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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Puccinia spegazzinii shows high potential 
as a biocontrol agent for Mikania vine.

• The potential distribution of Mikania 
and the rust was modelled using 
MaxEnt.

• The models achieved excellent predic
tion performance for both species (AUC 
> 0.92)

• Current climate overlapping suitable 
areas: Mikania (25.2%), P. spegazzinii 
(100%)

• Future climate overlapping suitable 
areas: Mikania (11.6 % − 15.1 %), 
P. spegazzinii (100 %)
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A B S T R A C T

Research on the potential distribution of invasive plants and their biological control agents under climate change 
is critical for informing strategies in invasive species management. The rust fungus Puccinia spegazzinii shows 
significant potential as a biological control agent for the invasive weed Mikania micrantha. The MaxEnt 
(Maximum Entropy) model was used to simulate the distribution of M. micrantha and P. spegazzinii under current 
and future climate scenarios. The models achieved excellent prediction performance, with M. micrantha and 
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Climate change scenarios
China

P. spegazzinii having area under the curve values of 0.921 and 0.978 respectively, and true skill statistics values of 
0.886 and 0.902 respectively. Precipitation is the primary factor influencing the distributions of M. micrantha, 
while P. spegazzinii is determined by both temperature and precipitation. The suitable areas for the two species 
are concentrated in southern China, with M. micrantha exhibiting broader adaptability compared to P. spegazzinii. 
Under future climate scenarios, the suitable areas for M. micrantha in China will expand northward, with a 
maximum projected growth rate of 84.6 % in the 2070 s, whereas P. spegazzinii exhibits a contracting trend (with 
a projected reduction of 40.8 % in the 2050 s). Under the current climate scenario, the overlapping suitable areas 
between the two species account for 25.2 % of the total suitable area for M. micrantha and 100 % of that for 
P. spegazzinii and both remain relatively stable under future climate scenarios. This work can provide guidance 
for the application of biological control, and serves as a valuable reference for developing early warning and 
management response strategies for invasive species in China.

1. Introduction

Climate change, due to altering temperature patterns and precipi
tation regimes, and increasing frequency of extreme weather events, 
may lead to significant changes in the survival, reproduction, and hab
itats of plant species (Comes and Kadereit, 1998; McCarty, 2001; Kelly 
and Goulden, 2008). Consequently, both local and global patterns of 
species distribution are affected, reshaping entire ecosystems (Mooney 
et al., 2009; Malhi et al., 2020). The ongoing changes in ecosystem 
structure will further exacerbate the vulnerability of ecosystems, 
increasing the risk of species extinction, especially in ecologically sen
sitive regions (Stork et al., 2009; Gao et al., 2022). More critically, 
climate change and ecosystem disturbances may facilitate the spread of 
invasive plants that are adapted to unstable and disturbed environ
ments, allowing them to occupy a broader range of habitats (Hellmann 
et al., 2008; Rahel and Olden, 2008; Bell et al., 2021). This, in turn, poses 
a significant threat to biodiversity, as invasive species often suppress or 
even replace native plants, leading to a decline in species richness 
(Linders et al., 2019; Shen et al., 2024). Invasive species can also impair 
key ecosystem functions such as nutrient cycling and primary produc
tivity (Thuiller et al., 2005), and can ultimately pose direct threats to 
human societies, and agriculture and urban environments (Paini et al., 
2016; Shackleton et al., 2019).

Mikania micrantha Kunth (Asteraceae), commonly known as mile-a- 
minute or mikania vine, is a highly invasive climbing vine, native to 
Central and South America (Day et al., 2016). This plant species is 
considered one of the top 10 worst weeds in the world and now is widely 
present in the Pacific Islands, tropical Asia, the Indian Ocean Islands, 
and Florida, USA (Zhang et al., 2004; Manrique et al., 2011; Day et al., 
2012, 2016). Mikania micrantha can invade a wide range of habitats, 
such as various agroecosystems, natural ecosystems, disturbed areas, 
riverbanks, and roadsides (Zhang et al., 2004; Willis et al., 2008; Shen 
et al., 2013; Day et al., 2016). Due to its high rates of sexual reproduc
tion, adaptability, capacity for compensation, and rapid growth (Lian 
et al., 2006; Wang et al., 2008; Shen et al., 2012, 2021), M. micrantha has 
caused significant negative ecological and economic impacts on forest 
vegetation, plantations, and crops in invaded habitats, resulting in sig
nificant economic losses, reductions in native species diversity, and 
disruptions to ecosystem services (Ismail and Mah, 1993; Willis et al., 
2008; Day et al., 2012; Shrestha and Dangol, 2014; Shen et al., 2015a; 
Chen et al., 2024).

