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ABSTRACT

Fire is an important factor influencing the evolution, structure and composition of Australia’s native vegetation. Australia’s
many fire-adapted species regenerate en masse after fire, with a proliferation of new epicormic shoots and seedlings. Given
Austropuccinia psidii (myrtle rust) mainly infects new growth, post-fire emergence of new epicormic shoots and seedlings is ideal
for the development of the disease, leading to further loss of plants along with subsequent increase of fungal inoculum in the re-
gion. Extreme fire events across New South Wales and Queensland in 2019-2020 and subsequent vegetation regeneration across
a wide area provided ideal conditions for disease epidemics. Surveys for myrtle rust were conducted across rainforest, coastal
heath and woodland environments from south-eastern NSW to south-east Queensland 6-12months post-fire. Myrtle rust was
identified in all regions and ecosystems surveyed apart from areas in south-eastern NSW. Of the 73 Myrtaceae species surveyed
in areas other than southern NSW, 44 were found with myrtle rust symptoms, ranging from small spots and limited damage to
severe blighting, dieback and death of reshooting trees and seedlings. Monitoring plots were established for some of the more sus-
ceptible species, with monthly assessments conducted to determine impact levels and decline rates. The most severely impacted
species were Rhodamnia rubescens and Uromyrtus australis, with infections of reshoots causing dieback. Infection of Melaleuca
quinquenervia and M. nodosa reshoots and seedlings impeded recovery of populations, causing seedling and tree deaths and
reducing flower set and subsequent seed production.

1 | Introduction were fire-affected, including 2.7 million ha in National Parks

(37% of the state's National Park estate) (Forest fire data—

The Black Summer (2019/2020) wildfires were unprecedented
in extent and severity (Auld 2020; Legge et al. 2021) burning
over 24 million ha in eastern Australia (Christoff 2023), includ-
ing 8.34 million ha of forest (Davey and Sarre 2020). Seventeen
major native vegetation groups within 11 Australian bioregions
were severely burned, including globally significant rainfor-
ests and eucalypt forests and woodlands (Godfree et al. 2021).
In New South Wales (NSW), 5.3 million ha (6.7% of the state)

DAFF; agriculture.gov.au). Coastal and near-coastal biore-
gions were some of the most fire-affected vegetation types
(Godfree et al. 2021).

Fire occurs over much of the Australian landscape, in most
vegetation types (Davey and Sarre 2021), and is an important
factor influencing plant diversity and vegetation community
structure (Gill 1999). This includes rainforests, but there are a
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wide variety of fire regimes that occur across these ecosystems
(Gill et al. 1981). Post-fire resprouting and seedling recruitment
are key traits influencing plant community composition and
function (Baker et al. 2021). Auld (2020) emphasises that fires
do not necessarily destroy bushland, as Australian flora have
strategies to survive fires and recover.

Following fire, conditions favour plant recovery through in-
creased nutrient availability, improved light conditions and
space promoting growth (Auld 2020). Species that regenerate
via resprouting have dormant buds beneath their bark that sur-
vive the heat of a fire, or dormant buds, or underground organs,
protected from the heat (Auld 2020). Fire-affected plants may
also recruit through seeds stored in woody fruits or in soil seed
banks, whereby fire stimulates germination. Sufficient post-
fire rainfall triggers mass seedling germination. However, the
recently introduced rust fungus Austropuccinia psidii (myrtle
rust) is a new threat to the post-fire recovery process (Godfree
et al. 2021; Keighery et al. 2023).

Austropuccinia psidii is native to South America and was de-
tected in Australia for the first time in 2010 on the central coast
of NSW (Carnegie et al. 2010). Spreading rapidly, it is now found
on the east coast from Tasmania to Bamaga at the tip of Cape
York Peninsula, the Tiwi Islands and Darwin in the Northern
Territory (Carnegie and Pegg 2018; Makinson 2019), and north-
ern Western Australia (The Department of Primary Industries
and Regional Development 2022).

Austropuccinia psidii affects plants in the Myrtaceae family.
The current host range in Australia exceeds 380 species from
58 genera (Soewarto et al. 2019) occurring across a range of
native ecosystems: coastal heath, coastal and river wetlands,
sand island ecosystems, and littoral, montane, subtropi-
cal and tropical rainforests (Pegg, Giblin, et al. 2014). In the
short time that A. psidii has been established in Australia,
significant plant damage and mortality have occurred, se-
verely affecting key species in natural ecosystems (Carnegie
et al. 2016; Pegg et al. 2017; Fensham et al. 2020, 2021).
Impacts on plant communities have become more apparent,
with tree mortality causing species composition changes (Pegg
et al. 2017). Myrtle rust is now recognised legislatively as a
Key Threatening Process and many species have been listed
as Critically Endangered in Queensland, NSW, and under the
Commonwealth's Environment Protection and Biodiversity
Conservation Act 1999.

