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Abstract. Globally, the need to intensify food production and accelerate crop yield gains requires new strategies for crop improvement.
Agricultural production outcomes, such as grain yield and crop failure risk, are complex and emerge from interactions that occur between
genotype (G), crop management (M), and the environment (E) during crop growth and development. With no feasible means to assess
all possibilities, these G X M X E interactions complicate crop improvement decision-making and limit our ability to enhance production
over diverse environments and conditions. Further complicating this problem are productivity-risk trade-offs, which make simultaneous im-
provements in multiple production criteria difficult. This study introduces the CropGen platform, which offers a simulation-based approach to
explore crop-adaptation landscapes to identify optimal G X M strategies, called crop designs, for target E. By connecting the Agricultural
Production Systems Simulator sorghum model with an evolutionary optimization algorithm, the CropGen platform enables the exploration
of crop-adaptation landscapes and the generation of optimized crop designs allowing for the trade-offs among production criteria. This study
details the testing and development of the CropGen platform, including its application to a sorghum crop improvement case study in situations
varying in yield potential. Findings indicate the CropGen platform is capable of generating physiologically sensible sets of Pareto-optimal
solutions that represent a range of trade-offs between yield and crop failure risk. The potential for CropGen to help guide and focus research
and breeding efforts for the adaptation of crop production and the advancement of crop improvement is highlighted.
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1. INTRODUCTION

New strategies for accelerating crop improvement are required to
help meet increasing future demands on food production and to
cope with changing environmental conditions (Ray et al. 2013,
Fischer et al. 2014). Capturing effective interactions between geno-
type (G), crop management (M), and environment (E) in crop
growth and development is imperative for enhancing the improve-
ment of complex traits and agricultural production outcomes, in-
cluding grain yield and crop failure risk. However, these G X M
X E interactions complicate current breeding and agronomic ap-

this issue, seasonal climatic variability and climate change act to
shift the Es being targeted, inhibiting our ability to predict to
what extent current crop improvement strategies will be relevant
in future conditions (Ray et al. 2019, Hammer et al. 2020).
Crop growth models (CGMs) have emerged as powerful
tools to interpret and predict how crops grow and develop in
response to genetics, management practices, and environmen-
tal conditions (Sinclair and Seligman 1996, Hoogenboom et al.
1997, Hammer et al. 2010). Suitably structured CGM:s are de-
signed to capture the dynamics involved in crop growth and de-
velopment, making them capable of predicting the emergent

proaches to crop improvement and limit our ability to devise strat-
egies that perform over diverse environments and conditions. With
myriad possible G XM strategies for target E, the complex and
high-dimensional nature of the G X M XE factorial means there
is no feasible, cost-effective means to test all possibilities
(Hammer et al. 2014, Cooper et al. 2021). To further complicate

outcomes of complex crop traits, such as grain yield, with con-
sideration of the influence of genetic, management, and envir-
onmental factors through the crop life cycle (Hammer et al.
2019, Peng et al. 2020). In this way, CGMs can be used to as-
sess the potential value of genetic and management interven-
tions for crop improvement and provide a basis to explore
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the performance of multiple G X M combinations under differ-
ent Es (Jones 1993, Boote et al. 2001, Peng et al. 2020).

How best to gauge crop performance is, however, a complicated
task, as crop production is a multifaceted endeavour that can be
evaluated using a combination of metrics, including not only grain
yield but other factors like crop failure risk, profitability, water use,
and input requirements (Dobermann and Nelson 2013). Many of
these factors are known to trade-off with each other, requiring a
decision-maker to balance possible improvements in productivity
with commensurate increases in the risk of yield penalty under ad-
verse conditions (Clarke et al. 2019, Hammer et al. 2020). With
each individual’s unique circumstances, there exist many different
attitudes to risk, which dictate their prioritization of these factors
and their trade-offs. Hence, capturing a way to represent this is cru-
cial for informed decision-making. Currently, explicit assessment
and consideration of these trade-offs that exist in crop production
is emerging as a topic of focus in crop improvement discourse
(Hammer et al. 2014, Rotili et al. 2020, Wu et al. 2023).
Strategies to quantify and balance these trade-offs will be necessary
to develop sustainable cropping strategies and robust improve-
ments in production into the future (Klapwijk et al. 2014).

With crop improvement encompassing efforts related to
both cultivar improvement and improvement in crop manage-
ment, the concept of crop-adaptation landscapes has been used
to help unify these domains and to aid in understanding the
search space in which both breeding and agronomic research
programmes operate. Adaptation landscapes describe the per-
formance of chosen criteria (e.g. grain yield) across all possible
combinations of G and M factors in the target population of Es
(Fig. 1; Kauffman 1993, Cooper and Hammer 1996, Hammer
et al. 2002, Messina et al. 2011). Given that we know there are
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many metrics with which to measure this performance, there
exist many adaptation landscapes that must be simultaneously
navigated to manage the trade-offs that occur between them in
order to find the optimally performing G X M combinations. As
such, this complex problem of crop improvement can be
thought of as a search strategy that acts on and between these
vast crop-adaptation landscapes, aimed at finding improved adap-
tive positions (Messina et al. 2009, Hammer et al. 2016, 2002,
Hsiao et al. 2024). Currently, despite the potential of these
crop-adaptation landscapes to contribute to crop improvement,
we remain constrained in our ability to predict their structure
and indeed to produce strategies for navigating to desirable or
specific regions on the landscapes (Hammer et al. 2016). Due
to their ability to deal with the complex G X M X E factorial, so-
phisticated CGMs are emerging as powerful tools to generate
these crop-adaptation landscapes (Messina et al. 2009).

