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Abstract. Crop phenology informs in-season management practices such as fertilizer and pest and disease controls to optimize final yield. 
However, tracking crop growth stages across spatiotemporal domains remains challenging, particularly in rainfed broadacre systems subject 
to climatic variability. This study uses sequential high-resolution Sentinel-2 imagery to estimate phenological stages of wheat and barley across 
the Australian grain cropping region which comprises >20 million ha of production. An analysis pipeline was developed to estimate main crop 
growth stages using targeted vegetation indices (VI) and statistical model fitting approaches. Model accuracy was validated against biophysical 
simulated phenology and field observations from diverse environments. Both parametric models and non-parametric models were evaluated to 
fill data gaps and capture growth dynamics. The double logistic model was selected for its balance of performance and efficiency. Strong align
ment was observed between VI-derived features and simulated phenology. Peak and right shoulder features showed high accuracy for esti
mating stages of flag leaf (R2 = 0.61, root mean square error (RMSE) = 8.67 days) and flowering (R2 = 0.7, RMSE = 7.66 days). Scalability 
was evaluated at 110 and 73 fields across Australia, for 2021 and 2022 seasons, respectively, showing moderate to high correlations with re
corded phenology (flag leaf R2 = 0.57–0.58; flowering R2 = 0.7–0.85). The method also predicted tillering (R2 = 0.2–0.7), maturity (R2 = 0.73– 
0.85), and harvest (R2 = 0.55–0.66) where these observations were available. These results demonstrate the utility of high-resolution satellite 
data for estimating crop phenology and supporting zonal in-season agronomic management.
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1.  INTRODUCTION
Global climate change poses unprecedented challenges to agricul
tural systems, impacting crop growth patterns and necessitating 
adaptive management strategies (Lobell et al. 2008, Hammer 
et al. 2020, Jiang et al. 2021). As the Earth’s climate undergoes 
transformative shifts in temperature, precipitation, and extreme 
weather events, the agricultural sector must adapt to ensure 
food security and sustainable practices (Wheeler and von Braun 
2013, IPCC 2021). This is particularly important in Australia, 
characterized by rainfed cropping and susceptibility to climate 
variations (Collins and Chenu 2021, Wang et al. 2023). Central 
to this adaptation is an understanding of phenology and its role 
in determining effective crop management practices.

Phenology is important for characterizing crop growth dy
namics of winter cereals (such as wheat and barley) for timely 
crop management practices. For example, the flag leaf stage 
marks the end of canopy establishment and is influenced by 
water, nutrient availability, and presence of disease and pests. 
Similarly, the flowering stage is critical to grain number estab
lishment and stress around this time greatly impacts final yield 
(Fischer 2011, Richards et al. 2014, Flohr et al. 2017). Timely 
and spatially resolved information on such growth stages is in
valuable for efficient crop management (Zhao et al. 2020, 
Potgieter et al. 2021). However, the vast expanse of broad-acre 
grain cropping (>20 M ha with a geographic extent of 
>1500 km north–south and 500 to 1500 km east–west in the 
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east and west of Australia), coupled with the diverse climate 
and environmental conditions across these regions, introduces 
significant variations in cereal crop growth across Australia 
(Richards et al. 2014, Flohr et al. 2017). This diversity results 
in broad phenological windows for different growth stages, pre
senting substantial challenges in efficiently quantifying these 
variations within and across large areas.

Regular crop monitoring is assessed through visual observa
tions, with predictions based on growth scales such as Zadoks 
et al. (1974) and expected weather conditions. These practices 
have underpinned traditional phenological studies aimed at 
understanding crop growth patterns to support in-season deci
sions (McMaster and Wilhelm 1997, GRDC 2016). These 
methods are labour intensive, prone to observer variability, 
and are not scalable to accommodate variability across fields 
(which may be 100 s of ha in area) or across regions, e.g. to in
form scheduling of contract harvesting activities. As such, there 
is growing interest in complementary approaches, particularly 
crop models and remote sensing, to deliver timely and spatially 
comprehensive information.

Crop models such as the Agricultural Production Systems 
sIMulator (APSIM) have been powerful tools for characteriz
ing crop growth under different genotype (G) and manage
ment (M) combinations in face of different environments 
(E). APSIM is a biophysical cropping systems model that inte
grates climate data, soil properties, and management practices 
to simulate crop growth and development. This model facili
tates a detailed understanding of the complex interactions 
that influence crop phenology, thereby supporting the refine
ment of farm management decisions in response to changing 
climatic conditions (Keating et al. 2003, Holzworth et al. 
2014) and as affected by the genetics of the variety being grown 
(Zheng et al. 2013). However, APSIM is a point-based analysis. 
Effective operation of such models requires a comprehensive 
dataset of environmental variables, which can be challenging 
to procure on a large scale. This limitation restricts the utility 
of APSIM and similar models to broad-scale agricultural assess
ments (Keating et al. 2003). Additionally, the application of 
outputs from crop models, such as APSIM, for particularly 
crop growth stages, is contingent upon the availability of wea
ther data specific to the location and field. This dependency 
hinders the scalability of the simulated variables across multiple 
fields (Holzworth et al. 2014).