As a result of its high reproductive potential and its ability to grow 
from stem fragments, management efforts against M. micrantha may fail 
or may be largely ineffective if efforts are not properly planned and/or 
implemented (Zhang et al., 2004; Day et al., 2016, Clements et al., 
2019). Various methods such as manual and mechanical control, 
chemical and cultural control practices, as well as classical biological 
control have been widely used (Shen et al., 2007; Ellison et al., 2008; 
Shen et al., 2015b, 2020; Clements et al., 2019; Day and Riding, 2019). 
The reliance on chemical measures is not sustainable due to its high cost, 
need to repeat applications, and potential harm to the environment and 
human health. Manual or mechanical control is labour intensive and 
new infestations may arise if all fragments are not destroyed (Day et al., 

2016; Clements et al., 2019).
Compared with mechanical or chemical control methods, cultural 

control using Cuscuta campestris Yuncker (Shen et al., 2007) and sweet 
potato (Ipomoea batatas [L.] Lam.) (Shen et al., 2015b, 2021) is 
considered more secure, ecological and sustainable for M. micrantha 
management. However, the low safety of C. campestris on other plants, 
inherently limits its potential (Costea and Tardif, 2006). Similarly, 
excessive cultivation of sweet potato may pose a burden on soil and 
agricultural systems (Onunka et al., 2011).

In contrast, biological control is one of the most effective approaches 
to help manage many invasive species (Winston et al., 2014). Biological 
control is considered environmentally-friendly due to the use of host 
specific organisms and is sustainable as agents remain in the field in 
equilibrium with the target weed (McFadyen, 1998). The rust fungus 
Puccinia spegazzinii de Toni (Pucciniaceae), which shares the same native 
range as M. micrantha, is a highly specific and effective biological control 
agent that targets M. micrantha. Puccinia spegazzinii can significantly 
slow plant growth, reduce reproductive capacity, and ultimately cause 
plant mortality of M. micrantha, through the infection of leaves, petioles, 
and stems (Barreto and Evans, 1995; Day et al., 2013; Day and Riding, 
2019). Therefore, P. spegazzinii has been intentionally released into nine 
countries or regions: India, China, Taiwan, Papua New Guinea (PNG), 
Fiji, Vanuatu, Guam, Palau, and the Cook Islands, establishing in five of 
these, where it has contributed to the significant reduction of 
M. micrantha populations in some areas. Moreover, there have been no 
negative impacts on other plant species (Day et al., 2013; Winston et al., 
2014; Day and Bule, 2016). It has successfully established in Taiwan of 
China but has not established on mainland China, despite being intro
duced in 2006 and 2013 (Day et al., 2013; Shen et al., 2018).

In order to effectively combat the invasion of M. micrantha in 
mainland China, we plan to re-introduce P. spegazzinii. However, the 
locations of suitable areas for P. spegazzinii in China remain unclear. 
Therefore, it is crucial to predict and assess the potential suitable areas 
for P. spegazzinii and M. micrantha to determine whether there are suf
ficient shared suitable areas for the field release of P. spegazzinii to 
suppress M. micrantha under current and future climate scenarios.

Ecological Niche Models (ENMs) quantify the correlation between 
species occurrence records and various environmental variables, 
thereby describing the ecological niche or habitat suitability of a species 
(Zimmermann et al., 2010). Commonly used ecological niche models 
include Genetic Algorithm for Rule Set Production (GARP) (Haase et al., 
2021), BIOCLIM (Booth et al., 2014), Random Forest (RF) (Belgiu and 
Drăguţ, 2016), and Maximum Entropy (MaxEnt) (Merow et al., 2013). 
Among these, the MaxEnt model is most widely applied by researchers 
due to its intuitive modeling approach, high predictive accuracy, ease of 
use, and strong interpretability (Phillips et al., 2006; Phillips and Dudík, 
2008). It has been extensively used in various fields, including the 
prediction of potential distributions of invasive species (Padalia et al., 
2014; Wan et al., 2017; Shen et al., 2024) and fungi (Yuan et al., 2015) 
under climate change scenarios (Thapa et al., 2018; Shabani et al., 2020; 
Alkhalifah et al., 2023), as well as the most appropriate regions in which 
to release biological control agents to control their target weeds in their 
introduced range. For instance, Trethowan et al. (2011) used MaxEnt to 
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predict what areas in South Africa are the most suitable to field release 
two new biological control agents against pompom weed, Campulocli
nium macrocephalum (Less.) DC. (Asteraceae), while Minghetti et al. 
(2024) used MaxEnt to evaluate climatic suitability of regions in 
Australia of Engytatus passionarius Minghetti, Maestro and Dellapé 
(Heteroptera: Miridae) and its target weed stinking passionflower, Pas
siflora foetida L. (Passifloraceae) and the degree of overlap of the two 
species.

