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ABSTRACT
Pest management in horticultural crops must become more efficient, capitalising on non- chemical means of pest reduction. 
In mango (Mangifera Indica), the development of highly productive orchard and canopy management systems offers a poten-
tial means to reduce pressure and damage from economically important pests such as mango scale (Aulacaspis tubercularis 
Newstead), but these effects have not previously been examined. High- density narrow hedge and espalier canopy management 
systems were compared with Australian industry standard low- density wide open- vase canopies. Initially, female scale popu-
lations on infested foliage were assessed in three commercial mango varieties for the three canopy systems over three years. 
Scale fruit damage in the three canopy systems was then assessed in Calypso variety for two following harvests. Narrow canopy 
management systems had significantly fewer female scale present on foliage, and significantly less fruit damage from scale 
(64%–84% reduction), resulting in fewer fruit downgrades (58%–89% reduction). This effect may result from changes in the can-
opy microclimate, with a potential contribution from greater spray penetration in narrow canopies. We suggest that the adoption 
of highly productive mango canopy designs will provide additional benefit to farmers and consumers by improving pest control 
and potentially reducing pesticide use.

1   |   Introduction

Within food production, two seemingly opposed trends have 
emerged: the need to produce more high- quality, pest- free 
food to meet a growing global population, and a reduction in 
the use of agri- chemicals, particularly pesticides (European 
Commission  2020). Reducing pesticide use also offers eco-
nomic benefits including lower farming costs and higher prices 
for pesticide- free, or organically produced food (Granatstein 
et al. 2016; Lee et al. 2021; Nitzko et al. 2024). This presents a 
promising revenue option to farmers, provided alternative means 
of managing pest- related losses are available (Shaw et al. 2021). 
Ultimately, to reconcile these trends, pesticide efficiency must 

be increased to achieve similar or improved pest management 
while reducing the number, hazardousness, or frequency of pes-
ticide applications.

Plant architecture or canopy structure is a non- chemical strat-
egy to manage pest and disease impacts and can be an im-
portant part of an integrated pest management system (Costes 
et  al.  2013). Canopy structure is the size, shape, orientation 
and positional distributions of various plant organs (Norman 
and Campbell  1989). While initially genetically dictated, can-
opy structure exhibits an ability to adapt in response to abiotic 
drivers such as light, water availability, and wind and biotic 
drivers such as pest and disease pressure (Sultan 2000). Canopy 
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structure can also be altered through the use of rootstocks, 
branch bending, pruning, and agronomic management (Costes 
et al. 2013). In managed canopies, canopy structure is primar-
ily modified to increase productivity (Mahmud, Ibell, Wright, 
Monks, and Bally 2023; Robinson et al. 1991). Additionally, in 
some crops, canopy architecture has been used to either reduce 
pest damage without increasing pesticide use (Simon et al. 2006, 
2012; Simon, Miranda, et  al.  2007) or use less pesticides but 
maintain fruit quality (Gil et al. 2021; Xun et al. 2022). Altering 
canopy architecture through pruning or variety selection can 
influence the host plant's attractiveness, the suitability of the 
canopy environment for the pest and their natural predators, 
and the efficacy of pest control methods (Simon, Sauphanor, 
and Lauri 2007).

In the tropics, pest management is particularly challenging, 
as milder winters allow pest populations to persist year- round. 
In evergreen species such as mango (Mangifera indica)—the 
world's most widely produced tropical fruit (FAOstat  2022)—
intensified production systems are becoming more common 
(Ibell et al. 2024; Menzel and Le Lagadec 2017) and may offer 
benefits for pest control. Previous studies of these systems have 
shown that canopy management alters the light distribution 
and likely associated canopy microclimate (Mahmud, Ibell, 
Wright, Scobell, et al. 2023; Westling et al. 2020), altering hab-
itat suitability.