To help translate the information from these landscapes into
strategies for crop improvement, the concept of crop design can
be implemented. Crop design is the optimal pairing of G and M
combinations for specific Es, in essence, the identification of
optimal G XM strategies for E (Hammer et al. 2014, Hsiao
et al. 2024). This can be applied for broad or specific adapta-
tion, depending on the goals of the specific crop improvement
programme. Furthermore, the concept of crop design can be
undertaken with respect to a range of criteria, addressing the
multi-objective nature of crop production.

In order to execute this crop design concept, there is a need
for the development of tools that can work across adaptation
landscapes associated with the different objective criteria (e.g.
yield, evapotranspiration, and crop failure risk) to identify com-
mon superior adaptive positions, or indeed positions with
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Figure 1. Schematic of the CropGen optimization platform, based on the connection of the crop growth model, Agricultural Production
Systems Simulator (APSIM) sorghum, to the evolutionary optimization algorithm, nondominated sorting genetic algorithm II (NSGA-II).

Schematic of the NSGA-II algorithm after Deb et al. (2002).
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acceptable trade-offs between them. As such, this problem can
be framed as a multi-objective optimization problem, where the
best result is represented by a set of Pareto-optimal solutions,
in which each strategy involves a different level of trade-off be-
tween the objectives (Coello Coello 1999). Having been success-
fully demonstrated in similar problems, evolutionary optimization
algorithms are indicated to be effective techniques for solving
multi-objective optimization problems such as this (Devoil
et al. 2006, Quilot-Turion et al. 2012, Xiao et al. 2024).
However, due to the high level of complexity involved, this prob-
lem of exploring crop design and optimizing trade-offs in
crop-adaptation landscapes is not simple, and there exists no avail-
able tool directly suitable for this purpose (Hsiao et al. 2024).

This work aims to address this deficiency via the development
of a crop design optimization tool, the CropGen platform. As
identified previously, the importance of the use of a mechanistic
and biologically robust CGM for this purpose cannot be under-
stated. As such, although the platform design is model agnostic,
due to the significant research effort regarding both its develop-
ment and validation, the core of the platform was chosen to be
the Agricultural Production Systems Simulator (APSIM) sor-
ghum model (Hammer et al. 2010, 2023, Holzworth et al.
2014). This model has been well tested in Australia, where sor-
ghum production typically occurs in highly variable, dryland pro-
duction systems where water availability is typically the major
production constraint (Passioura 2002). In these systems, con-
founding GXMXE interactions are common, and high
year-to-year variability can cause significant production risk for
growers (GRDC 2017). With trade-offs between productivity
and risk particularly significant in this system, this case of sorghum
production in Australia is the application evaluated.

This work aims to advance current crop design exploration cap-
abilities by increasing the efficiency of evaluating large numbers of
G X M combinations using a Pareto (multi-objective)-optimization
approach. Specific crop design strategies for sorghum crop im-
provement in Australia are assessed, particularly with respect to
water limitation. Due to their significant impacts on crop per-
formance and adaptation, maturity, tillering, and planting density
have been chosen as the G and M factors of focus (Saeed and
Francis 1986, Jordan et al. 2012). There are three objectives for
realizing this aim:

1. Develop a new crop design optimization platform that
combines the APSIM sorghum model with a multi-
objective optimization approach—CropGen.

2. Use a Pareto-optimal approach to explore maturity, tiller-
ing, and planting density combinations for specific water
use conditions and understand consequential GXM X E
interactions.

3. Evaluate CropGen in a case study of sorghum crop design
optimization that quantifies trade-offs between maximiz-
ing grain yield and minimizing production risk in con-
trasting yield potential scenarios.

2. MATERIALS AND METHODS

2.1 CropGen platform overview

The CropGen optimization platform was developed to gener-
ate and navigate crop-adaptation landscapes for crop design
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through the connection of the APSIM sorghum CGM
(Hammer et al. 2010, Holzworth et al. 2018) with the evolu-
tionary optimization algorithm, nondominated sorting genetic
algorithm II (NSGA-II, Fig. 1, Deb et al. 2002). This specific
algorithm was chosen for the optimization component due to
its suitability in solving biological problems such as this
and its successful demonstration with similar problems
(Quilot-Turion et al. 2012, Xiao et al. 2024). CropGen was im-
plemented in Python, with pymoo (Blank and Deb 2020), a
multi-objective optimization framework, used as the basis for
the platform.

2.1.1 Design and objective spaces. To understand the operations
of the CropGen optimization platform, it is useful to think in
terms of a ‘design space’ and an ‘objective space’. When setting
up the optimization problem to be run by CropGen, all design
variables to be optimized are specified, alongside their respect-
ive bounding minimum and maximum values. In this work,
these design variables are APSIM parameters in the sorghum
model and can include both physiological traits and manage-
ment factors. Given that it is the space in which the optimiza-
tion is working, this is called the design space, with unique
combinations of the specified variables referred to as crop de-
signs (Fig. 2). Another factor specified during the optimization
set-up is the objective space, which includes the different cri-
teria of interest that are used to measure performance, such
as grain yield, evapotranspiration, or crop failure risk. When
the different crop designs forming part of the design space
are evaluated by APSIM, they are mapped into this objective
space, with these objective criteria results guiding the explor-
ation of the design space as the optimization progresses.

2.1.2 CropGen platform set-up. Alongside the definition of the
design and objective spaces, the set-up of the CropGen plat-
form involves the specification of the simulation (.apsimx)
file to be run by APSIM, which includes all other simulation de-
tails and parameters, such as weather data, soil information, sor-
ghum cultivar coefficients, and additional agronomic
specifications. These factors do not directly form part of the op-
timization in this study. The final stage of the CropGen set-up
is the initialization of the NSGA-II algorithm, which involves
the specification of the optimization parameters and the differ-
ent variation operators. In CropGen, the optimization parame-
ters to be specified are the size of the working population used
in each iteration of the algorithm, called population size, and
the number of iterations of the algorithm before termination,
referred to as the generation number. The population size
and generation number are typically chosen on a case-by-case
basis depending on the specific optimization undertaken.