Recent advancements in remote sensing, especially satellites- 
based systems, have opened new possibilities for large-spatial 
scale temporal crop growth monitoring (Potgieter et al. 2021). 
The use of remote sensing for growth stage analysis has been ex
tensively explored, revealing its capacity to surpass the accuracy 
and scope of traditional assessment methods (Zhang et al. 
2003, Sakamoto et al. 2010, Pan et al. 2015, Gao and Zhang 
2021). For example, remote sensing has been instrumental in 
identifying key phenological events such as the onset of the grow
ing season, peak vegetation periods, and the end of the growing 
season through time-series analysis of vegetation indices (VI) 
for crops including paddy rice, wheat and other woody species 
(Sakamoto et al. 2005, Zhang et al. 2006). Curve fitting algo
rithms like double logistic functions (Li et al. 2019), Fourier de
composition (Sakamoto et al. 2005), and temporal smooth filters 
such as Savitzky–Golay and Whittaker (Chen et al. 2004) are 

commonly applied to delineate representative growth curves 
from various remote sensing data sources. This fitting step con
verts the original VI time-series with gaps and noises into a 
smoothed profile, which is then used to estimate the curves’ 
mathematical features (e.g. local minima, maxima, and curvature) 
to serve as phenological indicators. Zhang et al. (2003) utilized a 
piecewise logistic function on the Moderate Resolution Imaging 
Spectroradiometer (MODIS) VI data to estimate key pheno
logical events of global vegetation, including the ‘Green-up onset’, 
‘Maturity onset’, ‘Senescence onset’, and ‘Dormancy onset’. 
Similarly, Manfron et al. (2017) determined winter wheat sowing 
date in Camargue, France, through peak and minimum values 
analysis using enhanced vegetation index (EVI) from MODIS. 
Manfron et al. (2017) related the local maxima and the preceding 
local minima to crop heading and sowing in winter wheat crop
ping regions.

While the MODIS data, with its high temporal frequency and 
long-term availability, has been widely used for detecting pheno
logical events, its relatively coarse spatial resolution (up to 
250 m) limits application where spatial heterogeneity within 
and between fields is important. Studies also noted challenges 
in using MODIS to resolve phenological signals in regions 
where crop types and phenology are spatially mixed. In contrast, 
the Sentinel-2 (S2) mission provides high spatial resolution 
(10–20 meters) with a 5-day revisit frequency, offering a 
more suitable platform for detecting field-scale phenological dy
namics and capturing within field variability. Several studies 
have explored the capacity of temporal profiles from S2 for char
acterizing the growth dynamics in the dryland cropping system 
in Australia, revealing the overall growth variations in the diverse 
climate and environment conditions (Xie et al. 2024).

Despite these advances, a gap remains in relating remotely 
sensed data with specific crop growth stages, e.g. flag leaf appear
ance and flowering, as observed on the ground (Guo et al. 2016, 
Sakamoto 2018, Younes et al. 2021). This disconnect highlights 
the need for further research to bridge the gap between remote 
sensing observations and actual phenological stages (Younes 
et al. 2021). By aligning the growth curves represented by re
motely sensed indices with direct observations of growth stages, 
researchers can forge a more integrated and accurate framework 
for monitoring and managing crop production.

The aim of this study is to utilize high-resolution S2 imagery 
to track key phenological stages of wheat and barley. This is 
demonstrated by relating remote sensing-derived temporal pro
files to both APSIM-simulated and field-observed crop phen
ology at a 10-m resolution. The proposed method evaluates 
the utility of this method in tracking specific growth stages in
cluding tillering, flag leaf emergence, flowering, and maturity. 
Additionally, the study quantifies the spatial variability of these 
stages within and across fields, permitting a detailed assessment 
of growth patterns at the sub-field level and enabling more in
formed and timely agronomic decisions.

2.  DATA AND MATERIALS
2.1 Validation sites for crop growth observation

The research was conducted in three trial sites located in 
Western Australia (WA), South Australia (SA), and north- 
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eastern Queensland (QLD), respectively (Fig. 1). These loca
tions encompass a wide range of environmental conditions 
and agricultural practices, with the trials across two consecutive 
winter cropping seasons (i.e. 2021 and 2022).

At each site, large square plots measuring 60 by 60 m were 
established to investigate the growth dynamics of wheat and 
barley, the two major cereal crops in Australian broadacre farm
ing systems. Wheat cultivars sown included Scepter, Vixen, 
Illabo, Lancer, and Stealth; and Planet and Spartacus barley var
ieties were used.

2.2 Field observation for phenology stages
To monitor growth development stages accurately, wildlife 
cameras (Swift Enduro 4G Trail Camera) were installed to cap
ture the plant/canopy growth from two angles: one at the side of 
the canopy and another from an above-canopy perspective at 
a 45° angle. These images were synchronized daily with the 
PhotoShelter cloud platform (https://www.photoshelter.com/) 
and then transferred to local computing facilities (Fig. 1). At 
each site, a micro weather station recorded daily temperatures 
and rainfall (Arable Mark 2, https://www.arable.com/).

