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Australian isolates behave similarly on cotton differentials 
in terms of pathogenicity to that of race 6 isolates found in 
South America, they do not share vegetative compatibility 
or genetic groupings (Davis et al. 1996; Wang et al. 2006, 
2010).

The first full genome sequence of F. oxysporum f. sp. 
vasinfectum was for strain NRRL 25433, also known as 
BBA 69050 (DeIulio et al. 2018); a race 7 strain originally 
isolated in China (Skovgaard et al. 2001). Further sequenc-
ing of other races or genotypes of F. oxysporum f. sp. vasin-
fectum have also been reported (Seo et al. 2020). Early 
efforts were made to sequence an Australian isolate of F. 
oxysporum f. sp. vasinfectum (isolate 25400, VCG01111) 
based on Illumina short read technology which allowed 
assembly of the mitochondrial genome (Brankovics et al. 
2017). Subsequently additional strains of F. oxysporum f. 
sp. vasinfectum, have been sequenced from a global collec-
tion. A suite of Australian strains originally isolated from 
cotton but without full demonstration of Koch’s postulates 
are also publicly available (Achari et al. 2023). However, 
these Australian strains are based on short read sequencing 
technology and the corresponding protein annotations are 
not available in NCBI. Herein, we report the near-complete 
genome sequences, with protein coding annotations, for two 
strains of Fusarium oxysporum originally isolated from cot-
ton, which differ in their pathogenicity towards cotton.

Introduction

In Australia, Fusarium wilt of cotton was first reported in 
Queensland during the 1992–1993 growing season (Koch-
man 1995). This production-limiting disease can be found 
in most cotton growing regions worldwide, however, in 
Australia, the strains of the causal agent, Fusarium oxyspo-
rum f. sp. vasinfectum are thought to have evolved locally 
(Wang et al. 2010). Four distinct genetic lineages of F. oxy-
sporum f. sp. vasinfectum have been reported (Skovgaard 
et al. 2001) which, Wang et al. (2010) expanded to a fifth 
genetic lineage, which contains two different vegetative 
compatibility groups and some non-pathogenic F. oxyspo-
rum strains. Each lineage contains one or more races defined 
by their responses to a differential set of cotton cultivars and 
other non-host plants (Halpern et al. 2020). Although the 
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Materials and methods

Strains

Fusarium oxysporum f. sp. vasinfectum strain SG1 (BRIP 
76769) and F. oxysporum BRF1 (BRIP 76768) are described 
elsewhere (Chen et al. 2024). Strains have been deposited 
in the Queensland Government Plant Pathology Herbarium 
with the accessions indicated in brackets in the previous sen-
tence. F. oxysporum f. sp. vasinfectum SG1 is fully virulent 
on cotton whereas F. oxysporum BRF1 is weakly virulent.

Culture conditions and DNA extraction.

Monoconidial cultures of F. oxysporum f. sp. vasinfectum 
SG1 and F. oxysporum BRF1 were grown on plates contain-
ing half-strength potato dextrose agar (Rahway, NJ, USA). 
Under sterile conditions, four mycelial plugs (1 cm2) were 
cut from each culture plate and used to inoculate 500 mL 
of minimal media broth, the recipe of which was described 
elsewhere (Solomon et al. 2004). After growth for 6 days 
at 26 °C, on an orbital shaker at 180 rpm, the culture was 
spun down in a centrifuge (5430R, Eppendorf, Hamburg, 
Germany) and washed twice in sterile distilled water. The 
mycelial pellets were uniformly ground into powder using a 
mortar and pestle under liquid nitrogen.

High molecular weight (HMW) DNA extraction was per-
formed as previously described (Debler et al. 2020). The 
following modifications were made. Starting material con-
sisted of 0.7 to 1.0 g of mycelia powder resuspended in 5 
mL of the CTAB based lysis buffer. RNase A and Proteinase 
K were sourced from New England Biolabs (Ipswich, MA, 
USA). Following the second 80% ethanol wash, the tubes 
containing the DNA pellet were centrifuged again to col-
lect any residual ethanol, which was subsequently removed 
manually using a pipette. Small fragment elimination using 
polyethylene glycol was not performed. The DNA pellet 
was resuspended in 0.1× TE buffer and was left to dissolve 
at 4°C overnight. DNA concentration was determined on 
a Nanodrop and a Qubit fluorometer (dsDNA broad-range 
assay, Thermo Fisher Scientific, Waltham, M.A. USA). 
HMW DNA (200 ng), was visually checked against a 1 kb 
ladder (N3232S, New England Biolabs, Ipswich, MA, 
USA) on a 1% agarose gel.