The elements of the NSGA-II algorithm that introduce vari-
ation in the populations and hence allow exploration of the de-
sign space, called variation operators, must also be specified.
For all CropGen optimizations, the sampling of the initial
population is undertaken using Latin Hypercube sampling,
which is a random sampling method highly suited for use in
multi-dimensional problems. To introduce variation from one
generation to the next, and to ensure effective exploration of
the design space, both crossover and mutation operators are
used. For crossover, the specific method adopted is simulated
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Figure 2. Pairwise representations of the crop-adaptation landscapes for the yield and evapotranspiration of different sorghum maturity,
tillering, and planting density combinations in the single-season scenario. The results are from the single-season sorghum simulation, with the
yield (t ha™") crop-adaptation landscape representations shown on the left (A, B, C) and the evapotranspiration (mm) landscape
representations shown on the right (D, E, F). The colour of each point indicates the yield or evapotranspiration level as per the colour scales at
the top of each set of landscape representations. Each point represents a different maturity, tillering, and planting density combination
evaluated.
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binary crossover, which is a real-parameter recombination op-
erator, with the probability of occurrence set to 0.8 and the
spread for the distribution of the offspring solution with respect
to the parent solutions set to 15. After crossover, the real poly-
nomial mutation operator is used to perturb the created off-
spring solution, with the value for the distribution spread set
to 20 (Deb et al. 2007). For further details on these variation
operators and their parameters, see Blank and Deb (2020)
and the associated pymoo package website.

2.1.3 CropGen running and operations. Once CropGen has been
set up, the platform can be used to initiate a run. When running
the optimization through the pymoo framework, APSIM is called
from Python to evaluate the objectives specified in the objective
space, such as yield and evapotranspiration, for the different
crop designs being evaluated. Specifically, this call happens over
the APSIM server, which holds the simulation file open in memory
during the optimization and evaluates the objective results for the
modified crop designs when called.

CropGen is first initialized with a randomly sampled popula-
tion of crop designs that are used to start the optimization. This
initial population is sent to APSIM for evaluation of the object-
ive results, which are then returned and used to perform multi-
criteria sorting of the crop designs to establish a ranking. To
form an offspring population, parents are chosen from this ini-
tial population using tournament selection, with each offspring
then perturbed by subsequent application of the crossover and
mutation operators to introduce variation (Blank and Deb
2020). By using the highest ranking individuals and variation
operators to help produce the offspring population, high-
performing solutions are maintained in the population, and
the design space is adequately searched so as to not remain
in locally optimal regions. This offspring population of equal
size to the parent population is then sent to APSIM for evalu-
ation of its objective results. With both the parent and offspring
populations evaluated for their performance, ranking of all indi-
viduals is performed using both nondomination and crowding
distance. Finally, the generation that will form the parent popu-
lation in the next iteration of CropGen is chosen, using firstly
the nondomination ranking, and also the crowding distance
measure if competing solutions are of equal rank. This process
of population generation, objective evaluation through APSIM,
and nondomination ranking will continue for the number of
generations specified in the set-up, at which point CropGen
will output the Pareto-optimal G X M designs.

By searching the design space to identify the best-adapted re-
gions with respect to a range of objective criteria, the CropGen
platform is designed to facilitate the navigation of multiple
crop-adaptation landscapes and the identification of
Pareto-optimized crop designs.

2.2 CropGen component detail

2.2.1 APSIM sorghum model. The APSIM sorghum model in
APSIM Next Generation was chosen as the CGM component
of the CropGen platform due to its thorough validation for use
in the north-east Australia region (Hammer et al. 2010), its use
globally (Kholov4 et al. 2014, Tirfessa et al. 2023), and its ro-
bust framework of ecophysiological determinants of crop
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growth and development, which allow the prediction of com-
plex agronomic trait outcomes as emergent consequences of
model dynamics.

In brief, the APSIM sorghum model is based on a framework
of the physiological determinants of crop growth and develop-
ment and is focused at organ scale. It generates the phenotype
of a crop as a consequence of underlying physiological proc-
esses by using the concept of supply and demand balances
for light, carbon, water, and nitrogen. Phenology is simulated
through a number of development stages by using a thermal
time approach. This also determines leaf number, and with a
leaf size distribution function and tiller number, canopy size de-
velopment can be simulated. The thermal time approach is
used to determine time to flowering and grain filling duration.
Above-ground biomass accumulation is simulated as the min-
imum of light-limited or water-limited growth through the
use of radiation use efficiency and transpiration efficiency coef-
ficients which interplay with the supply and demand of light,
water, and nitrogen. Daily above-ground biomass accumulation
is partitioned to plant parts in ratios that depend on the growth
stage of the crop. Grain yield is simulated as the product of
grain number and grain size, with number determined by com-
ponents of biomass growth around flowering. During grain fill-
ing, crop biomass growth is allocated to the growing grains. Full
details of the implementation and testing of the APSIM sor-
ghum model can be found in Hammer et al. (2010, 2019).

2.2.2 NSGA-II optimization algorithm. NSGA-II was chosen as
the multi-objective optimization algorithm for the CropGen
platform due to its suitability to this style of biological problem
as a result of its use of the principles of natural selection and
biological evolution (Sarker et al. 2003). The algorithm works
with populations of candidate solutions over generations and is
driven by the repeated application of variation and selection op-
erators, resulting in increasing fitness in consecutive genera-
tions. Through its use of the Pareto concept, NSGA-II is able
to incorporate multiple objectives and generate a set of optimal
solutions with respect to trade-offs of the different objectives, as
is required here for this application to crop design. For full de-
tails of the NSGA-II algorithm, refer to Deb et al. (2002), and
for the implementation of this algorithm in the pymoo opti-
mization framework, see Blank and Deb (2020).