Beyond automated sensor data, regular site visits by a local 
agronomist provided a record of the main crop growth stages, 
including emergence, tillering, elongation, flag leaf, flowering, 
grain filling, and maturity (Fig. 2; Zadoks et al. 1974). For 

each plot the Zadoks score is recorded as a decimal code rep
resenting the stage at which 50% of plants have reached at 
the time of the score. The Zadoks score is then converted to 
text assignment which we use here to describe the stages. 
The visit frequency varied from weekly to biweekly, influenced 
by current weather conditions and the stage of growth. To ac
count for potential spatial variability within the 60-m plots, 
these manual assessments were performed at five distinct loca
tions within each plot.

2.3 Satellite data
To characterize crop growth dynamics for each plot, we devel
oped an automated pipeline to pre-process the S2 imagery 
through the Google Earth Platform (GEE). S2 provides imagery 
at 10-m spatial resolution with a 5-day revisit frequency, offering 
a suitable balance between spatial and temporal resolution for 
field-scale agricultural monitoring. S2 was preferred to other plat
forms such as MODIS given the spatial resolution requirements 
and the specific research objectives of this study. The experimen
tal plots used for validation measures 60 by 60 m. As such, 
MODIS data (250 m pixels) is not suited to resolve intra-plot 
variability or align with field-based phenology observations. 
This study also quantifies within-field phenological variation, a 
task that benefits from the high spatial fidelity provide by S2. 
Supplementary Figure S1 demonstrates a comparison of NDVI 

Figure 1. Location of the validation trials and distribution of the national surveyed farms for 2021 and 2022 winter cropping seasons. The 
validation trials were facilitated with field cameras to record daily canopy development from the canopy top (45° viewing angle) and side (90° 
viewing angle), and a weather station.
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profiles derived from MODIS and S2 for representative sites and 
highlights how the lower-resolution MODIS data smooths out 
fine scale variability that is clearly captured by S2.

The pre-processing pipeline includes key functions: cloud/ 
shadow masking, calculation of indices, curve fitting, and appli
cation of mathematical derivatives for feature extraction for 
each of the continuous (daily infilled) vegetation crop growth 
curves. These derivatives are referred to as growth curve fea
tures (GCF). Details of specific methodologies for curve fitting 
and feature extraction techniques are further elaborated in the 
‘Methods’ section.

3.  METHODS
Here, we utilized a time series of NDVI to analyse crop growth 
dynamics. NDVI was selected after comparing the performances 
of various indices, which characterize the canopy in different as
pects (Supplementary Table S1). For example, canopy structure 
related NDVI, optimized soil-adjusted vegetation index, EVI, and 
chlorophyll related normalized difference red-edge index, chloro
phyll index, and other indices related with moisture (normalized 
difference water index) and colour (HUE). The index profiles 
showed subtle differences in capturing the growth dynamics 
(Supplementary Figures S2 and S3) and has the potential for spe
cific application purposes, for example, flower detection for can
ola crop using the colour related HUE index (data not shown). 
To simplify the analysis in this study, the widely accepted 
NDVI was selected. Features derived from NDVI profiles were 
correlated with specific growth stages as observed in field data 
and simulated by APSIM. A key component of the approach is 
the use of a double logistic algorithm (Li et al. 2019) to address 
data gaps with the NDVI series (see 3.3). We then calculate fea
tures from the curve with mathematical definitions (see 3.4) and 
examine their relationships with crop growth stages through com
parison with APSIM’s phenology outputs, and field observations.

3.1 Compiling missing phenology stages from camera 
photos

The recorded timing of growth stages at several validation sites 
varied across plots, particularly for certain stages. This 

variation, combined with the fact that agronomists were not 
present daily to monitor each plot, made it difficult to directly 
align field observations with satellite-derived features. To ad
dress this, daily images from field-installed cameras were used 
to fill in missing stage information and help standardize pheno
logical comparisons. These visual records were used to infer key 
stages including emergence, early tillering (first tiller with three 
visible leaves), stem elongation, flag leaf appearance, flowering 
(or the onset of grain filling), and full maturity (Fig. 2; 
Supplementary Figure S4).

The process involved using the available field records and 
camera images as reference points for each main stage. For plots 
not directly observed at a given stage, images from slightly earl
ier or later dates were reviewed to identify the date that best 
matched the target growth stage. This method was carefully 
adapted to account for phenological differences between wheat 
and barley, particularly in their flowering stages. Notably, bar
ley’s flowering occurs with the head in the sheath, making it 
less visible compared to wheat, where flowering is marked by 
the presence of yellow anthers hanging freely from the ear.

3.2 Simulated crop growth stages and thermal time 
accumulations

The APSIM cropping systems model was used to simulate crop 
growth and phenological stages for the known wheat and barley 
varieties (Scepter, Vixen, and Illabo for wheat, and Planet and 
Spartacus for barley). Each simulation incorporated key man
agement and environmental inputs, including sowing date, 
plant density, soil type, and fertilizer application. Daily weather 
inputs were sourced from nearby Bureau of Meteorology 
(BoM) stations (www.bom.gov.au), including maximum and 
minimum temperature, rainfall, and solar radiation. These in
puts enabled APSIM to generate detailed growth profiles and 
corresponding phenological stages, providing a robust basis 
for comparison with both field observations and satellite- 
derived features.

