'.) Check for updates

Ecology and Evolution WI L EY

Ecology and Evolution

Open Access,

| RESEARCH ARTICLE CEIEED

Climate-Induced Range Shift and Risk Assessment of
Emerging Weeds in Queensland, Australia

Olusegun O. Osunkoya! | Mohsen Ahmadi? | Christine Perrett! | Moya Calvert! | Boyang Shi' | Steve Csurhes! |
Farzin Shabani?

Tnvasive Plant & Animal Science Unit, Biosecurity Queensland, Department of Agriculure & Fisheries, EcoSciences Precinct, Brisbane, Queensland,
Australia | *Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran | 3College of Arts and Sciences, Qatar University,
Doha, Qatar

Correspondence: Olusegun O. Osunkoya (olusegun.osunkoya@daf.qld.gov.au) | Farzin Shabani (fshabani@qu.edu.qa)
Received: 17 May 2024 | Revised: 5 February 2025 | Accepted: 12 February 2025

Funding: This work forms part of the Invasive Plant and Animal Science, Biosecurity Queensland, DAF output towards pest preparedness and prevention
(QLD BQ project No: 11891).

Keywords: climate change | invasive alien species | pest prioritisation | range shift | risk-assessment | species distribution modelling

ABSTRACT

Anticipation and identification of new invasive alien species likely to establish, spread and be impactful in a landscape, especially
in response to climate change, are consistently a top priority of natural resource managers. Using available global bioclimatic
variables limiting plant distributions, we employed maximum entropy (MaxEnt) as a correlative species distribution model to
predict the current and future (2041-2060 and 2061-2080) distribution for 54 emerging weed species of different growth forms
for the State of Queensland, Australia. Overall, the model predictive performance was excellent, with area under the curve
(AUC) and the true skill statistic (TSS) averaging 0.90 and 0.67, respectively. Based on distribution records, the emerging weed
species sorted out along environmental (climatic) space—with trees and succulents, each at the two ends of the continuum, while
grasses, herbs and shrubs were distributed between the two extremes. Temperature seasonality and minimum temperature of
the coldest month were the main driver variables that accounted for differences in climatic preference among the focal species
and/or plant growth forms. Range shifts were predicted for many species in response to climate change; overall, habitat range
increase will occur more often than range contraction and especially more so in trees compared to all other plant growth forms.
Range stability was least in succulent weeds. In general, under climate change, the majority of the invasion hotspot area was
projected to remain geographically stable (76.95%). Far northern Queensland (especially the Gulf of Carpentaria and Cape York
Peninsula areas) and the coastal communities along the eastern seaboards of the State are the hotspots for emerging invasive
alien species to establish and expand/contract in response to climate change. Based on observed and potential ranges, as well as
species response to climate change, we derived an index of risk and hence statewide prioritisation watch list for management and
policy of the emerging weeds of Queensland.

1 | Introduction critical component of effective early detection and rapid re-

sponse (Westbrooks 2004; Osunkoya et al. 2022). Consequently,
Early detection and rapid response to new invasive organisms the concept of risk assessment and prioritisation of candidate
can be an effective form of management (Westbrooks 2004; taxa likely to become invasive (also known as horizon scanning)
Csurhes 2021; Buddenhagen et al. 2023). Deciding which is attractive and is gaining a wide currency as it is cost-effective
emerging invasive species to pre-emptively search for is a and vital for stopping harmful invasions (Cuhls 2020; Dawson
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et al. 2022; Buddenhagen et al. 2023). Horizon or environmental
scanning warns us about impending change. The horizon scan-
ner is to the future what the lookout is to the sea. Thus, horizon
scanning breaks the habit of ignoring the early signs of change.
It forces people to look at events around them and report those
signs that could have detrimental consequences on the enter-
prise, not just those that are sure to have impacts (Cuhls 2020;
Osunkoya et al. 2022).