Canopy manipulation in apple (Malus domestica) (Simon 
et  al.  2006, 2012), pecan (Carya illinoinensis (Wangenh.) K. 
Koch) (Toledo et al. 2024), macadamia (Macadamia intergri-
folia) (Gutierrez- Coarite et  al.  2018) and mango  (Bautista- 
Rosales et  al.  2013) has previously been shown to reduce 
damage from Hemipteran pests, though it was less effective in 
mandarin (Citrus clementina Hort. ex Tan.) (Fonte et al. 2023). 
While many Hemipteran species are mobile, mango scale 
Aulacaspis tubercularis Newstead is relatively immobile and 
of significant importance due to the cosmetic damage it causes 
to fruit skin, reducing marketability (Raza et al. 2023). In se-
vere infestations, leaf loss is high and death of small limbs 
may occur. This makes it ideal for study in pest management 
research.

Findings that Hemipteran pests are reduced in narrower or 
more open canopy management systems have not been tested 
with mango scale in emerging intensive mango canopy sys-
tems. To address this gap, we tested if narrow, highly productive 
mango canopy management systems reduce the prevalence of, 
and fruit damage by, mango scale.

2   |   Methods

2.1   |   Site Management

Leaf scale counts were performed on three mango varieties: 
NMBP- 1243 (Yess!), Calypso and Keitt, with all other trials 
performed only on the Calypso variety. All mango trees were 
planted in 2013 on the Department of Primary Industries’ 
Walkamin Research Facility in Walkamin, Queensland, 
Australia. Walkamin is located on elevated tablelands at 
17.13° S, 145.43° E, at approximately 570 m above sea level. 

Annual average rainfall is 1030 mm, with the majority fall-
ing from December to May. Monthly maximum temperatures 
range from 23°C to 30°C, with minimums between 10°C 
and 18°C. Site- specific daily weather measurements were 
sourced from the Australian Bureau of Meteorology (Bureau 
of Meterology 2024). Soils at the site were Walkamin series, a 
basaltic brown dermosol (Malcolm and Heiner  1996). Trees 
were managed according to commercial best practices for pest 
management, irrigation and nutrition (AMIA 2022). Pest and 
disease management recommendations were made by an ex-
perienced professional, once per month between fruiting sea-
sons and every two weeks between flowering and harvest for 
all canopy systems and varieties.

2.2   |   Tree Architecture

The trees used in this study formed part of a larger split- split- 
plot experiment where trees were planted in large replicate 
blocks with 3 different planting densities at the main block stra-
tum. Each density block was then split into plots representing 
different canopy training systems and then split at a lower level 
into 3 cultivar specific sub- plots. These large blocks were rep-
licated 6 times, though not all six block replicates were used in 
all experiments, as specified. Full details of the larger experi-
mental design can be found in Ibell et al.  (2024) or displayed 
diagrammatically in Figure S1. Of the five canopy management 
systems (planting density and training system combinations) in 
the larger experiment, three were investigated in these experi-
ments: a widely spaced open- vase (WO), a closely spaced narrow 
hedge (NH) and a closely spaced narrow espalier trellis system 
(NE) (Figure  1). Orchard rows were orientated north–south 
with suitable guard rows in place to minimise light or spray 
contamination between treatments. All trees were pruned an-
nually soon after harvest, in approximately February, with me-
chanical hedgers and hand pruning.

WO trees were planted with 6 m between trees and 8 m between 
rows for a planting density of 208 trees/ha. Canopies of these 
trees were maintained between 2.5 and 3 m wide with an ap-
proximate height of 2.7 m. The open- vase structure was estab-
lished through the removal of central structural branches to 
allow light to enter the centre of the canopy (Figure 1).

NH trees were planted with 2 m between trees and 4 m between 
rows for 1250 trees/ha. The canopies were maintained at an 
approximate width of 0.85 m and height of 2.7 m. As the trees 
grew and reached their allocated space, they were managed 
as a continuous canopy or hedgerow, rather than as individual 
trees (Figure 1). Both WO and NH systems had their external 
dimensions maintained through mechanised hedging, with 
additional internal pruning to enhance canopy openness and 
remove dead branches.