A central component of the APSIM output is the calculation 
of thermal time, which denotes the cumulative thermal require
ment for each growth stage and its transitions. Thermal time is 
one of the main driven factors of crop phenological stages 

Figure 2. The different growth stages of cereal crops. The rectangle highlighted the target stages studied in this study (Source: GRDC, at 
https://groundcover.grdc.com.au/crops/cereals/improved-sowing-date-data-to-lift-crop-potential).
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development. It is calculated from the daily average of max
imum and minimum crown temperatures, and is adjusted by 
genetic and environmental factors (Zheng et al. 2015). In 
this study, the metric serves as a vital reference for correlating 
S2 VI profiles with specific crop growth stages, thereby enhan
cing the accuracy of growth stage determination through re
mote sensing data.

3.3 Generate continuous crop growth through curve 
fitting

While S2 satellite imagery is pivotal for monitoring vegetation 
health through a wide range of spectral indices, its 5-day revisit 
interval and susceptibility to atmospheric interferences, such as 
cloud cover, often lead to gaps in time series data. To address 
this, we applied curve fitting methods to reconstruct daily crop 
growth profiles for each pixel and plot. This study compares 
several data filling techniques, including Harmonic, Gaussian, 
Gaussian Process regression (GPR), Spline, and Generalized 
Additive Model (GAM). Detailed comparisons are provided 
in Supplementary Figures S1 and S2.

Harmonic fitting, which models seasonal variation using sine 
and cosine functions, captured general periodic trends but per
formed poorly near the start/end of season and during canopy 
saturation, limiting its utility (https://developers.google.com/ 
earth-engine/tutorials/community/time-series-modeling). GPR, 
a flexible non-parametric method that incorporates prediction 
uncertainty, was prone to overfitting and computationally de
manding on large datasets (Belda et al. 2020, De Caro et al. 
2023). Spline methods, which fit piecewise polynomials, 
were efficient and handled complex data patterns but intro
duced artefacts and showed sensitivity to missing data 
(Vorobiova and Chernov 2017). GAM allowed flexible, non- 
linear modelling through smooth functions, but required care
ful tuning to avoid overfitting and were also computationally 
intensive (Wellington et al. 2023). It can effectively capture 
complex and varying growth patterns, but its flexibility re
quires careful selection of smoothing parameters to avoid 
overfitting.

In contrast, the double logistic regression method stood out 
for its computational efficiency and ability to retain key crop 
growth dynamics (Vorobiova and Chernov 2017, Li et al. 
2019). It models NDVI progression using two logistic func
tions—one for green-up and one for senescence:

f (t) = v1 + v2 ×
1

1 + e−m1(t−n1) −
1

1 + e−m2(t−n2)

􏼒 􏼓

(1) 

where f (t) represents the fitted NDVI value at day t, v1, and v2 
denote the background NDVI and its amplitude over the year, 
and parameters m1, n1, m2, and n2 describe the green-up and 
senescence phases, respectively.

To parameterize the model, we initially performed harmonic 
fitting on the Google Earth Engine (GEE) to estimate the sea
son’s structure and locate the NDVI peak (Fig. 3A). This en
abled segmentation of the NDVI series into two phases— 
green-up and senescence, allowing separate parameterization 
for each growth phase (Fig. 3B and C). This method effectively 
captures complex growth patterns, avoid overfitting, and is well 
suited to GEE-based large-scale implementations.

3.4 Derive growth curve features from fitted growth profile
This study derived nine distinct GCFs from the fitted daily 
NDVI profiles to evaluate their alignment with key crop pheno
logical stages observed at the trial sites. Rather than assuming 
that each feature represents a specific stage, the features were 
assessed relative to the recorded crop development stages to 
identify which points on the NDVI trajectory consistently cor
respond to major transitions in growth. Given the strong rela
tionship between canopy development and NDVI, specific 
inflection points, slopes and maxima within the curve were eval
uated as potential indicators of phenological progression 
(Fig. 4; Supplementary Figure S4). The GCFs include: 

• Start of Season (SoS): the initial rise in NDVI by 1% of 
the seasonal amplitude; generally aligned with crop emer
gence in field observations (Supplementary Figure S4).

• Greening onset (G): The inflection point of greatest 
curvature following SoS. It is typically associated with 
the onset of tillering and early canopy development.

• D1: the steepest positive slope prior to the peak, most 
often observed during the stem elongation stage.

• Left Shoulder (L): The point of maximum curvature be
fore the peak, where NDVI increase begins to slow. It 
closely aligned with full canopy development and primar
ily linked with flag leaf emergence (Supplementary 
Figure S4).

• Peak: The maximum NDVI value, indicating full canopy 
cover. In this study, the peak typically followed flag leaf 
emergence and preceded flowering, though timing varied 
by crop and location.

• Right Shoulder (R): The point of greatest curvature fol
lowing the peak; field data showed this feature closely 
aligned with flowering to early grain filling, especially in 
wheat.

• D2: the steepest negative slope during senescence com
monly linked with late grain development stages.

• Senescence (S): Marks the phase when the decrease in 
NDVI slows, aligning with physiological maturity.