The impact of A. psidii infection on regeneration of species post-
fire has been reported previously (Pegg et al. 2020), although
myrtle rust impacts are not restricted to areas or species that
have been affected by a disturbance event (Carnegie et al. 2016;
Fensham et al. 2021; Pegg, Giblin, et al. 2014). This was an op-
portunistic study, with the aim of gathering information on a
broad range of Myrtaceae species across a wide geographic area
in fire-affected ecosystems in NSW (Northern Rivers, Central
and South Coast) and South East Queensland. Using monitor-
ing plots, we also examined the effect of repeated infection on
recovery and survival of Eucalyptus pilularis, Melaleuca quin-
quenervia and M. nodosa.

2 | Methods
2.1 | Surveys

To assess the impact of myrtle rust on post-fire regeneration
of a broad range of Myrtaceae across multiple ecosystems in
eastern Australia, we conducted one-off surveys from south-
ern NSW to South East Queensland, with all assessments com-
pleted during the period from May to October 2020 (Figure 1,
Table 1). Site selection was based on areas impacted by fire
using maps (State Government of NSW and NSW Department
of Climate Change, Energy, the Environment and Water 2020),
flora composition and local land manager information en-
abling us to target sites where Myrtaceae were present and
abundant. This was not intended to be a detailed survey but
an opportunistic study to gather information on the impact of
myrtle rust on post-fire recovery from a wide range of sites and
species. Due to differing species composition at sites, variabil-
ity in fire severity, and constraints on access due to terrain and/
or weather, there was variability in the surveillance methodol-
ogy relating to the number of plants surveyed and time spent
surveying per site. Where possible, 50 m transects were used,
and all Myrtaceae occurring within a metre of the transect
were assessed for disease levels. “Walkthrough” surveys, ap-
proximately 50 m transects from a road or track edge, were also
conducted at some sites, with any Myrtaceae plants present as-
sessed. Each Myrtaceae plant was assessed for: (1) presence/
absence of A. psidii infection, and (2) severity of myrtle rust
infection (area of infected new growth—foliage and juvenile
stems—with rust sori) using a disease infection ranking of
low, moderate, high and severe (Table 1), adapted from Pegg
et al. (2014).

2.2 | Disease Impact Monitoring Plots

To gather more detailed information on individual species,
monitoring plots were established in selected sites to assess the
effects of repeated A. psidii infection on post-fire regeneration.
Fifty trees per plot were chosen randomly and labelled with
flagging tape. Assessment frequency varied due to Covid-19
restrictions and flooding affecting access, but where possi-
ble recordings were made monthly. Plots were established in
NSW northern rivers (Yarringully Nature Reserve, Bundjalung
National Park) and sites on the Central Coast, NSW. Sites were
selected based on the abundance of key hosts; species assessed
were E. pilularis, M. quinquenervia and M. nodosa.

Disease assessment methods were adapted from previous stud-
ies (Pegg, Giblin, et al. 2014; Pegg et al. 2017, 2020; Carnegie
et al. 2016). Each tagged tree was assessed for:

« Presence or absence of new growth (susceptible to A. psidii
infection).

« Disease incidence: Percentage susceptible new growth with
A. psidii symptoms.

« Disease severity: severity of A. psidii infection on affected
growth: low; moderate; high; severe.
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FIGURE1 | Map showing areas surveyed across South East Queensland, northern, central and southern New South Wales for myrtle rust impacts
on wildfire affected Myrtaceae. Surveys were conducted from May to October 2020.

« Tip dieback on reshoots (Percentage of reshoots with
dieback).

+ Reshoot death (Percentage reshoots per tree killed by myr-
tle rust).

« Flowering: 0-4 rating: 0=no flowers; 1 (low)=1%-25%,
2 (moderate) =26%-50%, 3 (abundant)=51%-75%, 4 (very
abundant) = 76%-100% of branches with flowers or buds.