In this study, drawing on distribution records of M. micrantha and 
P. spegazzinii collected during fieldwork in various countries, along with 
global network data, MaxEnt models were used to predict the potential 
distribution of the two species in China under current and future climate 
scenarios. We then assessed the most promising range and its response to 
climate change for the field release of P. spegazzinii, aiming to develop 
more effective biological control measures to mitigate the impact of 
M. micrantha in China.

2. Materials and methods

2.1. Data collection and processing

We used the Global Positioning System (GPS) during fieldwork to 
collect 386 distribution records of M. micrantha in southwest China and 
531 records of P. spegazzinii in Papua New Guinea, Vanuatu and Fiji, 
where the rust had been deliberately released and later spread. In 
addition, we searched the Global Biodiversity Information Facility (htt 
ps://www.gbif.org/), other databases and the literature for additional 
records, particularly in other countries. From the original 6795 records 
for M. micrantha (GBIF.org (02 August (2024a)) and 98 records for 
P. spegazzinii (GBIF.org (02 August (2024b)) we downloaded from the 
GBIF website using basic filtering criteria, we then removed duplicate 
and erroneous coordinates, verified the presence of corresponding 
environmental variable data at occurrence locations, and applied 
empirical criteria to exclude biogeographically implausible records, to 
obtain 3,705 records of M. micrantha (2,446 within China, with the 
majority being in Taiwan) and 34 records of P. spegazzinii from around 
the world. To these records, we added a further 123 records for 
M. micrantha (All in Hainan, China) and 36 records for P. spegazzinii (All 
in Taiwan, China) from the Chinese Virtual Herbarium (https://www. 
cvh.ac.cn/), and previously published research papers. Based on these 
combined data, a global geographical distribution map of M. micrantha 
and P. spegazzinii was created (Fig. 1).

To reduce spatial sampling bias and mitigate pseudo-replication, we 
applied the remove duplicate occurrences function in ENMTools 
(Warren et al., 2010) by retaining a single representative point per 

2.5′×2.5′ grid cell. This resulted in 2,033 M. micrantha points and 
313P. spegazzinii points being selected for MaxEnt modeling.

2.2. Acquisition and selection of environmental variables

The environmental variables data were downloaded from WorldClim 
(https://worldclim.org/), including one topographic factor (elevation) 
and 19 climate factors for three periods: the current period 
(1970–2000), and the future periods of the 2050 s (2041–2060) and the 
2070 s (2061–2080). The climate data for future periods were selected 
from the Beijing Climate Center Climate System Model (BCC-CSM2-MR), 
a model participating in the sixth phase of the Coupled Model Inter
comparison Project (CMIP6). This model has demonstrated strong per
formance in capturing regional climate variability and extremes (Wu 
et al., 2019), and it has been widely applied in species distribution 
studies to project current and future climate scenarios for both global 
and Chinese regions (Ji et al., 2024). Three Shared Socio-economic 
Pathways (SSPs) scenarios were chosen: SSP126, SSP245 and SSP585, 
representing low, medium, and high concentration emission scenarios of 
greenhouse gases. The spatial resolution of all environmental variables 
was set at 2.5 arc-minutes, a scale recognized for its precision and 
computational efficiency in continental-scale species distribution 
modeling studies (Zhao et al., 2024).

To mitigate multicollinearity effects that risk overfitting and 
compromised predictive accuracy (Stuhldreher and Fartmann, 2018), 
we conducted Pearson correlation analysis on 20 environmental vari
ables using SPSS 27 (Supplementary Fig. 1). Predictor selection followed 
three steps: (1) ranking predictors by contribution rates via MaxEnt with 
default settings; (2) flagging strongly correlated pairs (|r| > 0.7); and (3) 
iteratively eliminating the lower-impact variable from each pair. This 
yielded eight variables for M. micrantha and four for P. spegazzinii in the 
final predictive models (Table 1).

2.3. Optimization of model parameters and model building

The MaxEnt model is sensitive to sampling biases and prone to 
overfitting, and modeling with the default parameters can lead to un
reliable predictions (Merow et al., 2013). The predictive performance of 
the MaxEnt model is primarily influenced by two parameters: Feature 
Combination (FC) and Regularization Multiplier (RM) (Elith et al., 2011; 
Radosavljevic and Anderson, 2014). In this study, we optimized the 
parameters using the kuenm package (Cobos et al., 2019) in R v3.6.3. 
The process involves creating candidate models based on various FC and 
RM combinations, and selecting the optimal model based on statistical 
significance and an omission rate threshold of 5 % (Cobos et al., 2019).