2.2.3 Software specifications. The CropGen software is written
in Python and has a minimum memory requirement of 8 GB.
The minimum free hard drive space is 15 GB, and it requires
a minimum of 8 CPUs. Refer to https://github.com/
APSIMInitiative/ CropGen for documentation and availability.

2.3 Crop design optimization set-up

All scenarios evaluated are based in Dalby, a prominent rainfed
Australian sorghum production region, using a local soil param-
etrization and historical daily weather data. The Dalby region
has a subtropical/temperate climate with hot summers, mild
winters, and summer dominant rainfall. Year-to-year rainfall
variability is high and is a key risk factor in crop production.
The sorghum season (between September and March) has an
average daily maximum temperature of 29°C (but can reach
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above 35°C during December to January) and an average daily
minimum temperature of 16°C. The timing of the sorghum sea-
son aligns with the wetter period in the region, during which the
average total sorghum season rainfall is typically close to 400 mm.

The soil used in all simulations was a 180 cm deep Vertosol
with 324 mm plant-available water capacity. For the cultivar co-
efficients, the ‘Buster’ sorghum hybrid (a representative com-
mercial variety) was used as a reference (Hammer et al.
2010), with the standard tiller number calculated using known
effects of location (latitude), planting density, row configur-
ation, and time of sowing, as per Hammer et al. (2014). In
all simulations, sowing was on 1 m rows with a solid row con-
figuration and a sowing depth of 25 mm.

All optimizations were undertaken with the same design space
variables, evaluating combinations of maturity (thermal time from
end juvenile stage to floral initiation, APSIM parameter
‘TTEndJuvTolnit’), tillering, and planting density. To assess gen-
etic differences in tillering, tillers were either added onto or taken
away from the E- and M-determined standard tiller number out-
lined above using a fertile tiller modifier (FTM), meaning the tiller
number was increased or decreased by the value of the FTM, with
a lower limit of zero tillers. This use of the FTM to modulate till-
ering is used to represent variability in the genetic tillering propen-
sity that is observed in different sorghum genotypes (Hammer
et al. 2023). The parameter range set to evaluate for maturity
was between 130 and 190 degree days, which results in total
leaf number ranging between 15 and 18 leaves (Ravi Kumar
et al. 2009). The FTM was allowed to vary between -2 and 2 till-
ers, and planting density was set to between 3 and 10 plants m~2,
representing the wide range of planting density used across diverse
sorghum production conditions in Australia. It is important to
note that each of the variables was treated independently in the
analysis, meaning changes to each factor occurred separately and
were not influenced by the other variables. In all runs, the size
of the working population used (i.e. number of crop designs as-
sessed) in each generation of the optimization was S0, and the
number of generations (i.e. iterations) was set to 25.

2.3.1 CropGen testing using a single year of seasonal weather data.
A single-year simulation was first undertaken to test the CropGen
platform. The Dalby 2017 season was used, with the simulation
initiated with 100 mm of plant-available water filled from the
top and sowing on 15th November. The objective criteria used
for the optimization were the yield (t ha™") and the simulated
crop evapotranspiration (referred to as evapotranspiration,
mm) during the crop life cycle of the different maturity, planting
density, and tillering combinations evaluated, with the optimiza-
tion seeking Pareto-optimal combinations to maximize yield and
minimize evapotranspiration.

2.3.2 Sorghum crop design optimization case study. A case study
with multi-year simulations was also undertaken for optimizing
crop design with the CropGen platform. Two scenarios were
evaluated, low-yield potential and high-yield potential. The
low-yield potential scenario evaluated had 100 mm available
stored soil water and 15th November sowing, reflecting the
single-year case described previously, but expanded to incorp-
orate results from over 122 seasons. For contrast, the high-yield
potential scenario was initialized with 300 mm of available

stored soil water and sown on 15th September. In both cases,
the soil water, nutrients, and surface organic matter were reset
to the initial conditions at the time of planting each season. For
the optimizations, the objective criteria used were the overall
average yield over the 122 seasons (t ha™') and the average
yield in the worst-performing 20% of years, as a proxy for pro-
duction risk. In this case, the optimization of maturity, tillering,
and planting density is seeking Pareto-optimal combinations to
maximize average yield and minimize production risk (i.e.
maximize performance in the worst-performing 20% of years).

3. RESULTS AND DISCUSSION
3.1 Crop design using a Pareto-optimization approach

An initial evaluation of the CropGen platform was undertaken
using a single-year simulation. To understand the adaptation
landscapes that the optimization must traverse, it is advanta-
geous to visualize relationships in the design space and to assess
the performance of different combinations of the design varia-
bles. In this scenario, performance is measured by both grain
yield and evapotranspiration, and as such, there exists a unique
adaptation landscape for both criteria. The design space eval-
uated includes three variables, maturity, tillering, and planting
density, meaning that assessment of the performance of differ-
ent combinations in this space is highly dimensional and diffi-
cult to visualize. As such, three pairwise relationships are
presented (Fig. 2).

The CropGen platform has sampled the design space thor-
oughly and focused on particular regions, evidenced by the
higher proportion of points in specific areas (Fig. 2). This be-
haviour is a feature of the optimization process, whereby sam-
pling is random at the start of the optimization and
subsequently focuses on the better performing regions as it pro-
gresses. By removing the need to evaluate the design space us-
ing a gridded approach, optimization in this way allows for the
identification of the best regions to occur in a faster and more
efficient way, unlocking the potential to explore more complex
and higher dimensional problems (Hammer et al. 2014, 2020,
Hsiao et al. 2024).