The establishment of these new invasive alien species (hence-
forth TAS) may become even more impactful as they may benefit
from changing climatic regimes and anthropogenic opportu-
nities following bushfires, extreme flooding and other distur-
bances (Westbrooks 2004; O'Donnell et al. 2012; Osunkoya
et al. 2014). Contemporary climate change is a primary driver
determining future invasive species distribution patterns—
be it established or incoming/emerging ones (Jia et al. 2016;
Hulme 2017; Bellard et al. 2018). Therefore, understanding
how climate change influences the ranges of IAS is important
(Bellard et al. 2018; Bradley et al. 2023). The projected increases
in atmospheric CO, concentration and changes in temperature
and precipitation patterns may alter ecosystem functions, species
interactions, demography including age structure and plant dis-
tribution (Stocker et al. 2013; Bradley et al. 2023). Temperature
and precipitation are considered determinants of many success-
ful range expansions along latitudinal and altitudinal gradients
and in multiple ecosystems and several habitat types (Bellard
et al. 2016). Increased precipitation has also been linked to
woody weed encroachment (Graz 2008; Archer et al. 2017).
Many studies of global climate change impact on the geographic
distribution of IAS reported varied consequences (Merow
et al. 2017; Bradley et al. 2023). For example, several studies pre-
dicted that climate change will increase IAS ranges (Dukes and
Mooney 1999; Thuiller et al. 2008; Shrestha et al. 2018; Thapa
et al. 2018), while others have found opposite trends (Allen and
Bradley 2016; Bezeng et al. 2017; Pillet et al. 2022). Thus, pro-
jecting future direction and magnitude of invasion impact and/
or areas of low or high invasion risk is challenging and largely
context dependent—being largely influenced by the IAS traits,
ecosystem type invaded and the nature of anthropogenic oppor-
tunities (Kriticos et al. 2006; Broennimann et al. 2006; MacLean
and Beissinger 2017). Nonetheless, these projections remain
essential for making cost-effective management decisions as
they play crucial roles in evaluating the invasion risks posed by
introduced species and identifying threats to protected ecosys-
tems. However, introduced species, particularly invasive ones,
may not necessarily occupy the same climatic niche in their na-
tive and introduced ranges due to changes in their realised or
fundamental climatic niche (Gallagher, Beaumont, et al. 2010;
Allen and Bradley 2016; Eckert et al. 2020). This phenomenon,
referred to as a ‘niche/range shift’, complicates efforts to predict
future distributions of TAS.

A large body of literature attempts to explain variation in IAS
range size and shifts using ecological and life-history traits of
the species, with predictions that shifts should be greater in spe-
cies with greater dispersal ability and that are ecological gener-
alists (Estrada et al. 2016; MacLean and Beissinger 2017). Thus,
although individual IAS may respond idiosyncratically to cli-
mate change, species that share the same ecological properties,
such as a similar peculiar photosynthetic pathway, growth/life

form (e.g., grasses) or evolutionary history/lineage (e.g., family),
might respond in a similar fashion (Thuiller et al. 2005; Thuiller,
Lavorel, et al. 2006; Gallagher, Beaumont, et al. 2010). Although
this approach is central to the framework of dynamic global veg-
etation models (Daly et al. 2000; Woodward and Lomas 2004),
it has rarely been tested in climate change impact studies in-
volving species distribution models (SDMs) (but see Thuiller,
Midgley, et al. 2006). To date, SDM studies concentrate on quan-
tifying species' range changes, but minimal efforts are often
made to explore the drivers of the predicted ecological patterns
(but see Thuiller et al. 2005; Broennimann et al. 2006).