NE trees were spaced 2 m between trees and 4 m between rows, 
with a planting density of 1250 trees/ha. These trees were es-
tablished along a trellis fence made up of five taut steel wires 
attached to timber posts, with the wires spaced 0.5 m apart 
from 0.5 m to 2.5 m above the ground. A single central leader 
(main trunk) was developed from which the lateral branches 
grew. Trellised trees were hand pruned to an approximate 
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width of 0.75 m to maintain shape and structure and to develop 
future fruiting points. Approximately two months after new 
vegetative flushes had matured, these branches were bent lat-
erally along the trellising wires to form the espalier structure. 
Each year, upward or downward facing shoots were removed 
to allow light penetration between the trellising wire sections. 
Branches between the wires were also removed to maintain 
gaps between the espalier levels. This management approach 
resulted in a uniform, horizontal canopy along the espalier 
wires with well- spaced gaps between each level (Figure 1).

2.3   |   Leaf Scale Count

This study was conducted from February 2018 to November 
2021. Leaf samples from four data trees of each combination of 
variety and canopy management system were assessed approx-
imately monthly. Samples were collected between 08:00 and 
10:00, a minimum of one hour after sunrise. From each tree, 
two mature leaves infested with scale insects were selected at 
random from different areas of the east side and two from differ-
ent areas of the west side of the tree between 1 and 2 m height. 
The initial sampling on August 2, 2018 comprised five leaves, 
rather than four, but was refined to provide better balance across 
the canopy. Leaves from the north and south were not sampled, 
as the NE and NH systems' continuous canopy lacks distinct 
north and south aspects, unlike the WO systems that have indi-
vidual tree canopies with defined sides facing all four cardinal 
directions. In all systems, leaves were selected from within the 
canopy rather than the canopy edge, to ensure they were repre-
sentative of the canopy environment.

For all leaves selected, a stereo microscope (Nikon SMZ1500, 
Nikon Corporation, Japan) was used to count the number of live 
female scales on each leaf. Live scales were intact and usually 

purple coloured, whereas dead scales were dried, withered and 
brown or black (Mahr 2024). Only females were considered in 
this study as they are responsible for the majority of damage 
(Ofgaa and Emana 2015). Numbers of female scales parasitised 
by Encarsia sp. and Aphytis sp. were recorded. Scales parasitised 
by Encarsia were identified by the characteristic mummifica-
tion of the female scale and observation of a circular exit hole on 
the back of the scale (Forster et al. 1995). Scales parasitised by 
Aphytis were identified by the distinctive presence of their pupal 
cases and meconial pellets on the desiccated scale insect body 
(Forster et al. 1995).

2.4   |   Fruit Analysis

This study was conducted over two consecutive Calypso har-
vests (2022/23 and 2023/24) on the three previously men-
tioned canopy management systems. Six replicate Calypso 
trees of each canopy design were evaluated, with individual 
fruit analysis to determine distributions and avoid potential 
sampling bias. Assessments were uniform between seasons, 
with fruit less than 150 g excluded as they were considered 
not commercially relevant. In total, 3169 fruits were assessed 
in the 2022/23 season, and 2868 fruits were assessed in the 
2023/24 season.

Mango scale blemishes on fruits, known as ‘pink spots’ were 
counted for each fruit. Fruits were then graded into classes ac-
cording to the Mango Industry Quality Standards (Holmes 2009):

• Class 1: Fewer than six spots or an area of 1 cm2.

• Class 2: Six or more spots but no more than 15 spots or an 
area of no more than 3 cm2.

• Reject: Greater than 15 spots or an area larger than 3 cm2.

FIGURE 1    |    The three canopy management systems used for these experiments. (A) Wide open- vase canopy (WO), (B) Narrow hedge canopy 
(NH), (C) Narrow espalier canopy (NE). [Colour figure can be viewed at wileyonlinelibrary.com]
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2.5   |   Spray Penetration

This trial was also conducted solely on the Calypso mango va-
riety with four data trees in each canopy management system.

For data collection, water- sensitive cards (7.6 × 2.6 cm) were 
used to assess spray coverage. Six cards were placed on each 
tree, positioned at three heights (canopy skirt, mid- point and 
apex) and at two locations (depths) per height: the inner can-
opy (centre point) and the outer edge of the canopy. The water- 
sensitive cards were stapled onto the upper surface of leaves to 
capture spray deposition and distribution. Trees were sprayed 
with water using a commercial Silvan air- blast sprayer (model 
unknown) travelling at a constant speed of 7 km/h in a north–
south direction down both sides of the marked rows. Each spray 
wing consisted of 15 nozzles (ATR- 80° hollow cone) subdivided 
into four zones.