Another feature highlighted in Fig. 2 is the contrasting nature
of the performance of the two objective criteria evaluated. In the
optimization, the objective is to determine the best combina-
tions of maturity, tillering, and planting density to maximize
grain yield and minimize evapotranspiration for the evaluated
season. This multi-objective optimization is not trivial, as the
objectives are somewhat in opposition, meaning that combina-
tions of the design variables that maximize the yield do not min-
imize evapotranspiration, and vice versa. This is evidenced in
the adaptation landscape representations in Fig. 2, where the
points with desired levels of each of the objectives are shown
in blue. Results show that combinations maximizing yield do
not typically overlap with those that minimize evapotranspir-
ation (Fig. 2A and D). This behaviour is due to trade-offs that
exist between the two criteria, meaning that there is a cost asso-
ciated with the improvement of each variable on the other. In
circumstances where we place equal weight on both perform-
ance criteria, there is no clear way to ascertain the best possible
crop designs with respect to both of the objectives.
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To resolve this type of multi-objective optimization prob-
lem, there is a need to navigate between the adaptation land-
scapes, to quantify the trade-offs between them and to
identify optimal regions with respect to the performance of
all the evaluated criteria. To help facilitate this assessment
of performance with multiple criteria, the concept of Pareto-
optimal has been adopted, allowing both the different maturity,
tillering, and planting density combinations to be ranked with
respect to both yield and evapotranspiration, and representa-
tion of the levels of trade-offs between the specified criteria
for the set of Pareto-optimal solutions.

To assess the ability of the CropGen platform to generate
physiologically appropriate and Pareto-optimal solutions, re-
sults from the single-season simulation and optimization
were further plotted (Fig. 3). The objective space plot
(Fig. 3A) shows the performance of all crop designs evaluated
as part of this optimization and the trade-offs that they gener-
ate between the two criteria. There is an initial positive rela-
tionship between the objective criteria, whereby increased
evapotranspiration is associated with increased yield.
However, this trend peaks at the highest yielding points, after
which further increases in evapotranspiration are accompan-
ied by diminished yields. As such, the optimal region of this
plot is only in the increasing portion, with the Pareto-optimal
set representing the section with trade-offs in line with the cri-
teria, i.e. maximizing yield and minimizing evapotranspiration.
The Pareto-optimal solutions represent the maturity, tillering,
and density combinations that give the greatest yield at a given
level of evapotranspiration or the least evapotranspiration for
a given level of yield. Those combinations away from the
Pareto front are ‘dominated’ as a superior combination exists.
The different outcomes in the Pareto-optimal set of solutions

Enhancing sorghum yield and risk management « 7

represent different cropping strategies, whereby those that
completely maximize yield and accept the associated high
evapotranspiration might be considered as ‘aggressive’ strat-
egies (Fig. 3, blue outlined points), while those that minimize
evapotranspiration as much as possible at the expense of yield
might be considered ‘defensive’ strategies (Fig. 3, green out-
lined points).

The design space plot (Fig. 3B) shows the maturity, tillering,
and planting density combinations associated with this Pareto-
optimal set. As can be seen in the plot, all the Pareto-optimal
crop designs are very low/no tillering and have low planting
density. In this case, maturity drives the variability of the de-
signs in the Pareto-optimal set of solutions, with the more de-
fensive positions having shorter maturity, and the aggressive
strategies having longer maturity.

3.2 Understanding consequential G X M X E interactions
in evaluated crop designs

To understand why crop designs with the attributes outlined
above optimize performance in this scenario, it is necessary to ex-
plore the seasonal dynamics of crop traits that are associated with
crop growth and water use. Assessment of these factors will allow
evaluation of the consequential G X M X E interactions that are
occurring through the season and provide an understanding of
the factors driving performance in this scenario.

To facilitate this analysis, three crop designs have been se-
lected (Fig. 3): the most defensive Pareto-optimal strategy,
the most aggressive Pareto-optimal strategy, and the non-Pareto-
optimal design with the highest evapotranspiration. The exact de-
sign variable values and performance outcomes for each of these
strategies are shown in Table 1.
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Figure 3. Objective and design space outcomes of the CropGen optimization maximizing yield and minimizing evapotranspiration in a
single-season scenario. In the objective space plot on the left (A), each point is a different maturity, tillering, and planting density combination
evaluated, with the Pareto-optimal set shown in yellow. On the right is the design space plot (B) showing the maturity, tillering, and planting
density combinations of the individuals in the Pareto-optimal set, with the colour of the points indicating the planting density. The black
dashed line in the design space plot indicates the level at which no fertile tillers occur, meaning FTMs below this value have the same effect of
causing no fertile tillers in the evaluated season. The points outlined in green, purple, and blue are highlighted to facilitate connection between
the two plots, with the outcome of the design shown on the left-hand side (A) and the crop design generating that outcome on the right-hand

side (B).

G20z AInr gz uo Jasn sausnpu| Aewld jo Juswuedaq Sy A9 58892 1 8/9001e1p/Z///a1onie/siue|doojisul/wod dno olwapeoe//:sdny Wwolj papeojumo(



8 « Durrington et al.

For each design, the seasonal trajectories of traits associated
with crop growth and water use have been evaluated and com-
pared. Specifically, the extractable soil water (ESW), crop
evapotranspiration, rain, and water supply/demand ratio have
been assessed on a daily timescale, alongside crop leaf area in-
dex (LAI), biomass, and grain yield (Fig. 4). The water supply/
demand ratio evaluated is an integrated measure of soil water
availability and crop water demand, indicating the level of water
sufficiency for the crop, with 1 representing no water limitation
and lower ratios indicating higher levels of limitation (Hammer
et al. 2014).