DNA sequencing

Each isolate was sequenced on one fifth of a PacBio SMRT 
flow cell. Libraries were prepared by the Australian Genome 
Research Facility (AGRF, Melbourne, Australia) using a 
standard PacBio gDNA library preparation kit. Sequencing 
yielded approximately 1 million HiFi reads per isolate, with 

a median read length greater than 15 Kbp to yield over 15 
Gbp of HiFi sequence data.

Read processing

Reads were downloaded from AGRF data server in bam for-
mat and converted to fastq format using SamToFastq (ver-
sion 3.1.1.0) (Picard Toolkit 2019) in the Galaxy compute 
environment (usegalaxy.org.au).

Mitochondrial genome assembly

The complete sets of reads were used to independently 
assemble the mitochondrial genomes of both isolates using 
MitoHiFi (version 3) (Uliano-Silva et al. 2023). Assembly 
was performed in the Galaxy compute environment with 
default parameters, utilising the mitochondrial genome of 
Fusarium oxysporum strain 19–385, originally isolated 
from Allium cepa (GenBank accession number OR601176), 
as a reference.

Nuclear genome assembly

Reads identified by MitoHiFi as having blast hits to the F. 
oxysporum reference mitochondrial genome were removed 
from the total read pool using custom filters in Galaxy. 
HiFi Adapter Filter (2.0.0) (Sim et al. 2022) was used to 
remove any remaining adapter-containing reads, followed 
by genome assembly using hifiasm (version 0.1.12) (Cheng 
et al. 2021) as part of a public workflow (PacBio HiFi 
genome assembly using hifiasm v2.1). The assemblies were 
screened for contaminants using the NCBI Foreign Con-
taminant Screen (version 0.5.4) (Astashyn et al. 2024). This 
process led to the removal of a large contig from the F. oxys-
porum f. sp. vasinfectum SG1 assembly, identified as bacte-
rial contamination. Genomes were analysed using BUSCO 
(Manni et al. 2021) (version 5.8.0) run in genome mode 
using the AUGUSTUS (Keller et al. 2011; Stanke et al. 
2008; Stanke and Waack 2003) gene predictor with Fusar-
ium graminearum as the species model for gene prediction 
against the Ascomycota reference lineage. Telomeres were 
detected with seqtk telo (version 1.4) (Li 2023) in Galaxy, 
with the minimum score threshold set to 100.

Comparison to F. oxysporum f. sp. lycopersici strain 
4287

Alignments to the F. oxysporum f. sp. lycopersici strain 
4287 genome was performed with nucmer (version 4.0.0) 
(Marçais et al. 2018), run with default parameters. The delta 
file parsed into the DotPrep python script (Aboukhalil 2018) 
followed by upload to the Dot website (Nattestad 2018) for 
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figure drawing. Screen shots were used to download the dot-
plots for final figure generation in Adobe Illustrator.

Gene structural annotation

Structural annotation of protein coding genes was per-
formed using BRAKER3 (Gabriel et al. 2024) pipeline in 
Galaxy. RNAseq data (SRR14147748 from F. oxysporum f. 
sp. cubense tropical race 4) was used to train the pipeline. 
RNAseq reads were quality- and length-filtered using Trim-
momatic 0.36.6 (Bolger et al. 2014), with the IlluminaClip 
step for TruSeq3 adapters, sliding window quality trimming 
using an average Phred score of 29 over 4 bases, and length 
trimming to retain reads of 40 bases or longer. Trimmed 
reads were aligned to the assemblies using HISAT2 (Kim 
et al. 2015) (version 2.2.1) with default parameters, except 
for setting the maximum intron length to 500 bases. Repeats 
in the genome were identified using RepeatModeler (Flynn 
et al. 2020) with default parameters (version 2.0.4) and 
masked using RepeatMasker (Smit et al. 2013) (version 
4.1.5), utilising RepeatModeler’s output as a custom repeat 
library. BRAKER3 (Gabriel et al. 2024) was run on the 
soft-masked genomes with the fungus option selected for 
the Genemark training step, alternative transcripts from evi-
dence were disabled, and the output was set to GFF3 format. 
The BRAKER3 output was parsed through AGAT (Dainat 
et al. 2024) (version 1.4.0) to resolve overlapping genes, 
merging overlapping loci and retaining the longest tran-
script isoform where alternative transcripts resulted from 
merging loci.