3 | Results
3.1 | Surveys

Twenty-two areas were surveyed, from the southern NSW border
to Cooloola National Park in South East Queensland (Table 1;
Figure 1). Vegetation types assessed were coastal heath, paper-
bark wetlands, coastal and inland woodland habitats, Eucalyptus
forests and subtropical rainforest in the Gondwana Rainforests
of Australia World Heritage Area, and temperate coastal wood-
lands. Fire intensity levels varied across and within sites. Due
to Covid-19 restrictions, areas in eastern Victoria were unable
to be surveyed as initially planned. Surveys of areas in south-
eastern NSW (Ulladulla to the Victorian border) were conducted
in October 2020, with no evidence of myrtle rust identified (data
not presented), although the disease is known from this region
(Carnegie et al. 2016; Berthon et al. 2018). Assessments for
rust in this region of NSW were conducted on Acmena smithii,
Backhousia myrtifolia, Eucalyptus elata, Kunzea ambigua,
Leptospermum polygalifolium, L. trinervium, Melaleuca ericifo-
lia, M. linariifolia and Tristaniopsis laurina. A return survey to

southern NSW was not possible due to Covid-19 travel restric-
tions being imposed.

For areas surveyed other than south-eastern NSW, seventy-
three species across 24 genera of Myrtaceae were surveyed.
Forty-four species (60.27%) had evidence of myrtle rust infection
and impact (Table 1), ranging from small spots and limited dam-
age to severe blighting, dieback and death of reshooting trees
and seedlings because of repeated infection. An example of the
symptoms observed is provided in Figure 2.

Populations of M. quinquenervia, M. nodosa and Rhodamnia
rubescens (Figure 2) were severely impacted by A. psidii in
fire-affected areas where they were present. For coastal NSW
populations of E. pilularis, seedling and reshoots had vary-
ing levels of severity of infection recorded. Populations of
Uromyrtus australe, a species with a restricted native range,
were identified with A. psidii infection and dieback on re-
shoots. Regenerating B. sciadophora was found with moderate
levels of infection across fire-affected habitats in northeastern
NSW. There is currently very little information on the impact
of A. psidii on this species across its native range.

3.1.1 | Disease Impact Monitoring Plots

While R. rubescens recovery was found to be severely affected by
myrtle rust, the status of this species has already been studied
in detail (Carnegie et al. 2016; Fensham et al. 2021). Plots were
established to look at impacts on E. pilularis but were discontin-
ued after a short period. While reshoots were severely infected,
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FIGURE 2 | Reshooting Rhodamnia rubescens (a) and Uromyrtus australis (b) following wildfires in Gondwana Rainforest in 2019/2020.
Austropuccinia psidii infection on the new shoots and young foliage of reshoots causes decline and death of recovering trees.

particularly in the lower canopy, disease levels declined rapidly,
with only minor disease symptoms detected after 3 months and
no symptoms after 4 months.

3.2 | Melaleuca nodosa
3.2.1 | Yarringully Nature Reserve

Symptoms of A. psidii were first detected in March 2020, with
58% of reshooting fire-affected trees infected, peaking with
87.5% of trees infected in April 2020 (Figure 3). Disease levels
remained high until June 2020 before declining, peaking again
in September and November with 63.04% and 91.11% of assessed
trees infected respectively. All 50 trees assessed had disease
symptoms recorded over the course of the study.

Tree deaths associated with repeated A. psidii infection of re-
shoots were first recorded in April 2020. By the final assess-
ment in 2022, 24 (48%) of the 50 trees had died. Twenty-one of
these dead trees had disease on all new growth at least once
during the assessment period. Twenty-three of the 26 trees
still alive at the final assessment had A. psidii associated re-
shoot dieback. Flowering/fruiting was assessed in August and
November 2020 and again in January 2022 with two (4%), four
(6%) and four (6%) trees with flowers or seed capsules, respec-
tively. Flowering levels on these trees were rated as moderate
with 26%-50% of branches assessed as having flowers or seed
capsules present.

3.2.2 | Bundjalung National Park

Disease levels on M. nodosa peaked in May and June 2020,
with the lowest levels recorded in spring and early summer
(December), increasing again in late summer and autumn
(March, April 2021) (Figure 3). Despite all trees having ac-
tive flush in January 2021, no disease was present. In June
2021, the number of trees infected was low, but disease inci-
dence on any new flush was high. Low levels of disease at the
August (6%), December (0%) 2020 and June (14%), July (6%)

2021 assessments were primarily due to the absence of sus-
ceptible growth.