• End of Season (EoS): the return of NDVI to near- 
baseline level broadly corresponding to crop harvest.

3.5 Contrasting of growth curve features with observed data 
and simulated growth stages

To evaluate the relationship between NDVI-derived GCFs and 
specific crop growth stages, we first aligned the timing of each 
feature with the accumulated thermal time from APSIM simu
lations at each validation site. This allowed us to compare the 
APSIM-simulated phenology stages with the curve-derived fea
tures and subsequently with field-observed phenology. 
Through this alignment, we tested whether the 
NDVI-derived features show statistically significant correla
tions with the actual growth stages recorded in the field 
(Zhang et al. 2006, Lobell et al. 2015).

The use of a biophysical crop model like APSIM, which 
closely replicate the phenological development of wheat and 
barley, is crucial in the analysis of satellite-derived indicators, 
particularly when direct field observations are limited or un
available. By ensuring that the simulated growth stages reflect 
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Figure 3. Strategy for fitting the double logistic function to Sentinel-2 NDVI data at trial site in Queensland, 2021 (lat/lon [−28.061, 
151.964]): (A) the crop growth cycle is initially split into two segments using harmonic fitting to capture the overall seasonal pattern, (B) a 
logistic curve is fitted to the green-up phase (first half), (C) a logistic curve is fitted to the senescence phase (second half), and (D) the two 
segments are merged to form the complete fitted growth curve.

Figure 4. The nine growth curve features (GCF) derived using the double logistic fitted daily NDVI profiles.
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actual crop development, we improve the interpretability and 
reliability of satellite-based estimates. This alignment compen
sates for the lack of ground-truth data, enabling more robust as
sessments of crop performance and growth patterns under 
various climatic scenarios (Heinicke et al. 2022, Poole et al. 
2022). The intent of this analysis is to be able to implement sol
utions using only weather and satellite data, without relying on 
routine field-based agronomy observations.

3.6 Validation with observed phenology stages at field scale 
across Australia

To independently validate the relationships between 
NDVI-derived GCFs and crop phenology, we utilized 
field-scale phenology observations from commercial agronomy 
datasets across Australia. The data, provided by Data Farming 
Pty Ltd, included 110 fields for 2021 season and 73 fields for 
2022 season. Due to differences in data structure: descriptive 
phenology records in 2021 versus Zadoks growth stage scores 
in 2022, the datasets were analysed separately. For both sea
sons, the S2 processing pipeline described earlier was used to 
extract curve features averaged for each field, including key in
flection points and slope-derived indicators from fitted NDVI 
profiles. This comparison provided an independent test of 
the method’s ability to generalize across diverse environments, 
crop types, and data formats beyond the original trial sites.

3.7 Statistical analysis
For statistical comparison of the curve features against field ob
servations at the validation sites, we employed Analysis of 
Variance (ANOVA) and paired t-tests. ANOVA was utilized 
to assess whether variations in curve features were statistically 
significant across different growth stages. This involved decom
posing the total variability into between-group and 
within-group components to determine whether specific curve 
features aligned consistently with distinct phenological stages. 
Subsequently, paired t-tests were applied to examine the differ
ences between the NDVI-derived curve features and the direct
ly observed growth stages at each site. This test compares the 
means of two related groups to determine if there are statistic
ally significant differences between them, thus allowing for a 

precise assessment of the accuracy with which NDVI-derived 
features can predict actual crop growth stages. While the statis
tical analysis will identify significant correlations between the 
satellite derived GCF and observations, expected correlations 
include the main pairs such as the curve peak versus the ob
served flag leaf, the R feature versus the flowering (or grain fill
ing which closely following the flowering stage).

When comparing the field recorded growth stages across 
Australia with the results derived from the proposed method, 
linear correlation analysis and root mean square errors 
(RMSE) calculations were employed to quantify the overall 
performance of the proposed method at a diverse range of 
fields.

4.  RESULTS
4.1 Agricultural production systems simulator simulations 

at the validation sites
The accuracy of two key phenological stages simulated with 
APSIM were examined, the ‘Flag leaf’ and the ‘Flowering’. 
The simulated ‘Flag leaf’ stage demonstrated an overall good 
agreement with field observations (Fig. 5A), with a high correl
ation coefficient (R2) of 0.83 and a RMSE of 5 days. A slight 
underestimation in the predicted emergence of the flag leaf 
stage by the APSIM model relative to the actual observations 
was observed. Meanwhile, the simulated ‘Flowering’ showed 
a strong relationship with the observed flowering at the valid
ation plots (Fig. 5B). Specifically, the model’s prediction 
aligned closely with the observed flowering (at around 50% 
flowering), with a R2 of 0.83 and relatively small error 
(RMSE = 5.78 days).