Fig. 1. Distribution of known sites of Mikania micrantha and Puccinia spegazzinii in the world.
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For each species, 232 candidate models were created with 29 FCs (L, 
Q, P, T, H, LQ, LP, LT, LH, QP, QT, QH, PT, PH, TH, LQP, LQT, LQH, LPT, 
LPH, QPT, QPH, QTH, PTH, LQPT, LQPH, LQTH, LPTH, LQPTH) derived 
from five feature types (L = Linear, Q = Quadratic, P = Product, T =
Threshold, and H = Hinge Feature) and eight RM values (0.5–4 with an 
interval of 0.5). Model selection was based on the Akaike minimum 
information criterion (AICc) values, where the optimal parameter 
combination corresponded to the model with the lowest AICc (Delta 
AICc = 0) (Cobos et al., 2019; Li et al., 2024; Miao et al., 2024; Shen 
et al., 2024).

2.4. Model operation and accuracy evaluation

To improve simulation accuracy, 75 % of the distribution points were 
randomly selected as the training data set for modeling, while the 
remaining 25 % were used as the test data set to validate the model. The 
calculations were repeated 10 times, with the repetition category set as a 
subsample, and the results were averaged. The maximum number of 
iterations for the model was set to 500, and the maximum number of 
background points was 10,000. The maximum number of iterations for 
the model was set to 500, and the maximum number of background 
points was 10,000. The background extent was defined by the global 
spatial coverage of all environmental variable layers used in this study, 
following the default MaxEnt protocol that randomly samples back
ground points from the full extent of the provided environmental data 
(Phillips et al., 2006). As our study aims to model the species’ funda
mental niche across its global potential distribution, we did not apply 
any additional spatial constraints (e.g., species’ native range polygons or 
biogeographic realms).

The jackknife test was used to evaluate the contributions of envi
ronmental variables and identify the dominant factors affecting the 
distribution of M. micrantha and P. spegazzinii. We used the area under 
the curve (AUC) value of the receiver operating characteristic (ROC) to 
test the sensitivity and specificity of the model (Bowers and Zhou, 2019; 
Gebrewahid et al., 2020). When the AUC value is between 0.8 and 0.9, 
the model performs well. If the AUC value exceeds 0.9, the model is 
nearly perfect (Sun et al., 2020; Luu et al., 2021). In addition, the true 
skill statistics (TSS) was introduced as a supplementary metric, which is 
significantly correlated with the AUC statistic (Allouche et al., 2006). 
We selected maxTSS (maximum sum of sensitivity and specificity) as the 
threshold and calculated the average TSS of the 10 repeated results of 
the MaxEnt model (Liu et al., 2016). For the TSS value, between 0.6 and 
0.8 is considered useful, and values above 0.8 are excellent (Gama et al., 
2017).

2.5. Classification of suitable areas

The ASCII data generated by the MaxEnt model were imported into 
ArcGIS v10.4 and converted to raster data. In order to maintain con
sistency with previous research on potential distribution of M. micrantha 
in China (Zhang et al., 2011), the global potential distribution of 
M. micrantha and P. spegazzinii were classified by the Jenks natural 
breaks method (Brewer and Pickle, 2002) as follows: for M. micrantha, 
unsuitable (0 ≤ P ≤ 0.08), slightly suitable (0.08 < P ≤ 0.24), moder
ately suitable (0.24 < P ≤ 0.40), and highly suitable (0.40 < P ≤ 1); and 
for P. spegazzinii, unsuitable (0 ≤ P ≤ 0.06), slightly suitable (0.06 < P ≤
0.22), moderately suitable (0.22 < P ≤ 0.41), and highly suitable (0.42 
< P ≤ 1). The Jenks natural break method was chosen for this study 
primarily because it is a widely used technique for partitioning data into 
distinct classes, especially for spatial data. It optimizes the natural 
grouping of data points and provides a clear visualization of the model’s 
output, making it easier to interpret spatial patterns of species distri
bution. This method is commonly applied in species distribution 
modeling studies, as it effectively reflects the natural clusters within the 
data (Zhang et al., 2011; Shen et al, 2024; Wang et al., 2024). Subse
quently, their potential distribution in China was extracted for further 
analysis.

2.6. Changes in distribution and overlapping suitable areas

The MaxEnt-derived suitability raster data for M. micrantha and 
P. spegazzinii were classified into binary outputs (suitable vs. unsuitable 
areas) with thresholds of 0.08 and 0.06, respectively. Using the Python- 
based SDMtoolboxGIS package (Brown et al., 2017) in ArcGIS, the 
geographic distribution changes and the overlapping suitable areas for 
the two species under current and future climate scenarios were calcu
lated and analyzed.

2.7. Multimvariate environment similarity surface (MESS) analysis

The MESS was employed to quantify climatic anomalies across 
temporal scales. It calculates similarity (S) values by comparing local
ized climatic parameters with baseline reference conditions during 
defined time intervals. Positive S-values (S > 0) indicate environmental 
congruence (higher values = greater consistency), while negative values 
(S < 0) reflect anomalies where parameters exceed historical thresholds 
(Elith et al., 2010). This operation was implemented by using the 
“density. tools. Novel” tool in the maxent.jar file.