Infection resulted in repeated dieback of growing tips and com-
plete reshoot death over time (Figure 4). Ninety-two percent
of trees had some level of dieback recorded; 74% had >50% of
branches with dieback at some time over the assessment period.
Only four trees (8%) were found to be symptom-free throughout
the assessment period. No tree deaths were recorded.

In September 2020, 62% of trees had some flowers present; 55%
low abundance and 20.7% high abundance. An additional as-
sessment in November 2020, identified 60% of trees with cap-
sules present following flowering. Of these trees, 83% had low
levels of capsule abundance and 16% with abundant levels. In
January 2022, 14% of trees had capsule present, with only two
trees (4%) having abundant capsules present.

Additional surveys of M. nodosa populations in Bundjalung
National Park were conducted (September 2020) to assess the
influence of A. psidii-related dieback on flower production
(Figure 5). One hundred plants were randomly selected and
assessed for branch dieback (Low=0%-40%, Moderate =41%-
60%, High=61%-80%, Severe=81%-100% branches with
dieback) and flowering levels (0-4 rating: 1 =1%-25%, 2=26%-
50%, 3=>51%-75%, 4=76%-100% of branches with flowers or
buds). Fifty-three percent of trees had dieback on > 60% of total
branches, with reduced flowering levels in comparison to trees
with <40% branches affected by dieback. Flowers were absent
on 5.7% of severely affected trees.

3.2.3 | Central Coast, NSW

Five sites were established in September 2020 for monthly mon-
itoring of A. psidii impacts on fire-affected M. nodosa until
February 2021, with a final assessment in May 2021 (Table 2).
Disease levels were highest during warmer months of January
and February 2021. In some months, the absence of susceptible
new growth on trees determined disease levels rather than cli-
matic conditions.
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FIGURE 3 | Reshooting Melaleuca nodosa trees in fire-affected areas of northern New South Wales; (a) Yarringully Nature Reserve, assessed
from March 2020 to July 2021 with a follow-up assessment in January 2022 and (b) Bundjalung National Park, assessed from May 2020 to July 2021
with a follow-up assessment in January 2022 for Austropuccinia psidii infection symptoms with the percentage of trees affected, average incidence of
disease per tree (error bars=standard error) and percentage of dead trees over time.

FIGURE 4 | Reshooting Melaleuca nodosa has been severely affected by Austropuccinia psidii (a), resulting in dieback (b) of shrubs and small
trees recovering post 2019/2020 wildfires.
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FIGURES5 | Melaleuca nodosa flowering levels relating to the impact of myrtle rust (Austropuccinia psidii) based on levels of branch dieback ob-
served in Bundjalung National Park, New South Wales, Survey Area 3. (Low =0%-40%, Moderate =41%-60%, High =61%-80%, Severe = 81%-100%

branches with dieback).

TABLE 2 | Austropuccinia psidii infection and disease impact levels, based on shoot dieback, on reshooting Melaleuca nodosa following fires in
the Central Coast of New South Wales region assessed from September 2020 to May 2021.

Assessment month 2020/2021

Location Assessment Sept Oct Nov Dec Jan Feb May
McClymont Creek Infected trees (%) 0 0 32 1.4 62 98 0
Trees with shoot dieback (%) 100 0 90 90 88 98 100
Trees with flower/fruit (%) 64 68 0 0 0 18 0
Saltwater Infected trees (%) 0 20 72 20 96 88 4
Trees with shoot dieback (%) 86 22 80 36 86 84 100
Trees with flower/fruit (%) 0 38 0 0 0 0 0
Wallaby Point Infected trees (%) 26 52 92 82 95.74 11.11 2.56
Trees with shoot dieback (%) 88 20 92 84 97.87 97.78 100
Trees with flower/fruit (%) 4 0 0 0 0 0 0
Knappinghat Infected trees (%) 66 18 82 38 98 60 28.89
Trees with shoot dieback (%) 98 6 92 88 98 100 100
Trees with flower/fruit (%) 24 0 0 0 0 0 0
Kiwarrak Infected trees (%) 66 18 82 38 98 60 28.89
Trees with shoot dieback (%) 98 6 92 88 98 100 100
Trees with flower/fruit (%) 24 0 0 0 0 0 0

All trees across sites had some level of infection and dieback.
Tree deaths were greatest at the Kiwarrak site, with 56% of trees
dead at the final assessment. Ten percent of trees at Knappinghat
and 20% of trees at Wallabi Point were dead at the final assess-
ment. Some level of shoot or new growth dieback was recorded
on every tree at all sites during the assessments. Flowers were
recorded on trees at all sites (Table 2). However, at the final as-
sessment there was no evidence of fruit/capsule present at any of
the five Central Coast sites.