4.2 Contrasting growth curve features with simulated 
phenology stages

Here, we compared the thermal time requirements of different 
growth stage targets with the satellite derived GCFs for wheat 
and barley across sites and seasons. The paired t-tests provided 
a statistical rigour to evaluate the significance of these correla
tions (Table 1) and thus ability of using remotely sensing- 
derived crop growth stages to estimate phenology. When 

Figure 5. Evaluation of simulated (x-axis) Flag leaf (A) and flowering (B) with field observations. Overall good agreement of simulated flag 
leaf and flowering with recorded growth stages at the validations sites is observed.
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combining wheat and barley data, no significant differences 
were found for the ‘Flagleaf’ (P = 0.535) and ‘Flowering’ stages 
(P = 0.133), which implies a close match between the NDVI 
derived Peak and the simulated stage representing ‘FlagLeaf’ 
for these specific stages. This suggests that the accumulation 
of thermal time for the cereal crops to reach the flag leaf and 
flowering stages is well-represented by the APSIM model, in 
line with NDVI observations at (around) peak.

When considering wheat and barley data separately, for 
wheat, the derived GCF for overall Peak and R remained 
strong, still showing good indications of the ‘Flagleaf’ and 
‘Flowering’ stages, respectively. This suggests that the remote 
sensing-derived features can be potential predictors of these 
stages for wheat. For barley, the peak feature had good agree
ment with the simulated ‘Flagleaf’. However, the curve-derived 

R feature did not show a significant relation with barley 
‘Flowering’. Instead, the ‘StartGrainFill’ showed a significant re
lationship with R, highlighting the distinct differences in the 
flowering stages of wheat and barley.

Figure 6 shows the comparison of required thermal units to 
reach different growth stages in wheat and barley, as simulated 
by APSIM (on the x-axis) and as estimated by a proposed 
curve-based method (on the y-axis). Overall, the significant 
correlations, in terms of required thermal units towards each 
stage, between the two methods affirmed that the identified 
curve features are closely related to the phenology stage 
been compared with. For instance, flag leaf is aligned strongly 
(R2 = 0.8, RMSE = 112) with the GCF representing the peak 
from the S2 NDVI profile. The curve derived R feature was 
strongly related to flowering stage, especially for wheat crops 
(R2 = 0.86, RMSE = 121).

4.3 Relationships of curve derived features with observed 
phenology stages

Overall, appreciably high agreement was evident between the 
derived GCF with observed phenology stages at the validation 
sites (Fig. 7). For example, the curve-derived ‘L’ feature had a 
strong positive relationship with the observed stem elongation 
(R2 = 0.61, RMSE = 8.67 days), which is a critical stage for yield 
formation before the full crop canopy (Kronenberg et al. 2017). 
Observed flag leaf stage showed significantly strong correlation 
with the peak from the S2 NDVI curve (R2 = 0.70, RMSE = 
7.66), further affirming the robustness of the mathematically 
NDVI-derived peak in representing full canopy for estimating 
the flag leaf stage. Additionally, Fig. 7C indicated a slightly low
er but still substantial correlation of 0.69 between observed 
flowering and the curve derived feature ‘R’, with an RMSE of 
around 10 days.

The variations in correlation and RMSE across the plots may 
reflect environmental heterogeneity and differing crop re
sponses at the sites. However, the overall agreement observed 
in these plots supports the use of remote sensing data as an ef
fective proxy for field observations, which can be particularly 

Table 1. The table presents a statistical comparison between 
APSIM simulated growth stages and curve-derived features for 
wheat and barley.

Stages APSIM vs 
curve-derived

T-statistic P-value Crop category

Emergence vs SoS 2.20 0.055 Wheat + Barley
Flagleaf vs Peak 0.63 0.535 Wheat + Barley
Heading vs Peak 6.16 0.001 Wheat + Barley
Flowering vs R −2.73 0.133 Wheat + Barley
StartGrainFill vs R −0.08 0.937 Wheat + Barley
Maturity vs EoS −1.78 0.126 Wheat + Barley
Emergence vs SoS 1.203 0.315 Wheat
Flagleaf vs Peak 1.706 0.122 Wheat
Heading vs Peak 6.164 0.001 Wheat
Flowering vs Peak −0.722 0.489 Wheat
StartGrainFill vs R 2.734 0.023 Wheat
Maturity vs EoS −1.834 0.126 Wheat
Emergence vs SoS 1.901 0.116 Barley
Flagleaf vs Peak −1.375 0.202 Barley
Flowering vs R −3.148 0.012 Barley
StartGrainFill vs R −2.064 0.069 Barley

The comparisons were assessed using t-statistics and P-values to determine the 
significance of the differences between the paired variables. Significant differences were 
identified at three levels of P-values: 0.01, 0.05, and 0.10.

Figure 6. Comparison of the required thermal units for wheat (green) and barley (blue) to the different growth stages revealed with APSIM 
(x-axis) and proposed curve-based method (y-axis). Higher thermal time requirement for wheat is observed. The overall agreement from the 
two different sources of results suggests the timing of the curve peak (A) and the right-side shoulder (B) is corresponding to the Flag leaf and 
flowering stages, respectively.
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advantageous for large-scale agricultural monitoring where dir
ect field measurements are not feasible.

4.4 Validation analysis with independent fields across 
Australia

The validation analysis for the 2021 and 2022 winter crop 
growing seasons incorporated independent field data, provid
ing a robust framework for evaluating the predictive strength 
of the remote sensing-derived curve features. The scatter plots 
for both years illustrate the relationship between curve features, 
such as the NDVI peak, and recorded phenological stages 
across several fields (Figs. 8 and 9).