After spraying, the water- sensitive cards were collected and an-
alysed using the ‘SnapCard’ app (version 2.1.1 Department of 
Agriculture and Food Western Australia) to assess the percent-
age spray coverage on the cards. Card images were manually 
cropped to exclude non- card areas.

2.6   |   Statistical Analysis

A repeated measures linear mixed model was fitted to the mean 
female scale count per leaf per tree and the mean total parasit-
oids per leaf per tree. The main effects of canopy management 
system and variety, and the two-  and three- way interactions of 
these with time were fitted as fixed effects. Terms representing 
the replicates and plots within replicate were fitted as the ran-
dom effects. A simple correlation model was fitted for both vari-
ables. For the mean female scale, heterogeneous variance over 
time was fitted, while for mean total parasitoids, homogeneous 
variance over time was fitted. A log10 transformation was applied 
to satisfy the normality and homogeneity of variance assump-
tions for both variables. To account for any zeros, a small con-
stant of 0.5 and 0.1 was added prior to transforming the mean 
female scale and mean total parasitoids, respectively.

In 2023/24, three fruit from the low- density conventional treat-
ment had excessive numbers of scale blemishes and an accurate 
count was not possible. The count of scale ceased at 150 per fruit 
due to practical limitations with the ability to distinguish indi-
vidual blemishes and therefore data from these fruit are con-
sidered censored. A Tobit hierarchical generalised linear model 
(HGLM) (Lee and Nelder  1996; Terza  1985) was fitted to the 
number of scale blemishes on each piece of fruit. The Tobit pro-
cedure uses an E- M algorithm to estimate the censored observa-
tions and then applies a Poisson- log HGLM to the scale counts 
with the censored values replaced by the estimates. The upper 
bound was set at 150 counts. To account for the experimental de-
sign, the random effects included terms for replicates and plots 
within replicates, crossed with a term representing year. The 
random effects were assumed to follow a gamma distribution 
with logarithm link. The fixed effects included the main effect 
and interaction of canopy management system and year and 
were assumed to follow a Poisson distribution with logarithm 
link. The dispersion parameter was fixed at one.

The three fruit grades were assumed to be ordinal response 
categories with no concept of distance between them. A pro-
portional odds model which assumes a multinomial distribu-
tion and logit link function was fitted to the ordinal categories 
(McCullagh  1980). The model terms included replicate and a 
single factor representing combinations of year and canopy man-
agement system.

The percent spray coverage collected from the spray penetration 
trial was analysed using analysis of variance (ANOVA). The 
random model comprised terms for replicate, tree and spatial di-
mensions within each tree (horizontal and vertical levels). This 
ensured the effects of height and depth positions of the cards 
were tested at the correct stratum. The main effects and inter-
actions of height, depth and canopy management system were 
fitted as fixed effects.

For all analyses, model assumptions were checked using appro-
priate diagnostic plots and transformations applied when nec-
essary to satisfy the assumptions. All significance testing was 
performed at the 0.05 level. Where a significant effect was found, 
the 95% least significant difference (lsd) was used to make pair-
wise comparisons. The leaf scale count data was analysed using 
the ASReml- R package version 4 (Butler et al. 2017) in R version 
4.3.1 (R Core Team 2023). All other analyses were performed in 
Genstat for Windows 24th edition (VSN International 2024).

3   |   Results

3.1   |   Leaf Counts

The repeated measures linear mixed model on the count of 
female scale per infested leaf detected a significant interac-
tion of canopy management system and time (χ2

(117) = 1012.37; 
p < 0.001) and a significant interaction of variety and time 
(χ2

(78) = 107.28; p = 0.016). The 3- way interaction of system, va-
riety and time was not significant (χ2

(160) = 184.24; p = 0.092). 
Figure 2A shows the overall effect of each canopy management 
system over time and Figure 3 shows the overall effect of each 
variety over time.

For parasitoids, no terms in the model involving variety were 
significant. The 3- way interaction of system, variety and time 
was not significant (χ2

(160) = 126.53; p = 0.976). The interaction 
of system and time was significant (χ2

(117) = 180.38; p < 0.001), 
but the interaction of variety and time was not (χ2

(78) = 14.52; 
p = 0.912). Figure  2B shows the overall effect of each training 
system over time.