Phylogenetic analysis

The genomes of 120 F. oxysporum strains, including special 
forms on various plant hosts, as well as that of a single iso-
late of F. verticillioides (isolate 7600), were used to deter-
mine the phylogenetic placement of the cotton-associated 
F. oxysporum strains sequenced in this study. Custom bash 
scripts were used to add strain information in the FASTA 
headers of the genome sequences to allow downstream 
merging of alignments.

All 123 genomes were loaded into the Galaxy comput-
ing environment (GalaxyCommunity 2024) and subject to 
de novo gene annotation using AUGUSTUS (Stanke et al. 
2008; Keller et al. 2011; Stanke and Waack 2003) (version 
3.4.0), with Fusarium graminearum splicing models applied 
and only genes without internal stop codons reported. The 
resulting coding sequences were analysed using BUSCO 
(Manni et al. 2021) (version 5.8.0), with the lineage set to 
Ascomycota. The tabular BUSCO output was downloaded 
to a local macOS computer, where a custom bash script was 
used to filter each genome’s output, retaining only com-
plete, single-copy conserved genes. FASTA sequences that 

were complete and single-copy across all 123 genomes were 
extracted using the seqkit grep command (Shen et al. 2024) 
(version 2.9.0), aligned using MAFFT (Katoh et al. 2002) 
(version 7.520) using default settings, refined by removing 
poorly aligned regions with trimAl (Capella-Gutiérrez et al. 
2009) (version v1.5.rev0) using the gappyout setting. The 
edited alignments were then concatenated using the seqkit 
concat command. The custom bash script detailing the full 
processing workflow from BUSCO and AUGUSTUS out-
puts to the final alignment is provided in Supplementary 
File 1.

Phylogenetic reconstruction was performed using 
RAxML GUI version 2.0 (Edler et al. 2021). The best 
model, determined to be GTR + I + G4, was applied for the 
maximum likelihood tree search, with bootstrapping con-
ducted using 100 replicates. F. verticillioides isolate 7600 
was selected as the outgroup. The resulting phylogeny was 
imported into the interactive tree of life (Letunic and Bork 
2024) where branches corresponding to three single isolates 
(two banana pathogens and one ginger pathogen) that are 
yet to be published were removed prior to export to Adobe 
Illustrator for final figure preparation.

Detection of SIX gene homologs

The Fusarium oxysporum Effector Clustering (FoEC2) 
pipeline for the detection of the presence of SIX homo-
logs was run using the parameters -g < genome_folder > and 
-e < query_effector_fastafile> (Brenes Guallar et al. 2022). 
The Fusarium genomes were downloaded from NCBI’s 
genome portal and fourteen Fol-SIX nucleotide sequences 
taken from van Dam et al. (2016) were used as query. Clus-
tering in the pipeline was performed using default settings: 
binary distance matrix and average distance calculation.

TBLASTN search of F. oxysporum f. sp. lycopersici SIX 
protein sequences against the genomes of SG1 and BRF1 
was performed using the command line version of NCBI-
BLAST+ (version v2.12.0) using an e-value cut-off of 
1 × 10− 10.