In the 2021 season, the correlation coefficients and the lin
earity of the data points suggest that certain features have a sig
nificantly strong association with specific phenological stages 
(Fig. 8). For instance, the feature representing the NDVI 
peak aligns well with the flag leaf stage, with a moderate R2 val
ue (0.58) indicating a reasonable level of predictability. Other 
features, like the derived R feature, showed a significantly high 
correlation to flowering (R2 = 0.85, RMSE = 13.07), thus sup
porting at their potential as reliable markers for these phases 
of crop development. The features (S and EoS) at the end of 
the NDVI profile are relating strongly to crop maturity (S, R2 

= 0.85) and harvest (EoS, R2 = 0.55), when compared to the re
spective records in the field.

Application of the developed approach to the 2022 season 
field surveyed data echoed similar significantly strong 

relationships between remote sensing derived GCF and ob
served phenology at a filed scale (Fig. 9). Despite some variabil
ity, the general trend across the field scale data demonstrated an 
appreciably strong agreement between the remote sensing data 
and field observations, confirming the application of these 
curve features for objective and rapid monitoring of crop 
growth for wheat and barley at field scales across seasons and 
regions.

5.  DISCUSSION
5.1 Growth curve derived features can indicate 

phenological stages
A key finding here is the effective application of GCF extracted 
from S2 imagery to identify specific phenological stages of the 
main winter cereal crops (i.e. wheat and barley) in Australia. 
The double logistic fitting method effectively addressed data 
gaps and smoothed the NDVI time series, allowing for the iden
tification of subtle changes in crop canopy and detailed charac
terization of crop growth dynamics. The fitted curve captures 
the essential growth phases of the crops, including the rapid in
crease in NDVI during the initial growth stage, the plateau at 
full canopy development, and the subsequent decline during 
senescence (Zhang et al. 2003, Li et al. 2019). After comparing 
with other popular fitting algorithms (Supplementary Figures 
S1 and S2), including Gaussian, Gaussian Process Regression, 
Spline, and Generalized Adaptive Model, the double logistic 

Figure 7. Comparison of curve derived features with observed growth stage at the validation sites. The scatter plots are denoting the 
relationships of the curve derived left shoulder feature ‘L’ (A), peak (B), and right shoulder feature ‘R’ (C) versus the observed stem 
elongation, flag leaf, and flowering, respectively.
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Figure 8. Relationships of curve derived features with observed growth stages recorded at the provided wheat and barley fields across Australia 
cropping region for the 2021 winter cropping season. The curve derived peak and R features showing strong correlations with the observed flag 
leaf and flowering stages (C and D), which supports well the findings at the validation sites. Significant high correlations between 
curve-derived S feature and maturity (E), EoS feature, and harvest (F) are also observed.

Figure 9. Relationships of curve derived features with observed growth stages recorded at the provided wheat and barley fields across Australia 
cropping region for the 2022 winter cropping season. The 2022 dataset is recorded with Zadoks growth scores (GS), which provides more 
specific information about the stage. While the strong correlation of curve derived peak and R with flag leaf and flowering persists (C, D), 
relationships of curve derived feature D1 (B), S (E), and EoS (F) with recorded tillering (GS21), hard dough (GS 87), and harvest (GS100) 
are observed.
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method showed promising performance in addressing the gaps. 
More importantly, it is computationally efficient, making it suit
able for large-scale analysis using cloud platforms like GEE. 
This efficiency is crucial for processing large volumes of satellite 
data and generating timely insights for agricultural manage
ment (Chen et al. 2004, Li et al. 2019).

Based on the fitted growth profiles, this research corrobo
rated the efficacy of the proposed approach to accurately esti
mate the main development stages of cereal growth from 
high-resolution remote sensing. These phenological stages in
clude critical growth targets like the flag leaf, flowering, and 
the onset of grain filling. The NDVI peak showed strong correl
ation with the flag leaf stage, which typically coincides with near 
maximum green leaf area index. The right shoulder of the 
NDVI curve was strongly associated with the flowering stage 
and the commencement of grain filling (when grain number 
is finalized), both are essential for determining crop yield. 
These relationships upheld across different environmental con
ditions and both wheat and barley crops across fields distrib
uted national wide (Figs. 8 and 9). The robust correlations 
observed between remote sensing data and field observations 
confirm that remotely sensed index profile, such as NDVI, is 
a reliable indicator of actual crop conditions (Perry et al. 
2022, Farias et al. 2023) highlighting the potential of satellite 
imagery in enhancing the temporal and spatial resolution of 
crop monitoring systems (Atzberger 2013).

This study exemplifies the application of functional mathemat
ical functions fused with high-resolution satellite data from S2to 
estimate crop growth stages within sub-paddock scales that 
showed high accuracies when applied to independent fields 
across Australia at a large scale with spatial variation information. 
Traditional methods of assessing crop phenology, such as manual 
observations and the application of accumulated local knowledge, 
are labour-intensive, subject to human error, and often lack scal
ability. In contrast, the use of S2-derived NDVI features offers a 
non-invasive, cost-effective, and scalable solution for monitoring 
crop phenology across vast agricultural landscapes. The high tem
poral resolution of S2, with its 5-day revisit period, ensures fre
quent monitoring of crop development, capturing dynamic 
changes in growth stages that traditional methods might miss.