Environmental drivers differed between years of this study, 
with the greatest difference being the average minimum tem-
peratures in winter (Figure  4). In 2021, average minimum 
temperatures were considerably higher than for other years, 
possibly enabling greater scale population growth across the en-
tire orchard. The average minimum temperature for winter in 
the years where fruit assessments were undertaken (2022 and 
2023) was intermediate to temperatures observed in the years 
used for leaf assessment (2019–2021). This suggests that average 
macro environmental factors were unlikely to differ between 
the two assessment periods.
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FIGURE 2    |    The predicted mean count of (A) live female scale, and (B) parasitoids, on scale infested mango leaves within, narrow hedge canopies, 
narrow espalier trellised canopies and wide open- vase canopies from 2018 to 2021. The points are the predicted means, and the error bars are +/− one 
standard error. A jitter has been applied to make overlapping points more visible, and the trend is represented by a loess smooth. [Colour figure can 
be viewed at wileyonlinelibrary.com]

FIGURE 3    |    The predicted mean count of live female scale from all three training systems on scale- infested mango leaves for NMBP- 1243, 
Calypso and Keitt from 2018 to 2021. The points are the predicted means, and the error bars are +/− one standard error. A jitter has been applied 
to make overlapping points more visible, and the trend is represented by a loess smooth. [Colour figure can be viewed at wileyonlinelibrary.com]
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3.2   |   Fruit Assessments

The likelihood test based on the results from the Tobit HGLM 
on the counts of scale blemishes per fruit shows a significant 
interaction of treatment and year (Table 1). In both 2022/23 and 
2023/24, the WO system had significantly higher mean scale 
counts per fruit. A significant difference between the two nar-
row systems (NH and NE) was only observed in 2022/23, where 
the NE system had a significantly lower mean scale count per 
fruit. For each individual canopy management system, there 
was no significant difference between the mean counts per fruit 
for 2022/23 and 2023/24.

Results from the proportional odds model suggest there is a ten-
dency for NH and NE systems to have fewer fruit in the reject 
grade (χ2

(5) = 681.1; p < 0.001; Figure 5). The NH and NE systems 
had a significantly lower proportion of fruit in the reject grade 
compared to WO. In 2023/24, the WO and NE systems had fewer 

high- quality fruit compared to 2022/23, but there was no signifi-
cant year effect on the NH system.

3.3   |   Spray Penetration

Results for the spray penetration trial detected a significant in-
teraction of canopy management system and depth (Table  2). 
For all systems, there was higher mean spray coverage in the 
outer canopy compared to the inner canopy, but it was not sig-
nificantly higher in the NE system. No significant difference 
was detected between the mean coverage for each system at 
each canopy depth. No interactions involving height were sig-
nificant, but the main effect was significant. The mean spray 
coverage in the higher canopy was significantly lower than at 
the low and medium heights.

4   |   Discussion

There is a need to reduce pesticide use while maintaining pro-
ductivity and quality. In this study, we have demonstrated that 
emerging highly productive mango canopy management sys-
tems reduce female mango scale populations on infested foliage 
(Figure 2) and resulting fruit damage from scale (Table 1).

Scale infestation severity was affected by the interaction of 
time of year and variety (Figure 3). This suggests the impor-
tance of the phenological stage of each variety in scale popu-
lation dynamics, consistent with previous findings (Ofgaa and 
Emana  2015; Urías- López et  al.  2010). Neither variety alone, 
nor its interaction with the canopy management system, were 
significant predictors of scale infestation severity, suggest-
ing that the findings from one variety, while dependent upon 
phenological differences, are consistent between varieties 
(Figure 3). The effects of the canopy management system were 
consistent across foliage populations (Figure 2), fruit popula-
tions (Table 1) and fruit quality outcomes (Figure 4). Effective 
control of scale on foliage supports overall tree health, while 
reducing infestation on fruit has a more direct impact on fruit 
quality. Given that just five pink blemish scale spots caused 
by female mango scale are enough to downgrade fruit in 
Australia (Holmes 2009), and that infestation begins with mo-
bile first instar crawlers moving from leaves to fruit (del Pino 
et al. 2020; Labuschagne 1993), it is reasonable to assume that 
the infestation severity of mango scale populations on foliage 
will link to fruit infestation and downgrading due to blemish 
formation (del Pino et al. 2021).