Results and discussion

Mitochondrial genomes

The mitochondrial genomes were 48,054 bp for isolate F. 
oxysporum f. sp. vasinfectum SG1 and 51,696 bp for isolate 
F. oxysporum BRF1 (Fig. 1). Fusarium oxysporum mito-
chondrial genomes contain a highly conserved region and 
a large variable region, which exists in three major variants 
(Brankovics et al. 2017). The mitochondrial genome of F. 
oxysporum f. sp. vasinfectum SG1 closely resembled that of 
F. oxysporum f. sp. vasinfectum isolate 24500 (Brankovics 
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of conserved genes (compared to the Ascomycota). Most 
large contigs have telomeric repeats of 5’-TAACCC-3’. 
In both assemblies, a total of 23 regions were found with 
this repeat. In F. oxysporum f. sp. vasinfectum SG1, seven 
contigs had telomere sequences at both ends, while in the 
F. oxysporum BRF1 assembly, nine contigs had telomeric 
sequences at both ends.

Isolate F. oxysporum f. sp. vasinfectum SG1 had equiva-
lents for 10 of the 15 chromosomes in F. oxysporum f. sp. 
lycopersici strain 4287, whereas F. oxysporum BRF1 had 
equivalents for 11 (Fig. 2). The difference was due to strain 
F. oxysporum f. sp. vasinfectum SG1 lacking a homologue 
of F. oxysporum f. sp. lycopersici strain 4287 chromosome 
12 (Fig. 2A and B). Although chromosome 12 is considered 
part of the F. oxysporum core genome, it has been previously 
shown to be dispensable for vegetative growth (Vlaarding-
erbroek et al. 2016). Presumably the lack of chromosome 
12 in F. oxysporum f. sp. vasinfectum SG1, which is highly 
pathogenic towards cotton, indicates it is also dispensable 

et al. 2017), an Australian isolate (Chakrabarti et al. 2011), 
which contains a region known as large variable region 1.

Unlike F. oxysporum f. sp. vasinfectum SG1, the mito-
chondrial sequence of isolate F. oxysporum BRF1 contains 
large variable region 2, making it most closely related to 
F. oxysporum f. sp. conglutinans strain NRRL 54008 
(PHW808) (Brankovics et al. 2017). According to Brankov-
ics et al. (2017), large variable region 2 includes additional 
open reading frames with characteristics consistent with 
endonucleases commonly round in fungal mitochondrial 
genomes (Megarioti and Kouvelis 2020).

Nuclear genomes

The nuclear genomes were assembled primarily into chro-
mosome size contigs with N50 statistics consistent with 
chromosomes size pieces in the F. oxysporum species 
complex (Table 1). BUSCO analysis demonstrated both 
genomes were predicted to encode an almost complete set 

Table 1 Nuclear genome statistics F.r the two F.sarium oxysporum isolates sequenced in this study. FovSG1, F. oxysporum F. Sp. Vasinfectum. 
FoBRF1, F. oxysporum BRF1
Isolate Accession Locus tag Genome size 

(Mbp)
Count of large 
contigs (> 100 
Kbp)

Gene count BUSCO statistics N50 
(Mbp)

FovSG1 JBKAHI000000000 FOVSG1 54.5 14 15,560 98.9% complete
0.6% duplicated

4.3

FoBRF1 JBKAHJ000000000 FOBRF1 59.8 14 16,754 98.8% complete
0.9% duplicated

4.9

Fig. 1 Mitochondrial genomes of the two Australian cotton-derived 
Fusarium oxysporum isolates F. oxysporum f. sp. vasinfectum 
(FovSG1) and F. oxysporum (FoBRF1). Gene names were assigned 

by MitoHiFi with protein coding genes in purple and ribosomal RNA 
in light green. Dark green triangles that are unlabelled encode tRNAs
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Fig. 2 Whole-genome contig alignment 
of (A) Fusarium oxysporum f. sp. vasin-
fectum isolate SG1 (FovSG1) and (B) 
F. oxysporum isolate BRF1 (FoBRF1) 
to each of the 15 chromosomes of the 
F. oxysporum f. sp. lycopersici strain 
4287 (Fol4287) genome. (C) Alignment 
of FoBRF1 to FovSG1 with GenBank 
accessions indicated. Unique align-
ments are shown in blue (forward) and 
green (reverse complement). Repetitive 
alignments are shown in orange. Note 
the order of the FovSG1 and FoBRF1 
contigs are not the same in each plot
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for plant infection. Chromosome 12 has also been described 
as a ‘fast-core’ chromosome due to its characteristics of 
both core- and dispensable-chromosomes within the F. oxy-
sporum species complex (Fokkens et al. 2018).