Although other than climate, many factors contribute to the
spread of IAS (particularly human-assisted dispersal, land dis-
turbance and modification of natural fire regimes), incorpo-
rating modelled projections of climate suitability into pest risk
assessment and prioritisation systems would provide a useful
indicator of future threats and help identify which regions may
become hotspots for invasion under future climates (O'Donnell
et al. 2012; Duursman et al. 2013; Gallagher, Beaumont,
et al. 2010; Shabani et al. 2020; Evans et al. 2024; Szyniszewska
et al. 2024). Despite the acknowledgement of climate change
and its impact, a shortfall of current determinations of weed
threats and prioritisation, such as the Australian Weed Risk
Assessment system or the recently completed risk inventory of
established weeds of Queensland, Australia (Osunkoya, Froese,
Nicol, Perrett, et al. 2019), is that they fail to include potential re-
sponses of IAS to climate change, thus reducing the potential ef-
ficacy of management prioritisation (Downey et al. 2010; Roger
et al. 2015; Jarnevich et al. 2023; Szyniszewska et al. 2024).

Eastern Australia (especially the States of New South Wales and
Queensland) is among the five global regions considered most
vulnerable to the establishment of new IAS originating mainly
from Asia and America via trade, tourism and human traffic
(Bellard et al. 2016). In Australia, future projections in response
to climate change have been reported for established weeds (e.g.,
Kriticos et al. 2006; Duursman et al. 2013; Gallagher et al. 2013;
O'Donnell et al. 2012; see also http://weedfutures.net/species_
list.php). However, at Australia's regional/state levels, there are
very few published reports on risk assessments and/or potential
impacts of climate change on emerging and incoming (horizon)
weed floras (e.g., Waterhouse 2003; Osunkoya, Froese, Nicol,
Perrett, et al. 2019; Osunkoya et al. 2020). Though in the past,
SDMs of many IAS of Queensland have been produced, such
prediction exercises are for established IAS and are often based
on modelling software like CLIMATCH, known for its coarse
scale and low accuracy as it uses means rather than other climate
measurements such as minimums or maximums (Froese 2012;
Erickson et al. 2022). CLIMATCH is also unable to model cli-
mate change scenarios directly (Erickson et al. 2022; but see
Kriticos et al. 2003, 2006). Hence, there is a need to perform a
similar exercise on incoming (horizon) weeds and, where appli-
cable, to update predictions for established IAS using improved
modelling approaches like ecological niche models (ENMs)
(Elith et al. 2010; Adhikari et al. 2022). In this work, we have
assembled a cohort of incoming weeds (54 species) in the State of
Queensland (henceforth QLD) that are either in low abundance
and population foci or are yet to occur in the State but are per-
ceived by stakeholders as detrimental to the region if allowed to
establish and flourish. Our aims using the maximum entropy
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(MaxEnt) model as a well-performing ENM software and focus-
ing on the northern part of eastern Australia (specifically QLD)
are to:

1. Document occurrence records and explore the poten-
tial habitat ranges of these identified incoming weeds in
Queensland, Australia.

2. Model shift in habitat ranges of these weeds in response
to predicted climate change, and subsequently explore the
influence of components of environmental variables of
temperature and rainfall, as well as species-specific traits
of plant growth form and taxonomic affiliation (lineage)
as possible drivers of predicted changes; in line with many
previous findings and hypotheses, we predicted an in-
crease in climatically suitable and hence habitat ranges of
many of these weed species, but the responses (magnitude
and direction) might be context-dependent (e.g., vary in re-
sponse to plant growth form and landscape/regional level).

3. Rank the weeds for statewide prioritisation and manage-
ment/policy actions based on observed and predicted habi-
tat ranges and response to climate change.