The trajectories of these crop attributes throughout the season
are shown in Fig. 4, with the water-related factors in the left-hand
panels and the growth-related attributes in the right-hand panels.
Note that all simulations had identical starting conditions and
were sown on the same day, with differences in the timings of an-
thesis and harvesting driven by differences in maturity and differ-
ences in canopy size driven by the FTM and planting density. The
Pareto-optimal defensive strategy had the shortest crop duration,
followed by the Pareto-optimal aggressive strategy, and finally the
non-Pareto-optimal strategy with high evapotranspiration, which
had the longest crop duration (Fig. 4).

When evaluating differences in the growth trajectories
between the different designs, a stark contrast is visible between
the Pareto-optimal and non-Pareto-optimal designs.
Specifically, the non-Pareto-optimal strategy had high LAI early
in the season, indicating a larger initial canopy size due to the
high tillering and high planting density of this design
(Fig. 4F). As a result of this, the water demands of this crop de-
sign are very high at the start of the season, causing swift draw-
down of the ESW and early preflowering severe water limitation
(Fig. 4E), which greatly diminished the LAI by the time of an-
thesis and caused reduced seed set and lower yield despite some
recovery due to late rainfall events.

The behaviour of this non-Pareto-optimal crop design is in
contrast to the Pareto-optimal strategies which were able to
maintain their modest initial LAI through anthesis (Fig. 4B
and D), indicating canopy growth that matched the prevailing
seasonal conditions. The primary distinction between the two
Pareto-optimal designs was their maturity (Fig. 4A and C),
with the long maturity of the aggressive strategy allowing late-
season rain in this specific scenario to be captured and better ex-
ploited during the key period around anthesis and grain filling
(Fig. 4A). Whilst this extended maturity resulted in increased
levels of water use when compared with the defensive position,
it was not to the level of the non-Pareto-optimal strategy.

To further evaluate the differences in the trajectories of water
use over the season among the different strategies, a rolling

average of the daily evapotranspiration is instructive (Fig. S).
It is evident from the figure that the Pareto-optimal strategies
have more balanced evapotranspiration through the season,
whereas the non-Pareto-optimal strategy has evapotranspir-
ation heavily skewed to the start of the season, as a consequence
of the large initial canopy size as noted above. Evidently, the
low/no tillering and lower density nature of the Pareto-
optimal designs allow them to best ration evapotranspiration
across the crop lifecycle, resulting in superior performance in
the evaluated season.

When interpreting these results, it is essential to acknow-
ledge that this analysis has occurred with consideration of
only a single season. The implication of this season-specific op-
timization is that all results and performance outcomes are
tightly linked to the specific conditions experienced, in particu-
lar the amount and timing of rainfall. Specifically, given the fo-
cus on combinations of maturity, tillering, and planting density,
this work has optimized the crop canopy development to the
dynamics of water available through the season in the particular
year evaluated. As such, the Pareto-optimal crop designs iden-
tified are advantageous in this scenario due to the fortuitous
timing of late rainfall in the evaluated season. In a more water-
scarce season, some of the identified designs would be too ag-
gressive, and in a more water-abundant year, many designs
identified as Pareto-optimal would not effectively exploit the
conditions. Clearly, the utility of optimization in single-year
scenarios is limited, and while it enables understanding of the
G XM XE interactions and testing of the CropGen platform,
there is a need to evaluate scenarios over multiple years of pro-
duction to obtain more widely applicable findings.

3.3 CropGen application for crop design—a case study for
guiding sorghum improvement in north-east Australia
To expand the focus from the initial CropGen testing in the
single-year simulation, this analysis includes two long-term
scenarios with contrasting production conditions. The starting
conditions from the single-year run were applied in a multi-year
simulation to represent a low-yield potential scenario, while a
high-yield potential scenario with different seasonal initializa-

tion was also assessed.

3.3.1 Crop design optimization in a low-yield potential multi-season
scenario. The results of the CropGen optimization in the low-
yield potential multi-season scenario are shown in Fig. 6. The
objective space plot shows a strong trade-off between overall
average yield and production risk (i.e. average yield in the
worst-performing 20% of years) in these conditions, with

Table 1. Attributes of the crop designs chosen for seasonal evaluation from the CropGen optimization.

Design strategy Maturity—end juvenile to floral

Fertile tiller

Density Yield Evapotranspiration

initiation (degree-days) modifier (plants m™?) (tha™) (mm)

Pareto-optimal— 131.41 -1.90 3.00 2.80 249.02
defensive

Pareto-optimal— 189.82 —0.96 3.71 3.76 432.74
aggressive

Non-Pareto-optimal 176.00 1.85 6.98 2.44 536.16
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Figure 4. Seasonal crop attribute dynamics of Pareto-optimal and non-Pareto-optimal crop designs. The top two rows of panels show the
seasonal results for the Pareto-optimal designs, with the defensive crop design strategy on the top (A, B) and the aggressive crop design

strategy below (C, D). The lower row (E, F) shows the results for the non-Pareto-optimal strategy evaluated. The plots on the left of the figure
(A, C, E) show the seasonal trajectories of the extractable soil water (ESW), crop evapotranspiration, and rainfall, alongside the water supply/
demand ratio (Swdef). On the right side of the figure (B, D, F), the plots show crop leaf area index (LAI), biomass, and yield across the season.

improvements in risk accompanied by significant declines in
overall average yield (Fig. 6A). In this scenario, the aggressive
position sees the maximization of average yield at the expense
of performance in poorer seasonal conditions, whereas the de-
fensive scenario prioritises downside risk and accepts accom-
panying low average yields. The Pareto front in this scenario

spans the outside edge of the points evaluated, excluding
the section where the criteria do not trade-off with each other.