3. Results

3.1. Optimal model and accuracy evaluation

When the model was set to default parameters (FC = LQPTH and RM 
= 1), Delta AICc was 149.69 for M. micrantha, and 48.26 for 
P. spegazzinii. However, with optimized parameters (FC = LQH and RM 
= 0.5 for M. micrantha; FC = LQP and RM = 2 for P. spegazzinii), Delta 
AICc was 0 for both species (Table 2). This optimization corresponded to 
28 % and 41 % reductions in omission rates for M. micrantha and 
P. spegazzinii, respectively, demonstrating enhanced predictive fit to 
known occurrence data. Using the optimal parameters, the model 

Table 1 
Environmental variables used in the model prediction for Mikania micrantha and 
Puccinia spegazzinii.

Mikania micrantha Puccinia spegazzinii

Field Description Unit Field Description Unit

Bio2 Mean diurnal 
temperature range

℃ Bio2 Mean diurnal 
temperature range

℃

Bio7 Temperature annual 
range

℃ Bio7 Temperature annual 
range

℃

Bio8 Mean temperature of 
wettest quarter

℃ Bio12 Annual precipitation Mm

Bio11 Mean temperature of 
coldest quarter

℃ Bio18 Precipitation of 
warmest quarter

Mm

Bio12 Annual precipitation mm – – –
Bio17 Precipitation of driest 

quarter
mm – – –

Bio18 Precipitation of 
warmest quarter

mm – – –

Bio19 Precipitation of coldest 
quarter

mm – – –

Table 2 
Evaluation results of the MaxEnt model under different parameter settings.

Species Setting FC RM Delta 
AICc

Omission rate at 
5 %

Mikania 
micrantha

Default LQPTH 1 149.69 0.069
Optimized LQH 0.5 0 0.050

Puccinia 
spegazzinii

Default LQPTH 1 48.26 0.064
Optimized LQP 2 0 0.038
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achieved average AUC values of 0.921 ± 0.002 for M. micrantha and 
0.978 ± 0.002 for P. spegazzinii (Supplementary Fig. 2), along with 
average TSS values of 0.886 ± 0.005 for M. micrantha and 0.902 ± 0.022 
for P. spegazzinii (Table 3), indicating that the prediction results are 
accurate and reliable.

3.2. Major environmental variables influencing the distribution of 
Mikania micrantha and Puccinia spegazzinii

The jackknife test (Supplementary Fig. 3) and variable contribution 
analysis (Table 4) identified annual precipitation (Bio12; 65.5 %) and 
precipitation of warmest quarter (Bio18; 21.3 %) as the major factors 
governing the potential distribution of M. micrantha, collectively ac
counting for 86.8 % of explanatory power. For P. spegazzinii, tempera
ture annual range (Bio7; 47 %) and precipitation of warmest quarter 
(Bio18; 45.7 %) emerged as key determinants, jointly explaining 92.7 % 
of distribution constraints.

Environmental variables are considered suitable for species survival 
when their occurrence probability exceeds 0.5 (Huang et al., 2020). 
Based on univariate modeling of major environmental variables 
(Supplementary Fig. 4), the ranges of factors suitable for the survival of 
M. micrantha are as follows: annual precipitation between 1648 and 
3847 mm, and precipitation of warmest quarter greater than 654 mm. 
For P. spegazzinii, the ranges are: temperature annual range lower than 
11 ◦C, and precipitation of warmest quarter between 707 and 1803 mm.

3.3. The potential distribution of Mikania micrantha and Puccinia 
spegazzinii in China under the current climate scenario

Under the current climate scenario, the potential suitable areas for 
M. micrantha are concentrated in southern China (Fig. 2a), with a total 
suitable area of 111.55 × 104 km2, accounting for 11.6 % of China’s land 
area. These areas cover Taiwan, Hong Kong, Hainan, Guangdong, 
Guangxi, Yunnan, Fujian, Jiangxi, Hunan, Guizhou, Sichuan, Chongq
ing, Tibet, and Zhejiang. The highly, moderately, and slightly suitable 
areas account for 38.4 %, 18.1 %, and 43.5 % of the total suitable area, 
respectively. The highly suitable area is 42.83 × 104 km2, predomi
nantly distributed in Hainan, Hong Kong, most parts of Taiwan, 

Guangdong, and Guangxi, as well as southern Yunnan, with small por
tions in southeastern Tibet and Fujian.