2 | Methods
2.1 | Study Region

The study area (QLD) lies in the north-eastern part of Australia
(Appendix). Spanning an area of ~1.853 million km?, QLD is
the second-largest state by land and the third-most by popula-
tion (~5.5 million) and experiences significant climatic and en-
vironmental gradients. Mean precipitation ranges from 400 to
780mm per year; the average minimum annual temperature
varies from —10.6°C to 5.4°C, and the average maximum annual
temperature varies from 36.0°C to 49.7°C (Australia Bureau of
Meteorology, http://www.bom.gov.au/, accessed 8 March 2024);
the summer average temperature is 29°C. Taking cognizance of
climate change, the average temperature is predicted to increase
to over 30°C and 32°C by 2030 and 2070, respectively. A sub-
stantial increase in the temperature on the hottest days, as well
as a significant spike in the frequency of hot days and the du-
ration of warm spells, is also likely. An increased magnitude of
extreme rainfall events is also projected, with high confidence.
The mean sea level will increase, and the height of extreme sea-
level events will increase the risk of coastal hazards such as
storm and tide inundation (see https://longpaddock.qgld.gov.au/
qld-future-climate/understand-data/).

Established invasive flora of QLD, just like its native flora, varies
across regions but is more similar across local government areas
(LGAs) within a given region (Osunkoya, Froese, Nicol, Perrett,
et al. 2019; Osunkoya et al. 2021). With state government super-
vision and oversight, invasive plants and animals are managed
at regional levels by local government authorities and natural
resource management groups (Osunkoya et al. 2020, 2021). To
ensure that new pest species are detected early, reported, and
assessed to determine whether management actions (eradica-
tion, control or simply placed on a watch list) should be under-
taken, Biosecurity Queensland (an agency of QLD Department
of Agriculture and Fisheries) maintains a register of potential/

incoming weeds (~250 species) into the State (Csurhes 2021;
https://www.daf.qld.gov.au/business-priorities/biosecurity/
invasive-plants-animals/plants-weeds). It is from this ‘watch
list’ that the 54 focal species in this work were selected. The
majority of these watch-list species are currently of low abun-
dance with few population foci or are yet to arrive in the State
but may already be present in neighbouring States of New South
Wales (NSW), Northern Territory (NT) and South Australia
(SA) (Table 1). In this study, species inclusion for climatic range
and risk assessment study is based on (i) statewide consultations
with impacted stakeholders (QLD biosecurity officers, landown-
ers and natural resource management groups) who recognise
the species’ potential to spread and cause environmental, social
and economic impacts and (ii) availability of adequate global oc-
currence records in the species’ invaded and native ranges for
the predictive modelling exercise. The investigated species cover
most plant growth forms (grass: n=9; herb: n=13; shrub: n=9;
succulent: n=6; tree: n=10; and vine: n=7).

2.2 | Species Distribution Modelling Approach

Occurrence data on the global distribution of QLD emerging IAS
were obtained from the Global Biodiversity Information Facility
Online website (GBIF 2024) and the Atlas of Living Australia
(ALA 2024). GBIF provides access to many georeferenced spe-
cies distribution records, but the data often contain duplicates,
uncertainty and ambiguous centroids. To ensure the data are
suitable for SDM, pre-processing and filtering procedures are es-
sential. We implemented pre-download constraints for the GBIF
download process to eliminate duplicates, observations without
coordinates, absence records, coordinates with equal latitude
and longitude, corrupted coordinates, observations older than
1990 and raster centroid datasets (Zizka et al. 2019). We also
spatially filtered the occurrence points to ensure they were at
least 5km apart. This reduced the negative effects of spatial au-
tocorrelation, which can artificially inflate model accuracy or
skew parameter estimates during the SDM analysis (Dormann
et al. 2007). The correlative SDMs require absence points, or if
not available, pseudo-absence points or so-called background
points. For each species, we selected 10,000 background points
randomly inside a buffer of 1000-km radius around its presence
points (Warren et al. 2020) to exclude the model from being fit-
ted with inaccessible areas.