Changing the canopy architecture and structure changes both 
the microclimate, which alters habitat suitability for pests, 
and the distribution of pesticides (Simon, Sauphanor, and 
Lauri 2007). Insects, as ectotherms, are particularly suscepti-
ble to temperature, relative humidity and light availability of 
their surroundings, all of which depend upon canopy archi-
tecture. Bautista- Rosales et al. (2013) identified that tempera-
ture and relative humidity were key drivers of scale population 
growth. They further identified environmental conditions 
that favoured the abundance of scale females (18°C–22°C, 
73%–78% relative humidity) or males (25°C–28°C, < 70% rel-
ative humidity). In the canopy management systems assessed 

FIGURE 4    |    Average minimum temperatures during the research 
period. Lines indicate the average minimum temperature for each 
month and shading indicates +/− one standard error. [Colour figure can 
be viewed at wileyonlinelibrary.com]

TABLE 1    |    Mean count of scale blemishes per fruit.

Year
Canopy 

management system Mean SE BT

2022/23 Wide open- vase 1.45a 0.315 4.26

Narrow Hedge 0.44b 0.313 1.55

Narrow Espalier −0.36c 0.316 0.70

2023/24 Wide open- vase 1.94a 0.314 6.96

Narrow hedge 0.13bc 0.314 1.14

Narrow espalier 0.26bc 0.314 1.29

L(2) 7.00

p 0.030

Note: Mean and standard error (SE) are on the loge scale. Means with a letter in 
common are not significantly different using the 95% least significant difference. 
BT, back- transformed mean expressed as a count of scale blemishes per fruit is 
italicised.
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in this study, differences in light distribution have been iden-
tified (Mahmud, Ibell, Wright, Scobell, et  al.  2023; Westling 
et  al.  2020), which would likely also lead to changes in air 

temperature and relative humidity within the canopy. The 
canopy systems not only differed in width but in canopy con-
tinuity between trees, with the NE and NH systems having a 

FIGURE 5    |    Predicted mean frequency of fruit quality rating for each of the three canopy management systems for the two seasons of study. 
Classes and colours represent industry relevant cut- offs for sale (Holmes 2009). Letters in the right edge indicate post hoc grouping based on the 95% 
least significant difference, where distributions with a letter in common are not significantly different. [Colour figure can be viewed at wileyonlineli-
brary.com]

TABLE 2    |    The mean percentage saturation of water- sensitive spray cards sprayed using a commercial insecticide sprayer with equal spray 
settings across three canopy management systems, at three canopy heights (low = canopy bottom, middle = canopy centre, high = upper canopy) and 
two canopy depths (inner = canopy centre, outer = canopy edge).

Canopy management system Depth Mean (%) Height Mean (%)

Wide open- vase Inner 15.8d Low 46.8a

Outer 58.7a Middle 40.3a

Narrow hedge Inner 27.5cd High 26.1b

Outer 45.6ab

Narrow espalier Inner 33.7bcd

Outer 45.0abc

F(2,9) 5.08 F(2,18) 5.11

p 0.033 p 0.017

SE 7.63 SE 4.67

Average 95% LSD 22.67 95% lsd 13.89

Note: Means with a letter in common in the same column are not significantly different using the 95% least significant difference.
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contiguous canopy while the WO canopy was distinct for each 
tree, likely causing additional differences in light and micro-
climate. As we only monitored female scale, it is possible that 
when females declined, males increased with increasing tem-
perature and reduced relative humidity in the narrow cano-
pies. As females contribute more to new infestations through 
reproduction and are responsible for the majority of damage, 
the males were not of interest in this investigation. Therefore, 
it is possible that the development of a microclimate suppres-
sive to the damage- causing female scale population contrib-
uted to the observed reduction in pest damage.