3.3 | Melaleuca quinquenervia
3.3.1 | Yarringully Nature Reserve

Large diameter (>20cm DBH) M. quinquenervia were affected
by severe fire, with full canopy consumption. Symptoms of A.
psidii were first detected in April 2020, with 44% of the 50 la-
belled trees infected (Figures 6 and 7). Disease levels, based on
trees infected and average disease incidence per infected tree,
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FIGURE 6 | Reshooting Melaleuca quinquenervia trees in fire-affected areas of New South Wales, Yarringully Nature Reserve (a) assessed from
March 2020 to July 2021 with a follow-up assessment made in January 2022, Bundjalung National Park Plot 1 (b) assessed from April 2020 to July
2021 with a follow-up assessment made in January 2022 and Plot 2 (c), assessed from August 2020 to July 2021 with a follow-up assessment made in
January 2022, assessed for Austropuccinia psidii infection symptoms with the percentage of trees affected, average incidence of disease per tree and
percentage of dead trees over time. Error bars=standard error.

peaked in June 2020 before declining and peaking again in again in December 2020 and January and April 2021, before
November 2020, with 84.44% of trees infected and an average another increase in the cooler months of June and July 2021
disease incidence level of 57.37% (+6.47). Disease levels declined (70.97% and 68.96% of trees infected, respectively).

16 of 21 Austral Ecology, 2025

858017 SUOWILLIOD 8AFe8.0 3(ealdde aup Aq pauienob ae sejoie YO ‘85N JO Sa|nJ o} Akeid18ulUO A8]IM UO (SUOTPUOO-PUB-SWLBY /WD A8 | IM A eIq 1[BU1|UO//SANL) SUORIPUOD PUe SWLB | 8L 88S *[6202/20/02] Uo ArIqiTauljuO 3|1 ‘801AISS LDITBLIOJ| UoIeassy AQ 6600.'98/TTTT '0T/I0p/L0o" A3 1M Ake.q 1 |pul|uo//:Sdny Wwoly pepeoiumoq . ‘SZ0Z ‘S666Z11T



FIGURE 7 | Severe wildfires affected Melaleuca quinquenervia across a range of environments. Reshooting of trees indicated recovery, but these
reshoots were impacted by Austropuccinia psidii, resulting in dieback and eventual tree death (a, b). Austropuccinia psidii repeatedly infected the new

growing shoots (c, d) as trees tried to recover.

Tree deaths were first recorded in August 2020 (4%), increas-
ing to 32% in April, 42% in July 2021 and 64% of trees were
dead by the final assessment in January 2022. All dead trees
had some level of A. psidii infection recorded during the as-
sessment period. Six of these trees had only low disease levels
recorded (<30% disease incidence) suggesting other factors
probably contributed to tree death. Insect damage was also
observed on all trees, particularly during the spring months,
with mirids (Eucerocoris suspectus (Hemiptera: Miridae))
causing damage to reshoots, often in combination with myr-
tle rust. All remaining living trees have had some level of in-
fection recorded on susceptible foliage, primarily in the lower
canopy reshoots.

Flowering was observed on eight of the 50 trees (16%). No trees
had abundant (rating 4) flowers, but four trees had moderate
levels of flowering. All eight of the flowering trees had some
level of A. psidii infection recorded over the assessment period,
two with high disease incidence levels (> 50% of susceptible foli-
age). Infection on these trees, however, was limited to the lower
canopy with no evidence of infection or dieback in the upper
canopies.

3.3.2 | Bundjalung National Park

Two monitoring plots were established to assess the impact
of A. psidii on M. quinquenervia within fire-affected sites in
Bundjalung National Park. Fire damage was severe, with full
canopy consumption. Disease symptoms were identified in both
plots. Insect damage, primarily mirid, was also evident at vari-
ous times during the assessments.