The suitable areas for P. spegazzinii are similarly concentrated in 
southern China (Fig. 2b). However, its overall suitability and distribu
tion area remain significantly lower compared to M. micrantha. The total 
suitable area is 28.21 × 104 km2, accounting for 2.9 % of China, 
covering Taiwan, Hong Kong, Hainan, Guangdong, Guangxi, Yunnan 
and Tibet. The highly, moderately, and slightly suitable areas account 
for 5.7 %, 9.8 %, and 84.3 % of the total suitable area, respectively. The 
highly suitable area is just 3.24 × 104 km2 and distributed in Taiwan. In 
mainland China, the majority of suitable areas are classified as low 
suitability, with scattered moderately suitable areas distributed across 
Hong Kong, southern Guangxi and Guangdong, southeastern Tibet and 
Yunnan, and the central and northeastern parts of Hainan. Additionally, 
extremely limited highly suitable areas are concentrated in southern 
Guangxi.

3.4. The potential distribution and range change of Mikania micrantha 
and Puccinia spegazzinii in China under different future climate scenarios

Compared to the current climate scenario, the potential suitable 
areas of M. micrantha in China gradually expand under future climate 
scenarios (Fig. 3 and Supplementary Fig. 5a), extending northward 
entirely based on current distribution range, with no contraction 

Fig. 2. Geographic distribution of potential suitable areas for Mikania micrantha and Puccinia spegazzinii in China under the current climate scenario.

Table 3 
Average TSS of 10 iterations of the MaxEnt model results.

Models TSS of Mikania micrantha TSS of Puccinia spegazzinii

Species_0 0.883 0.877
Species_1 0.892 0.892
Species_2 0.884 0.942
Species_3 0.895 0.879
Species_4 0.887 0.892
Species_5 0.883 0.886
Species_6 0.887 0.896
Species_7 0.885 0.899
Species_8 0.876 0.930
Species_9 0.888 0.923
Mean 0.886 0.902

W. Zhang et al.                                                                                                                                                                                                                                  Biological Control 204 (2025) 105754 

5 



observed in any regions. Under SSP126, the total suitable area in the 
2050 s and 2070 s is 141.97 × 104 km2 and 181.43 × 104 km2, 
respectively. SSP245 shows 158.48 × 104 km2 and 185.11 × 104 km2 for 
the same periods, while SSP585 shows 144.01 × 104 km2 and 205.97 ×
104 km2. The most significant expansion occurs under SSP585 in the 
2070 s, with the total suitable area increasing by 94.92 × 104 km2 (84.6 
%), and the highly suitable area increasing by 33.98 × 104 km2 (79.3 %) 
(Fig. 5 and Supplementary Fig. 6a).

Under future climate change, the suitable areas of P. spegazzinii in 
China are projected to exhibit a declining trend, while the highly suit
able habitats remain consistently concentrated in Taiwan (Fig. 4 and 
Supplementary Fig. 5b). Under SSP126, the total suitable area in the 
2050 s and 2070 s is 18.49 × 104 km2 and 25.00 × 104 km2, respectively. 
SSP245 shows 23.92 × 104 km2 and 25.59 × 104 km2, while SSP585 
indicates 21.14 × 104 km2 and 23.98 × 104 km2. Of these scenarios, the 
contraction is most notable in the 2050 s under SSP126, with the total 
suitable area decreasing by 9.62 × 104 km2 (34.2 %) and the slightly 

suitable area declining by 9.62 × 104 km2 (40.8 %), primarily in 
mainland China (Fig. 6 and Supplementary Fig. 6b).

3.5. Analysis of MESS

Figs. 7 and 8 show that no climate anomaly areas (S ≥ 0) were 
identified within the potential distribution of M. micrantha and 
P. spegazzinii under all future climate scenarios, indicating that the 
model-predicted environmental conditions did not exceed the climatic 
space of their historical distribution ranges, with low extrapolation risks. 
Under all scenarios (SSP126-2050 s, SSP126-2070 s, SSP245-2050 s, 
SSP445-2070 s, SSP585-2050 s, and SSP585-2070 s), the environmental 
similarity values for distribution points of M. micrantha and P. spegazzinii 
in China remained positive. The average similarity values for 
M. micrantha distribution points were 1.35, 1.02, 1.77, 1.17, 1.43, and 
1.28 respectively, while those for P. spegazzinii were 0.34, 0.23, 0.40, 
0.24, 0.22, and 0.33. The relatively low average similarity values at 

Fig. 3. Geographic distribution of potential suitable areas for Mikania micrantha in China under different future climate scenarios.

Table 4 
Contribution rate and permutation importance of environmental variables for Mikania micrantha and Puccinia spegazzinii.

Mikania micrantha Puccinia spegazzinii

Environmental variable Contribution rate (%) Permutation importance (%) Environmental variable Contribution rate (%) Permutation importance (%)

Bio12 65.5 8.8 Bio7 47 90.7
Bio18 21.3 3.2 Bio18 45.7 8.5
Bio11 9.7 62.4 Bio12 4.1 0.7
Bio17 1 1.4 Bio2 3.2 0
Bio2 0.9 2.5 – – –
Bio7 0.5 14.6 – – –
Bio19 0.5 4.2 – – –
Bio8 0.4 3.1 – – –
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distribution points of both species suggest that the climatic conditions in 
China already lie at the edge of their historical environmental tolerance 
ranges, and minor future climate fluctuations may decrease the stability 
of suitable areas.