In addition to changes to habitat suitability, narrower and more 
open canopy structures typically allow greater light and air 
penetration, as well as greater penetration of pesticides (Simon, 
Sauphanor, and Lauri  2007). We found that while the mean 
spray penetration to the centre of the canopy was much greater 
in narrow canopies, the effect was not significant (Table 2). This 
may be due to the large variability both within and between 
individual tree canopies. Alternatively, the similarity in the 
density of the canopy outer wall between canopy management 
styles may be the determinant of spray penetration, as found by 
Yeary et al. (2018), rather than canopy width. In the WO and NH 
systems there was significantly higher spray coverage on the ex-
ternal wall of the canopy than in the interior, unlike the NE sys-
tem where no significant difference in the interior and exterior 
was detected. Therefore, while the penetration to the centre of 
the canopy did not differ significantly between the systems, the 
volume of the canopy interior, which received less spray in the 
WO and NH systems and was more conducive to pest develop-
ment, was less. In the NE system the mean inner spray coverage 
was higher than in the other systems, though not significantly, 
potentially due to the more open structure from the espalier can-
opy management. Finally, spray coverage differed significantly 
with height in the canopy across all systems suggesting that op-
timisation of the sprayer would be beneficial. Optimisation of 
sprayer settings based on tree size and structure in digital twin 
orchards has previously been explored as a way to improve spray 
efficiency (Han et  al.  2024). The relationship between canopy 
shape, size and spray optimisation is rapidly advancing and war-
rants further exploration.

Canopy alterations affect the entirety of the biotic canopy com-
munity, not pest populations alone, and may alter the balance 
between pests and their parasitoids (Pangga et al. 2013; Simon, 
Sauphanor, and Lauri 2007). The frequency of parasitism across 
the three canopy management systems closely mirrored the se-
verity of scale infestation (Figure 2), with higher populations ob-
served in early 2019 and 2021. Parasitoid populations displayed a 
typical host- parasitoid lag, peaking shortly after the scale insect 
populations reached their maximum levels. De Faveri  (2018) 
found similar parasitoid lag effects on the same scale spe-
cies, and this aligns with more general host- parasitoid theory 
(Hassell 2000). Canopy management systems had a significant 
influence on parasitoid populations over time, suggesting that, 
as with scale insects, certain years saw increases in populations 
under specific management regimes. This may be attributed 
to macro- environmental conditions—and the corresponding 
microclimates within the canopies—becoming more favour-
able for parasitoid development or that canopy manipulation 

improved foraging capability by the parasitoids. Alternatively, 
higher parasitoid numbers may simply reflect increased avail-
ability of scale hosts for parasitism during those periods.

Our findings demonstrate that suitability within the canopy for 
pests such as mango scale can be altered by changes to canopy 
architecture. Despite this, the magnitude of change from can-
opy management is likely to be less than from changes in the 
external climate (Saudreau et  al.  2013). We also recommend 
further research to better understand the interactions between 
spray penetration, light penetration, canopy temperature, and 
relative humidity and better isolate the drivers of pest popula-
tion dynamics, as these interactions are unclear (Schöneberg 
et  al.  2021). Incorporating changes in canopy microclimate 
from canopy management may improve predictions of future 
pest range and habitat suitability (Azrag et al. 2023, 2022; van 
Klinken et al. 2019). Our findings may also help improve mech-
anistic modelling of insect- plant interactions (Wang et al. 2016) 
and enable in silico testing of canopy designs for pest minimisa-
tion and productivity.

Our findings offer an additional tool to be incorporated in an 
integrated pest management system. Canopy management to 
reduce pest populations cannot wholly replace pesticide use but 
provides an additional environmentally friendly means to im-
prove pest management. The effectiveness of equal spray rates 
can only be improved so far, potentially limiting the benefits 
of canopy management in our study. In future, it may be possi-
ble to implement spray regimes tailored to canopy management 
systems to reduce unnecessary spraying. This approach may 
provide further insight into the spray requirements of emerging 
canopy management systems. In addition, testing must be done 
on other pests and diseases of concern, as well as the effects 
on beneficial and predatory insects. Effects of canopy micro-
climate on mobile pests such as fruit flies (Drosophila suzukii) 
have been performed (Inskeep et al. 2021; Park 2020) but field 
testing of differing tree architectures would require large repli-
cate blocks to minimise pest transfer between treatments.
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