3.3.2.1 | Plot 1. This site was dominated by small diam-
eter trees (<20cm DBH) growing along the river's edge. Aus-
tropuccinia psidii symptoms were identified at all assessments
(Figure 7). Trees infected and average disease incidence per tree
increased from 34% and 15% (£3.66) respectively in April to 88%
and 91.59% (+3.07) in June, before the number of diseased trees
declined in July 2020, despite disease incidence scores remain-
ing high during this month (93.54% (+3.01)). Diseased trees
and infection incidence declined in August 2020. Other disease
peaks occurred in November 2020 and February and May 2021.
Disease incidence per tree followed similar patterns but with an
extended peak in June and July 2020 (Figure 6).

Tree deaths (8%) were first observed in November 2020,
7months after symptoms were first recorded. This increased to
20% by April 2020 and 30% at the final assessment in January
2022. Flowering was observed on three trees (6%), one with
moderate levels of flowering and two with low levels. While all
three trees had some level of A. psidii infection symptoms, dis-
ease incidence levels were < 10%.

3.3.2.2 | Plot 2. This plot consisted of large diameter
(>20cm DBH), overstorey trees growing as a monoculture
stand on the river floodplain, inundated with water for much
of the assessment period. Fire damage was severe, with full can-
opy consumption.

Eighty-eight percent of trees had symptoms of A. psidii infection
at some stage during the assessment (Figure 6). Of the 26 trees
that died (52% of total trees), only three lacked evidence of infec-
tion. Of the trees that remained alive, A. psidii symptoms were ob-
served on all but four of the 24 trees. Approximately 45% of living
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trees had moderate to severe disease incidence levels (>50% fo-
liage with symptoms) at some time over the assessment period.

Flowering was observed on six trees (12%), two with moderate
to abundant flowering. Those trees that did produce flowers had
either low or no evidence of A. psidii infection (<10% disease
incidence).

4 | Discussion

Austropuccinia psidii impacted the regeneration of Myrtaceae
species in different ecosystems recovering from the 2019/20
wildfires. This included coastal heath, woodland and swamp
environments, littoral and notophyll vine forests, inland paper
bark swamp ecosystems, inland eucalypt woodlands, wet
sclerophyll and rainforest ecosystems as far west as the Great
Dividing Range. However, no evidence of A. psidii was iden-
tified in surveys of fire-affected areas south from Ulladulla
in southern NSW. Several species in this area are known
to be susceptible (Carnegie and Lidbetter 2012; Soewarto
et al. 2019), including L. trinervium. Carnegie et al. (2016) also
reported severe myrtle rust-associated dieback on R. rubes-
cens in Batemans Bay. Based on recent epidemiology studies
in New Zealand, climatic conditions are likely to be suitable in
southern NSW for disease development, at least for the spring
and summer months (Beresford et al. 2020). It is possible that
our survey times did not occur during a period when myr-
tle rust was most active in the region, despite the conditions
being considered optimum, or recovery of the pathogen pop-
ulation was slower than what was observed in northern NSW
and South East Queensland. We recommend more surveys for
myrtle rust in south-eastern NSW into eastern Victoria to de-
termine the impact in this region.

Our surveys discovered new Australian host species, L. specio-
sum, E. piperita, E. pyrocarpa and E. amplifolia subsp. amplifo-
lia, adding to the growing list of species in Australia to become
impacted by this invasive species. Of the eucalypts surveyed,
E. pilularis and E. planchoniana were the most affected by A.
psidii, with seedling infection, dieback and deaths recorded.
Disease-free seedlings were also identified, suggesting poten-
tial resistance in these two species of Eucalyptus. Similarly,
disease-free and infected reshooting trees were observed for
both E. pilularis and E. planchoniana. Interestingly, infection
levels on E. pilularis epicormic shoots decreased with increas-
ing height, with shoots higher in the canopy free of disease or
dieback symptoms, even when shoots closer to the ground were
heavily infected. This influence of canopy height on disease de-
velopment has previously been reported in eucalypt plantations
in Brazil (Zauza et al. 2010), with incidence and severity declin-
ing in taller trees. However, this pattern is not apparent in other
species, including M. quinquenervia and rainforest species like
Syzygium corynanthum (Pegg et al. 2017).

In fire-affected Gondwana Rainforests, A. psidii impacts were
commonly identified on R. rubescens. While some variability
in disease levels was identified, there was no evidence of resis-
tant individuals. The variability in susceptibility does, however,
warrant further investigation to inform future conservation
and breeding strategies. While in this case the focus was on

fire-affected trees, R. rubescens was identified as being highly
susceptible soon after A. psidii was first detected in Australia
(Carnegieand Lidbetter 2012; Pegg, Giblin, et al. 2014) and studies
across the host range (Carnegie et al. 2016; Fensham et al. 2021),
in the absence of any specific disturbance event, confirmed the
significant impact on R. rubescens populations. Once considered
a common species, it is now listed under the Commonwealth
EPBC Act 1999 as Critically Endangered because of myrtle rust
(Conservation Advice Rhodamnia Rubescens 2020).