In this low-yield potential scenario, the optimal performance
outcomes are associated with crop designs with low density
(Fig. 6B). Designs that are more defensive also show short ma-
turity and low/no tillering (Fig. 6B; lower left corner of the
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Figure 5. Comparison of crop evapotranspiration through the
growing season for Pareto-optimal and non-Pareto-optimal crop
designs. The 10-day rolling average of evapotranspiration

(mm day ") over the crop season is shown for each design of
interest: a non-Pareto-optimal design (dotted line), the most
aggressive Pareto-optimal design (solid line), and the most defensive
Pareto-optimal design (dashed line).

design space), whereas aggressive designs have progressively
higher tillering and longer maturity (Fig. 6B; top half of the de-
sign space). The optimization identifies the addition of tillers
before extending maturity as the avenue to enhance average
yield while maintaining the lowest risk possible (i.e. best pro-
duction in poor seasons), albeit at risk levels greater than that
of the defensive strategy. Designs with low tillering and long
maturity are non-Pareto-optimal with lower average yields for
the same risk levels (data not shown).

There are some similarities between the results of this low-
yield potential scenario optimization and those of the single-
season optimization undertaken previously with the same start-
ing conditions (Fig. 3). In particular, the defensive strategies
(outlined in green) are fundamentally the same, with short ma-
turity, no tillering, and very low planting density. This suggests
that designs minimizing evapotranspiration on a single-year ba-
sis for a low-yield potential season will also likely minimize
downside risk over the long term. The fact that the other
Pareto-optimal designs are different between the two optimiza-
tions is driven by the sampling of many seasonal conditions
with variable dynamics of water availability in this multi-season
optimization.

Opverall, given that this is the low-yield potential scenario, the
results are physiologically sensible and appropriate for the con-
ditions. The low density of all Pareto-optimal points and the
maximization of yield with designs that are high tillering and
longer maturing are sensible and in line with known responses
of these factors (Hammer et al. 2014, 2020).

3.3.2 Crop design optimization in a high-yield potential multi-
season scenario. Optimization in a high-yield potential multi-
season scenario (Fig. 7) was also evaluated to assess the ability
of the CropGen platform to generate different Pareto-optimal
solutions to suit different growing conditions. As highlighted
previously, beyond the seasonal starting water and sowing
date, all other simulation and optimization parameters were
kept consistent between the two scenarios.

Under these high-yield potential conditions, there is less
trade-off between the overall average yield and production
risk. As such, the Pareto-optimal designs have more similar out-
comes and are condensed in the design space (Fig. 7B).
Interestingly, the non-Pareto-optimal designs in the objective
space have a recursive trend, with designs generating very dif-
ferent average yields with the same risk level (Fig. 7A). On in-
spection, the higher average-yielding designs are typically long
maturity, high tillering, and high planting density, whereas the
lower average-yielding designs are short maturity, low tillering,
and low planting density. This behaviour stems from these sets
of designs having different yield distributions over the multi-
season analysis, with the higher average-yielding designs having
much more variable yields due to their more aggressive strat-
egies, and the lower yielding points having reduced, more stable
yields.

When assessing the Pareto-optimal combinations in the de-
sign space, it can be seen that they all have high tillering and
moderate/high planting density (Fig. 7B). For the more defen-
sive designs, maturity is short, whereas in the aggressive de-
signs, maturity is more moderate. When comparing these
findings with those from the low-yield potential scenario, it is
interesting to note that whilst high tillering and high planting
density are identified in this optimization, maturity is not ex-
tended significantly, remaining relatively short in the Pareto-
optimal designs.

This preference for increasing tillering and planting density
over maturity in this high-yield potential scenario is driven by
the relative advantage of larger canopies under favourable start-
ing conditions. With ample water available initially, bigger can-
opy growth can be supported and maintained through to
anthesis in this scenario, conferring yield advantages. Despite
this, whilst this scenario is initialized with favourable conditions,
there are still limitations and significant seasonal variability pre-
sent. This is particularly the case when considering water avail-
ability later in the season, such as during grain filling. As such,
extending maturity alongside the increased tillering and planting
density pushes performance back along the top edge of the ob-
jective space plot (Fig. 7A), leading to non-Pareto-optimal out-
comes with increased risk.

4. SYNTHESIS

The CropGen platform can identify situation-specific and
physiologically sensible crop designs that manage trade-offs be-
tween relevant production criteria. Previous research efforts in
this capacity have been limited in their ability to comprehensively
assess all relevant factors of the G X M X E factorial in a time and
resource-efficient manner. Past studies have adopted a gridded
approach, whereby all combinations of the factors of interest
were assessed, often resulting in a very large set of simulations
to be completed (Hammer et al. 2014, 2020). Furthermore, with-
out an explicit Pareto-optimization approach, capturing trade-offs
and assessing optimal solutions with respect to several criteria has
been challenging (Hsiao et al. 2024).