5.2 Aligning simulations of phenology, thermal time with 
remote sensing derived features

The APSIM simulations performed well at the validation sites, 
showing a high correlation with field observed stages and small 
errors for the varieties tested here. The model’s outputted ther
mal time provided critical information for interpreting the 
growth curve represented with S2 temporal profile and the de
rived curve features. The study found significant correlations 
between the accumulated thermal units (with corresponding 
estimated growth stage) and NDVI-derived features, such as 
the alignment of the NDVI peak with the flag leaf and the right 
shoulder of the curve with the flowering stage. This data science 
assay provided further validation of the proposed GCF ap
proach for accurately and rapidly estimating and extrapolating 
phenology observation at point-scale to field, farm and regional 
scales. By aligning simulated growth stages, thermal time and 
the NDVI-derived GCF, the proposed analysis enhances the 

precision of growth stage determination, thus facilitating 
more precise and scalable agricultural monitoring with remote
ly sensed imagery series (Asseng et al. 2013).

5.3 Implications of applications to better inform crop 
management decisions

The proposed method allows for the accurate estimation of the 
main crop growth stages (i.e. Flag leaf, Flowering) within crop 
fields. As demonstrated in Fig. 10A, the field in Western 
Australia covers an area of 836 ha. It was planted with wheat 
for 2021 winter season (sown on 31 May 2021), with the re
corded flag leaf and flowering stages on 2 Aug 2021 (day of 
year 216) and 8 Sep 2021 (day of year 253), respectively. 
However, substantial differences in crop development were evi
dent from the sampled NDVI profiles from different parts of 
the fields (Fig. 10B). The mapped curve features proposed in 
this study captured such spatial variations (Fig. 10C and D). 
Visualizing of spatial variations in predicted phenology offers 
a comprehensive spatiotemporal perspective on crop develop
ment for on-farm crop management decisions. This spatial het
erogeneity is often influenced by variations in soil composition, 
irrigation patterns, and localized climate effects, which are cru
cial for optimizing resource distribution (Gao and Zhang 
2021). Specifically, this capability will facilitate producers to 
have a more efficient use of inputs such as water, fertilizers, 
and pesticides, potentially enhancing overall crop health and 
yield (Sishodia et al. 2020, Gao and Zhang 2021, Pande and 
Moharir 2023).

5.4 Limitations of remote sensing-based approach for 
farmers

The proposed approach is not without challenges. Variability in 
environmental conditions, differences in crop varieties, and the 
resolution of satellite imagery can impact the accuracy of 
NDVI-derived features. Continuous refinement of models 
and validation techniques is essential to address these chal
lenges. Specifically, while the spatial resolution of S2 marks a 
significant advancement in remote sensing capabilities, offering 
valuable insights into crop phenology across diverse agricultural 
landscapes, it also presents specific limitations for farmers: 

• Spatial resolution: In regions characterized by fragmented 
fields and small-scale farming practices, S2’s 10 m reso
lution might not suffice to capture the minutiae of pheno
logical variations. These settings demand an even finer 
spatial granularity to accurately monitor growth stages 
within each distinct plot.

• Temporal resolution: The 5-day revisit cycle of S2 may 
not fully align with the rapid pace of certain phenological 
transitions, particularly in fast-growing crops or during 
sudden climatic shifts. This misalignment can lead to 
missed critical growth stages.

• Data gaps: Data gaps due to cloud cover and varying at
mospheric conditions further complicate accurate moni
toring. While curve-fitting techniques are employed to 
mitigate these temporal gaps and smooth out NDVI 
time series data, the simplification inherent in these algo
rithms may overlook critical phenological indicators.
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• Data volume: The large volume of data generated by 
high-resolution and frequent remote sensing imagery 
poses significant challenges in terms of storage, process
ing, and analysis.

While the first three points above can potentially be addressed by 
using commercial satellite providers (higher frequency and reso
lution with fewer data gaps), the utilization of these methods would 
likely be via specialized service providers who provide data aggre
gated in ways to match decision support needs. In addition, given 
that the study combined data from both wheat and barley crops 
under the broader category of cereal crops, the calibration may 
not fully account for the nuanced differences in the growth patterns 
of these distinct crop varieties. As such, crop-specific models could 
potentially yield more precise estimates given the inherent bio
logical and phenological diversity between wheat and barley across 
different management and environmental scenarios.

6.  CONCLUSION
This study demonstrates the potential of using high-resolution 
satellite imagery and VI to map crop phenology across vast 
and diverse agricultural landscapes. The developed approach 
not only facilitates the identification of in-field growth variations 
but also offers valuable insights for improving in-season 

agronomic management, ultimately leading to increased profit
ability and sustainability in broadacre cropping systems. The 
scalability and accuracy of the method showcased in this study 
hold the potential for allowing farmers to make informed deci
sions, mitigate risks, and optimize resource utilization, thus con
tributing to a more resilient and productive agricultural sector.
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