Other fire-affected rainforest species to be impacted were
Archirhodomyrtus beckleri, Backhousia sciadophora and
Uromyrtus australis, all known to be susceptible to infection
in the absence of disturbance events (Pegg, Giblin, et al. 2014).
Uromyrtus australis is found only in northeastern NSW on the
Nightcap Range, with an estimated 800-1000 plants left that
occur across 45 locations (NSW National Parks and Wildlife
Service 2003). Over 50% of trees assessed were infected, with
severity levels varying. Dieback occurred on >30% of reshooting
trees and symptoms were identified on fruit. Surveys in other
sites, conducted under the NSW Saving Our Species Program
(Kooyman 2021), assessed 14 of the 20 known genets affected by
fire at Mt. Jerusalem in 2019-20. The authors reported A. psidii
infection on 85% of plants, 33% with low levels of impact, 50%
with moderate levels and 17% with high levels of impact. The
study was then extended to include 40 locations within Nightcap
National Park, concluding that the health and reproductive fit-
ness of the species is in decline due to myrtle rust impacts on
regenerating plants. Subsequent surveys (2020-21) found 100%
of plants with myrtle rust impact, 15% with low levels, 42% mod-
erate and 42% with high levels. A continued decline in flower
and fruit production was also reported (Kooyman 2021).

In coastal heath and woodlands, Melaleuca nodosa was highly
susceptible to myrtle rust, impacting post-fire regeneration.
Austropuccinia psidii infection and dieback were identified in all
populations assessed in northeast and Central Coast NSW, in-
cluding the shrub-like form in coastal heath communities and the
small-tree form in woodlands. Just under half the trees assessed
in Yarringully Nature Reserve were dead at final assessment.
Tree deaths were also recorded in three of the five NSW Central
Coast populations. No tree deaths were recorded in Bundjalung
National Park, despite significant levels of infection and dieback.
Although not dead, trees with dieback were unable to compete
with more disease-tolerant Myrtaceae (Leptospermum polygal-
ifolium) or non-Myrtaceae (Acacia spp.), becoming smothered
under a thick canopy of these other species. The susceptibility of
M. nodosa and the impact of A. psidii on populations recovering
post-wildfire has previously been reported (Pegg et al. 2020) and,
like that study, there was evidence of surviving trees at all sites.
The number of these surviving trees was low, but it may indi-
cate disease tolerance or possible resistance within populations.
However, the consequence of this decline in population size, and
presumably genetic diversity, is unknown. Without pre-rust pop-
ulation data, long-term consequences of diversity changes may be
challenging to determine.

Flower and fruit development of M. nodosa were affected by
A. psidii infection, with declines recorded at all sites. Hewitt
et al. (2014a), studying Melaleuca species in 2011/12 and prior
to significant impacts being recorded from myrtle rust in native
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ecosystems, identified that within populations of M. nodosa,
68%-78% of plants flowered each year. This compares to the 6%
of trees we observed at Yarringully Nature Reserve and 14% at
Bundjalung National Park. Despite flowering occurring widely
at Central Coast NSW sites at initial assessments in our study, no
fruits were observed in subsequent assessments. It is unknown
if this relates to unsuccessful pollination or if it is entirely due to
myrtle rust-induced dieback.

For Melaleuca quinquenervia reshoots, while some site variation
was observed, dieback, reduced flowering and tree deaths due to
A. psidii infection occurred at all sites. In some cases, tree death
could be solely attributed to A. psidii impacts. In other cases
(e.g., large diameter trees in Yarringully and Bundjalung Plot 2)
additional factors appeared to contribute. Insect attack, partic-
ularly mirid bugs, adversely affected regrowth but impact levels
were not quantified in this study. Interactions between A. psidii
and insects have been reported from Florida where M. quin-
quenervia is an invasive pest. The combined impact of A. psidii
and insects, primarily Oxyops vitosa, on cut stump regrowth had
an additive effect on stump and reshoot mortality (Rayamajhi
et al. 2010). In our study, some trees died without any evidence
of myrtle rust on reshoots, suggesting that fire damage alone
could have been the primary factor in tree death.

