epidermis, in contrast to the more intact structure of 
hard-shell prawns (Baticados et al., 1987). These biochemi-
cal and structural differences across moulting stages likely 
underpin the ability of HSI to differentiate prawns according 
to shell hardness.

The SVM and PLS-DA models trained on HSI data clas-
sified prawns according to shell hardness. Both models dem-
onstrated high accuracy on the independent test set, with 
PLS-DA marginally outperforming SVM. PLS-DA showed 
higher accuracy in classifying the extreme classes of soft- 
and hard-shelled prawns, whereas SVM performed better 
in distinguishing the intermediate class of JF, with signifi-
cantly higher sensitivity. This difference likely reflects the 
fundamental modelling approaches; while PLS-DA projects 
spectral predictors onto latent variables that maximise covar-
iance with class membership, SVM directly searches for the 
optimal separating hyperplane by maximising the margin 
between classes in the feature space. Notably, both models 
struggled with intermediate categories, with sensitivities 
falling below 90% for these classes.

Several factors may have contributed to the models’ lower 
performance on the intermediate classes. First, the number 
of samples in intermediate classes was less than that in the 

Fig. 6   Pseudo-RGB image 
(top), reconstructed from SWIR 
HSI data, and classified image 
(bottom) of random prawn sam-
ples from the independent test 
set. Colours indicate soft (red), 
just failed (JF, yellow) and hard 
(green) prawns
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soft and hard categories. This may have limited the models’ 
ability to train effectively on the intermediate classes. Data 
imbalance might lead to the model focussing on maxim-
ising the overall accuracy, which is mainly influenced by 
the majority classes and therefore the minority classes may 
underperform (Thabtah et al., 2020). Using imbalanced 
data is common, and when the number of samples permits, 
the larger classes can be reduced, or smaller classes can be 
combined to create a larger class (Davur et al., 2023; Han 
et al., 2021; Tahmasbian et al., 2024a, 2024b). In this study, 
we aimed to assess the model’s performance for each class 
individually and identify weaknesses and, therefore, did not 
thin or merge any classes. Second, the initial manual clas-
sification, which serves as the reference and is currently used 
in Australian prawn farms, may not be entirely accurate. 
Differentiating between soft and hard classes is likely easier 
for workers, but distinguishing between intermediate classes 
can be more difficult and subjective. This subjectivity could 
have influenced the lower performance of the models for 
the intermediate classes. Third, the consistently lower aver-
age reflectance of the JF samples may indicate an unidenti-
fied difference other than shell hardness. While the samples 
were randomly scanned and individually dark and white 
corrected, sensor error and light variation seem unlikely to 
account for the issue. However, further experimentation and 
control of other factors, such as sample size and reference 
data, are needed to fully confirm this.

To address these limitations, we recommend using a 
larger dataset with a balanced number of samples across 
all shell hardness and size classes. This would improve the 
model’s training process. Additionally, developing a quanti-
tative method for the reference classification, as an alterna-
tive to the subjective manual method, is important. Since the 
quantitative reference method would only be used during 
calibration, slower and more accurate techniques, such as 
measuring shell thickness manually or chemically analysing 
the shells, could be considered.

Applications

This study demonstrated the potential of SWIR HSI for 
determining prawn shell hardness levels. The technology 
provides a fast, non-destructive, and accurate alternative 
to the current manual identification and classification pro-
cess, enabling consistent and reliable prawn classification. 
This offers the potential for integration into automated sys-
tems for more efficient and precise sorting. The machine 
learning model developed using the HSI data was able 
to differentiate between prawns with different shell hard-
ness levels. Given HSI’s compatibility with conventional 
machine vision systems used for monitoring shape, size 
and weight (Hong et al., 2014; Pan et al., 2009; zhang 
et al., 2014), it offers enhanced product management and 

pricing by enabling classification based on varying quality 
levels including visual and internal characteristics.

The camera used in this study was a high-resolution 
288-channel device with a maximum speed of 400 frames 
per second. While the full spectral range (950–2500 nm) was 
used in this research, future studies should focus on reducing 
the number of wavelengths to only the most important ones. 
This will increase scanning speed and reduce data size. The 
camera and lens also measured 384 pixels per line, covering 
a 10 cm width. Increasing the measurement width by adjust-
ing the distance between the sample and the camera, using 
a different lens, may result in a reduction in spatial resolu-
tion. It is unclear whether this decrease in spatial resolution 
would affect classification accuracy. Since our models were 
trained using the average reflectance values for each prawn 
(the average of all pixels), it suggests that the technology 
may not be sensitive to spatial resolution.

HSI data, when analysed using the machine learning 
model, can serve as the core decision-making system for 
a sorting machine. This can be implemented in various 
setups, including assisted-manual systems, where HSI 
identifies and displays samples for removal by workers, 
or fully automatic systems, where HSI triggers a mechani-
cal separation process.

Overall, this study highlights the effectiveness of HSI 
technology, combined with machine learning, to accurately, 
rapidly and non-destructively identify prawn shell hardness 
levels, contributing to product consistency and quality.

Conclusions

In conclusion, this study highlighted the effectiveness of 
SWIR hyperspectral imaging technology combined with 
machine learning in accurately determining prawn shell 
hardness levels. The developed models demonstrated high 
classification accuracy, particularly for extreme shell hard-
ness classes of hard and soft, and showed potential for dif-
ferentiating intermediate categories. The non-destructive, 
fast and reliable nature of this method provides a prom-
ising alternative to the current manual sorting process, 
while also offering the opportunity for future automation. 
With further refinement, such as the use of larger, bal-
anced datasets and quantitative reference methods, HSI 
can significantly improve the consistency and efficiency of 
prawn sorting, benefiting both the industry and consumers 
by ensuring high-quality, uniform products.
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