3.6. Overlapping suitable areas between Mikania micrantha and Puccinia 
spegazzinii under different climate scenarios

Under the current climate scenario (Fig. 9 and Supplementary 
Fig. 7), the overlapping suitable area between M. micrantha and 
P. spegazzinii is 28.12 × 104 km2, representing 25.2 % of the total 

Fig. 4. Geographic distribution of potential suitable areas for Puccinia spegazzinii in China under different future climate scenarios.

Fig. 5. Changes in the geographic distribution of potential suitable areas for Mikania micrantha in China under different future climate scenarios.
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potential suitable area for M. micrantha and 100 % for P. spegazzinii. It is 
primarily concentrated in Hainan and Taiwan, as well as the southern 
regions of Guangdong, Guangxi, and Yunnan, with a small portion 

extending to southeastern Tibet and southwestern Yunnan. These 
overlapping suitable areas not only indicate regions suitable for the 
establishment of P. spegazzinii, but also highlights its potential as an 

Fig. 6. Changes in the geographic distribution of potential suitable areas for Puccinia spegazzinii in China under different future climate scenarios.

Fig. 7. Multivariate environmental similarity surface (MESS) for Mikania micrantha under different future climate scenarios.
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effective biological control agent to curb the spread of M. micrantha.
Under future climate scenarios, the overlapping suitable areas be

tween M. micrantha and P. spegazzinii show a decreasing trend compared 

to the current period (Fig. 10 and Supplementary Fig. 7). Across all 
scenarios (SSP126-2050 s, SSP126-2070 s, SSP245-2050 s, SSP445- 
2070 s, SSP585-2050 s, and SSP585-2070 s), the overlapping suitable 

Fig. 8. Multivariate environmental similarity surface (MESS) for Puccinia spegazzinii under different future climate scenarios.

Fig. 9. Geographic distribution of overlapping suitable areas for Mikania micrantha and Puccinia spegazzinii.
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areas are 18.49 × 104 km2, 25.00 × 104 km2, 23.92 × 104 km2, 25.59 ×
104 km2, 21.14 × 104 km2, and 23.98 × 104 km2, respectively, ac
counting for 13.0 %, 13.8 %, 15.1 %, 13.8 %, 14.7 %, and 11.6 % of the 
total suitable area for M. micrantha during the corresponding periods. 
Notably, under all scenarios (including the current period), the over
lapping suitable areas completely align with the suitable areas of 
P. spegazzinii, indicating that the pest control efficacy of P. spegazzinii 
inherently focuses on M. micrantha’s invaded regions, without requiring 
additional adjustments to target areas for prevention and control.

4. Discussion

The results of this study are consistent with Zhang et al. (2011) and 
Tu et al. (2021), who predicted that the highly suitable areas of 
M. micrantha in China would primarily be located in southern regions, 
including Taiwan, Hainan, Hong Kong, southern Guangxi, and southern 
Guangdong. On the other hand, the highly suitable areas for 
P. spegazzinii under current climate scenario are primarily concentrated 
in Taiwan, which aligns with previous reports on the successful estab
lishment and spread of P. spegazzinii in Taiwan (Day et al., 2013; Shen 
et al., 2018). In contrast, the climatic suitability for P. spegazzinii in 
mainland China remains consistently low, which potentially explains 
why previous attempts to introduce P. spegazzinii as a biological agent 
for M. micrantha were unsuccessful (Winston et al., 2014). Notably, 
considerable climatically suitable areas persist in southern China, 
particularly in Guangdong Province where earlier releases were imple
mented. It is thought that only a limited number of releases were made 
in 2006 and 2011. As P. spegazzinii requires particular conditions such as 
adequate dew point and temperatures below 25 ◦C (Ellison et al., 2008), 
conditions soon after release may not have been conducive for pop
ulations of the rust to be sustained (Winston et al., 2014).