Like M. nodosa, M. quinquenervia flowering was reduced and
in many cases prevented, by repeated A. psidii infection. Trees
in Yarringully had the highest level of flowering, but only 16%
nonetheless. Pratt et al. (2005) studying the effects of folivory on
M. quinquenervia in Florida, USA, found that undamaged trees
were 36 times more likely to reproduce than herbivore-damaged
trees. They also found that a single bout of herbivory caused
an 80% reduction in reproductive structures the following year.
They concluded that M. quinquenervia partially compensates for
herbivory by producing new stems and replacing foliage, but this
compensation results in a substantial reduction in reproduction.
Unlike repeated A. psidii infection, herbivory did not result in
shoot or tree death.

The presence of surviving and reproducing trees at each study
site may be an indicator of resistance or tolerance to A. psidii
within the existing populations of M. nodosa and M. quinquen-
ervia. However, given Melaleuca species are pollinated by a
wide suite of generalist insect vectors, including native and in-
troduced honeybees, beetles and flies (Beardsell et al. 1993), a
lower density of flowering may interfere with pollination, par-
ticularly in flora-diverse sites. Conversely, if resistant plants are
flowering and producing viable seedlings, it is possible that nat-
ural regeneration of species within a site could occur, consisting
of disease-resistant or tolerant progeny. However, the reduced
number of trees flowering and potential implications on popu-
lation diversity need to be considered. Likewise, the flow-on ef-
fects of reduced flowering from a pollination process and fauna
food source perspective need consideration.

A significant reduction in population size through deaths or
impacts that prevent flowering, like those caused by A. psidii,
could result in reduced genetic variation within offspring and
subsequent populations, potentially increasing inbreeding.
Additionally, andromonoecy, a breeding system of plant species
in which both separate male and hermaphrodite flowers occur

on the same plant, has been recorded for Melaleuca species from
Australia, including M. nodosa (Hewitt et al. 2014b), potentially
increasing the risk of inbreeding. Inbreeding populations are at
a greater risk of an accumulation of deleterious mutations that
can reduce the health of individuals within a species, potentially
leading to extinction. Breeding within closely related individu-
als within a small population could result in immediate loss of
fitness in the offspring, which are potentially less able to adapt
to changing environments (Charlesworth and Willis 2009;
Charlesworth and Charlesworth 1999; Keller and Waller 2002).
The fitness costs associated with inbreeding are due to recessive
deleterious alleles that confer a disadvantage on the individual
possessing them (Charlesworth and Willis 2009; Charlesworth
and Charlesworth 1999).

While this study provides some insight into the impacts of A. psi-
dii on post-fire recovery of individual Myrtaceae species, it does
notlook at the broader, long-term ecological effects or other inter-
actions. A better understanding of the consequences of multiple
disturbance factors on tree and forest health should be consid-
ered to fully understand the impacts and potential management
strategies that can be implemented. Halofsky et al. (2020) high-
lighted interactions between fire and other disturbances, such
as drought and insect outbreaks, as potential primary drivers
of ecosystem change. Lombardero and Ayres (2011), studying
bark beetles and fires, concluded that post-fire disease or insect
spread not only depends on complex environmental factors,
but also relies on the spatial patterns of host tree recovery. He
et al. (2021), studying interactions between fire and sudden oak
death (Phytophthora ramorum), state that while individual for-
est disturbances are well studied, interactions between multiple
disturbances and changes in spatial patterns of forested land-
scapes are rarely quantified. While we observed insect impacts
on all species assessed, we did not evaluate interactions with A.
psidii. It must be noted that many species and ecosystems that
are being impacted by myrtle rust in Australia have not been
influenced by recent disturbance factors. Myrtle rust is a pri-
mary cause of disturbance (Carnegie et al. 2016; Pegg et al. 2017;
Meiklejohn et al. 2022; Stevenson et al. 2023).

Longer-term studies are required, including more extensive eco-
logical assessment, detailing changes in plant community com-
position and consequences of any change in species diversity.
Our studies have captured the decline of species over a relatively
short time. Unfortunately, our study could not provide enough
evidence to link fire intensity with disease severity. Due to the
extent and severity of the fires, opportunities to compare sites
with different burn intensities were very limited. One thing is
clear though: while forests are emerging post fire, myrtle rust
impacted the recovery of many Myrtaceae.
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