Phylogenetic analysis

A total of 123 genomes, including the two sequenced in 
this study, were used to construct a phylogeny. The analysis 
included a total of 1.37 × 106 nucleotide sites, with nearly 
10% of sites showing variation across the alignment. F. oxy-
sporum f. sp. vasinfectum SG1 grouped with several other 
isolates originally obtained from cotton plants in Australia, 
while F. oxysporum BRF1 clustered within a distinct lin-
eage just outside a group of banana pathogens that includes 
strains classified as Race 1, Subtropical race 4 and Tropical 
Race 4 isolates of F. oxysporum f. sp. cubense (Fig. 3). Both 
the Australian isolates sequenced here, and other Australian 
isolates retrieved from NCBI, appear distinct to other iso-
lates from cotton-associated isolates from elsewhere in the 
world, consistent with previous findings (Wang et al. 2010).

Presence of secreted in xylem effectors

.
The genomes of both F. oxysporum BRF1 and F. oxys-

porum f. sp. vasinfectum were analysed using the F. oxy-
sporum effector clustering 2 pipeline (Brenes Guallar et 
al. 2022). Analysis was concentrated on the secreted in 
xylem (SIX) effectors originally isolated from F. oxys-
porum f. sp. lycopersici. F. oxysporum f. sp. vasinfectum 
isolate SG1 encoded two copies of both SIX6 and SIX11, 
and one copy of SIX13 and SIX14. There was also a weak 
tBLASTn hit to SIX4, only detected using tBLASTn and 
not the full clustering pipeline. All eight of these genes 
were encoded on a single contig (JBKAHI010000014.1), 

which is a repeat rich contig absent from F. oxysporum 
BRF1 (Fig. 2C). F. oxysporum BRF1 was not predicted to 
encode any of the SIX effectors. Analysing the presence/
absence of SIX genes encoded by two genomes sequenced 
here in the context of a suite of other F. oxysporum iso-
lates revealed that the profile of SIX genes in F. oxyspo-
rum f. sp. vasinfectum SG1 was shared across all of the 
Australian cotton derived isolates (with the exception of 
BRF1), but highly distinct to other cotton infecting iso-
lates (Fig. 4). The absence of SIX gene homologues in F. 
oxysporum BRF1 was similar to another non-plant-patho-
genic isolates (Fo47), the clinical isolate (NRRL 32931) 
and to the tomato crown root pathogen F. oxysporum f. sp. 
radicis-lycoperscici (26381) known to be devoid of SIX 
gene homologues (Jelinski et al. 2017). Another strain 
from cotton (LA3B) (Seo et al. 2020) also lacked any SIX 
genes but it is unclear if this strain has been demonstrated 
to be pathogenic towards cotton in artificial inoculation 
experiments. The groupings based on the SIX gene pro-
files are incongruent with the broader phylogeny (Fig. 3) 
as expected for gene involved in host interactions in the 
F. oxysporum species complex where host specificity is 
known to have polyphyletic origins.

Conclusion

The sequence data presented here represent a foundational 
resource for studying cotton-associated F. oxysporum from 
Australia which are distinct compared to those from other 
geographic regions both in terms of basal genome and effec-
tor profile. More importantly, future comparisons between 
the two isolates here, which differ drastically in their abil-
ity to cause classical Fusarium wilt symptoms (Chen et al. 
2024), will be crucial for understanding of Fusarium wilt 
in cotton.
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Fig. 3 Phylogenetic placement of the two isolates of Fusarium 
oxysporum isolated from cotton (marked with green boxes). The 
phylogeny was based upon the aligned nucleotide sequence of 810 
conserved genes. Where available, the host of origin, is indicated, 
along with the race designations for cotton isolates (marked with 
magenta boxes) where this information could be found in databases 
or publications. Branch support based on bootstrap analysis (per-
centage) is indicated by boxed numbers
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if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  v e c  o m m o  n s .  o 
r g  / l i c e n s e s / b y / 4 . 0 /.
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