With global climate warming, the majority of plants and animals are 
expected to migrate toward higher latitudes and altitudes (Fang et al., 
2018). The areas of suitability for M. micrantha will expand with the 

predicted changes in climate, suggesting that it may adapt well to 
changing climate conditions. Unfortunately, suitable areas of 
P. spegazzinii will decrease, which makes successful introduction of 
P. spegazzinii all the more urgent. Based on the analysis of environmental 
variables, precipitation (Bio12 and Bio18) has been identified as the 
major factor influencing the potential distribution of M. micrantha, 
whereas P. spegazzinii is jointly influenced by both temperature and 
precipitation (Bio7 and Bio18). This finding explains why P. spegazzinii 
has been successfully introduced and established in several countries 
and regions to suppress M. micrantha, as they exhibit similar re
quirements (Ellison et al., 2008). The rust fungus infects the leaves, 
stems, and flowers of M. micrantha, restricting its growth and repro
duction, thereby playing a significant role in the biological control of 
M. micrantha (Barreto and Evans, 1995; Day et al., 2013; Kumar et al., 
2018; Day and Riding, 2019). In this regard, M. micrantha indirectly 
promotes the survival and spread of P. spegazzinii by providing a suitable 
host, while P. spegazzinii helps maintain ecosystem health and balance 
by suppressing the overgrowth and spread of M. micrantha.

Under the current climate scenario, the overlapping suitable areas 
between the two species account for 25.2 % of the total suitable area for 
M. micrantha and 100 % for P. spegazzinii, meaning that a considerable 
portion of the potential distribution range of M. micrantha is suitable for 
the field release of P. spegazzinii. Although the overlapping suitable areas 
between the two species are projected to decrease under future climate 
scenarios, their proportion relative to M. micrantha’s total suitable areas 
remains relatively stable (11.6 % – 15.1 %) and consistently aligns with 
the suitable areas of P. spegazzinii, indicating that climate change is 
unlikely to significantly weaken their spatial coupling relationship. 
However, it is important to note that while considerable areas of 
southern China are potentially suitable for the rust, achieving estab
lishment still requires learning from efforts in other countries where 
P. spegazzinii has established, and past unsuccessful efforts in mainland 
China. Adopting an even more conservative approach such as releasing 
the rust initially in only highly favourable microclimatic areas, i.e. moist 

Fig. 10. Geographic distribution of overlapping suitable areas for M. micrantha and P. spegazzinii in China under different future climate scenarios.
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shady areas, with cool night time temperatures and in the most appro
priate season, where conditions for sporulation are conducive, as well as 
ensuring appropriate release techniques are employed over space and 
time should increase the chance of establishment and hopefully, with 
time, control of M. micrantha.

This study elucidates the distribution dynamics of M. micrantha and 
P. spegazzinii under current and future climate scenarios in China. 
Consistent with the findings of Trethowan et al. (2011) on 
C. macrocephalum, integrating native and invasive data with parameter 
optimization significantly enhanced model accuracy. However, unlike 
the 96 % niche overlap observed between E. passionarius and its host 
P. foetida in Minghetti et al. (2024), while P. spegazzinii’s current suitable 
areas are fully encompassed by M. micrantha, its projected range 
contraction under future climate scenarios may undermine the biocon
trol potential of the rust fungus. This discrepancy highlights the species- 
specific climatic responses of biological control agents: the rust fungus is 
constrained by both precipitation and temperature, whereas 
M. micrantha depends primarily on precipitation. Therefore, priority 
should be given to releasing strains of the rust fungus in moderate-to- 
high suitability areas within mainland China, particularly the highly 
suitable areas exclusively concentrated in Fangchenggang City, southern 
Guangxi Province under current condition (Fig. 2b), while monitoring 
their adaptive evolution. Additionally, similar to the data bias issues 
noted in Trethowan et al. (2011), future studies should incorporate 
experimental data on the rust fungus in high-latitude regions to validate 
model predictions of northward range expansion.

5. Conclusion

Predicting the potential distribution of invasive plants and their 
biological control agents under climate change is crucial for invasive 
species management and biodiversity conservation. Our study demon
strates that the distribution of the invasive plant M. micrantha is pre
dominantly driven by precipitation, whereas its biological control agent, 
P. spegazzinii, exhibits climatic dependencies jointly determined by both 
temperature and precipitation. The suitable areas for the two species are 
concentrated in southern China, with M. micrantha exhibiting broader 
adaptability compared to P. spegazzinii. Under future climate scenarios, 
the suitable areas for M. micrantha in China are projected to expand 
northward, while P. spegazzinii exhibit a contracting trend. Furthermore, 
although the overlapping suitable areas between M. micrantha and 
P. spegazzinii show a reduction compared to current scenario, they 
remain relatively stable and perfectly align with the suitable areas of 
P. spegazzinii, indicating its promising potential as a targeted biocontrol 
agent against M. micrantha. Key regions such as Hong Kong, Hainan, 
Guangdong, Guangxi, Tibet and Yunnan represent the primary over
lapping suitable areas for the two species in mainland China. Therefore, 
field releases and the establishment of P. spegazzinii in these regions 
should be seriously considered to enhance the control and management 
of M. micrantha. This work provides guidance for the implementation of 
invasive plant control measures, offers insights for the rational intro
duction and application of biological control agents, and delivers sci
entific evidence for improving early warning and response strategies for 
invasive species in the future.
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