By addressing the problem of crop design exploration as a
multi-objective optimization problem and connecting the
APSIM sorghum model with the evolutionary optimization
algorithm, the CropGen platform introduces an efficient
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Figure 6. Objective and design space outcomes for the CropGen optimization maximizing the overall average yield and minimizing
production risk (through greater average yield in the worst-performing 20% of years) in a low-yield potential scenario. In the objective space
plot on the left (A), each point represents a different maturity, tillering, and planting density combination evaluated during the optimization.
The points in the Pareto-optimal set, which quantifies the trade-off between yield and risk, are shown in yellow. On the right (B) is the design
space plot showing the maturity, tillering, and planting density combinations of the individuals in the Pareto-optimal set, with the colour of the
points indicating the planting density. The points outlined in green (defensive strategy), purple, and blue (aggressive strategy) are highlighted
to facilitate connection between the two plots, with the outcome of the design shown on the left-hand side (A) and the crop design generating
that outcome on the right-hand side (B). All results are generated from a simulation spanning 122 years of production in a prominent
sorghum-growing location in Australia with mid-season planting and low initial stored soil water.
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Figure 7. Objective and design space outcomes for the CropGen optimization maximizing the overall average yield and minimizing
production risk (through greater average yield in the worst-performing 20% of years) in a high-yield potential scenario. In the objective space
plot on the left (A), each point represents a different maturity, tillering, and planting density combination evaluated during the optimization.
The points in the Pareto-optimal set, which quantifies the trade-off between yield and risk, are shown in yellow. On the right (B) is the design
space plot showing the maturity, tillering, and planting density combinations of the individuals in the Pareto-optimal set, with the colour of the
points indicating the planting density. The points outlined in green (defensive strategy), purple, and blue (aggressive strategy) are highlighted
to facilitate connection between the two plots, with the outcome of the design shown on the left-hand side (A) and the crop design generating
that outcome on the right-hand side (B). All results are generated from a simulation spanning 122 years of production in a prominent
sorghum-growing location in Australia with early planting and high initial stored soil water.

and targeted way to explore these problems. By focusing the ~ potential to assess more complex and higher dimensional
analysis into areas with better performance, CropGen re-  scenarios.
duces the amount of simulation required, lowering both However, one factor of the multi-objective optimization ap-

time and computational demands, and unlocking the  proach that must be addressed is its reliance on the use of a
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CGM fit for this purpose. For this style of work, model perspi-
cacity is essential, with the types of possible analyses dictated
by the scope and structure of available models (Martre et al.
2015, Hammer et al. 2019). For a specific trait to be suitable
for this type of optimization, the cost of variation in that trait
on other factors must be captured by the model. As such, traits
and practices that are modelled without such internal linkages
may not be amenable to optimization, a fact that underscores
the importance of understanding the scope and implementa-
tion of the CGM:s being used in this way. The popular model-
ling adage of obtaining ‘the right answer for the right reason’
rings true here and should be front of mind when evaluating
the application of CGMs for such optimization purposes
(Keating 2020).

A further consideration with the optimization approach
of the CropGen platform is its generation of a set of
Pareto-optimal solutions as opposed to a single best strategy.
Whilst this behaviour is a feature of the optimization, which al-
lows for all criteria to be prioritized equally and a full range of
trade-offs to be generated, it means subsequent application of
the results will require end-user input and decision-making
(Hsiao et al. 2024). Despite this, the generation of a set of
Pareto-optimal solutions allows for many positions and prefer-
ences to be represented in the optimization results, making
findings relevant for a wide range of circumstances, and allow-
ing users to integrate personal and commercial factors to deter-
mine the best strategy for their situation. Ultimately, to fully
exploit the potential of this approach, it is likely that field valid-
ation of findings and recommendations will be needed to build
adequate trust and confidence. Considering the exploratory na-
ture and large scale of this work, evaluating the outcome of spe-
cific strategies identified as part of the optimization against
observed data would likely be the most appropriate course of
action, although this lies beyond the scope of this study.

Lastly, application of the CropGen platform could extend
beyond optimization at the crop-level. It could be configured
to explore questions at the cropping system level, including
evaluating and optimizing crop rotations (Devoil et al. 2006),
optimizing nitrogen fertilizer rates or timing (Pardon et al.
2017), and assessing irrigation practices (e.g. area vs. amount)
for a set water budget. It could also be possible to assess differ-
ent strategies across numerous fields, such as exploring risk re-
duction by optimizing a sowing rule to spread sowing across
different dates or to use varieties with differing maturity
(crop duration). Furthermore, this style of crop design explor-
ation and optimization could also be extended to include finer
traits, such as those underpinning photosynthesis (Wu et al.
2023). The CropGen platform offers the ability to explore gen-
etic and M intervention strategies in silico before the investment
of significant time and effort.

5. CONCLUSION

Optimizing crop design is a complex concept that requires the
consideration and balance of many factors. The nature of crop
production is such that performance is nonlinear and driven by
many complex and interacting factors. Different measures of
crop performance will trade-off with each other, with improve-
ments in one factor of interest often accompanied by

commensurate deteriorations in another. The need to explore
and address this problem in silico for accelerated crop improve-
ment cannot be understated, with the novel approach adopted
in this work offering the potential to explore a much wider crop
design space and to optimize multiple production objectives.

The CropGen platform is a powerful tool to support crop
improvement decision-making by enabling crop design assess-
ment and unlocking information present in crop-adaptation
landscapes. By facilitating the comprehensive assessment of
G X M strategies for target Es, CropGen can help to prioritize
research efforts and identify avenues for further investigation,
including the likely value of traits for detailed pursuit in genetics
and plant breeding programmes (Cooper et al. 2021, 2022)
combined with M options for agronomic research programmes
(Tirfessa et al. 2023).

Ultimately, the questions addressable by CropGen are limited
only by what can be implemented in an APSIM crop or farm
simulation. Future work will see the CropGen platform and
this multi-objective optimization approach applied to a broader
range of traits and M practices, with the potential to even evaluate
optimal cropping strategies for future climates and conditions. To
unlock the full potential of this crop design optimization concept,
a sustained investment into the development of biologically real-
istic and mechanistic CGMs will be required (Martre et al. 2015,
Wu et al. 2019, Hammer et al. 2023, Wu 2023).
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