To model the global climatic niche of our focal species, we
accessed the 19 available bioclimatic variables (derived
from monthly temperature and precipitation records) of the
WorldClim dataset (version 2.1) at a spatial resolution of 2.5
arc-min, ~4.5x4.5km (Fick and Hijmans 2017). To mini-
mise the multicollinearity effect, the initial set of 19 biocli-
matic variables was further reduced to eight: (i) annual mean
temperature (BIO1), (ii) temperature seasonality (BIO4), (iii)
maximum temperature of the warmest month (BIOS), (iv)
minimum temperature of the coldest month (BIO6), (v) an-
nual precipitation (BIO12), (vi) precipitation of the wettest
month (BIO13), (vii) precipitation of the driest month (BIO14)
and (viii) precipitation seasonality (BIO15). We selected these
variables to ensure the predictive models were ecologically
relevant and statistically sound. Firstly, the chosen climatic
variables capture annual ranges, seasonal variability and
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| (Continued)

TABLE 1

Occurrence record

(actual no. of
~4.5km xX4.5km

grids of QLD land

Potential

QLD land
area infested

Year
of first

area infested)

(%) based
on MaxEnt

As a % of
land mass

record
in QLD

Growth

Sp.

Count prediction

form Native range

Common name

Family

Species name

3.26

12 0.013

Tree Asia 1915

Rose apple

Myrtaceae

Syzygium jambos®?

51

4.90

0.065

62

Vine Asia and Africa 1974

White Lady

Acanthaceae

Thunbergia fragran

52

0.05

2 0.002

Vine Northern America 1981

Poison ivy

Anacardiaceae

Toxicodendron radicans

53

61.25

0.000

Tree Africa

Rhamnaceae Buffalo thorn

Ziziphus mucronata

54

7.21

36 0.037

1965

Mean

extremes of temperature and precipitation. Hence, they are
crucial in reflecting a species’ capacity to adapt to climatic
conditions and represent abiotic constraints shaping spe-
cies distributions, niche evolution and adaptability at a large
scale (Gallagher, Beaumont, et al. 2010; Shabani et al. 2020).
Secondly, we calculated the variance inflation factor (VIF) of
the variables and ensured that they had low multicollinearity
(VIF <10), thus avoiding model overfitting and unreliable pa-
rameter estimates.

We invoked the MaxEnt model of the dismo package (Hijmans
et al. 2017) to model species distribution. Briefly, MaxEnt
(Phillips et al. 2006) is a machine learning algorithm that esti-
mates the probability of occurrence of a species in contrast to
the background (pseudo-absence) environmental conditions.
In alandscape, MaxEnt uses a maximal entropy function to es-
timate the probability of occurrence based on the environmen-
tal characteristics of the habitats where the species is known
to be present (Elith et al. 2011). We used MaxEnt's default set-
tings, as recommended by Phillips et al. (2006), who found that
tuning the default settings for a diverse dataset of 226 species
across six regions resulted in good predictive performance.
Moreover, Valavi et al. (2022) in a benchmark study showed
that MaxEnt model, when fitted with the recommended de-
fault setting, ranks among the high-performing models, with
no significant difference with a fine-tuned MaxEnt model and
even better than biomod framework (Thuiller et al. 2009). In
addition, since one of our objectives was to compare habitat
suitability of different species and their responses to environ-
mental conditions, we opted to follow a consistent modelling
approach across all 54 emerging weed species. To optimise the
limited availability of occurrence data and using both globally
invaded and native range climatic data for each species, we
repeated modelling approach based on the cross-validation
method. The data were divided into 10 equal-sized folds, and
training models were constructed by excluding each fold in
turn. The excluded folds were then used to assess the accu-
racy of the training models considering the area under the
curve (AUC) of the receiver operating characteristic (ROC)
plots. The AUC values are divided as follows: 0.5-0.6, (poor),
0.6-0.7 (fair), 0.7-0.8 (good), 0.8-0.9 (very good) and 0.9-1.0
(excellent). The higher the AUC value, the better the model
performed (Phillips et al. 2006). Using the maximum training
sensitivity plus specificity (MaxSS) threshold (Liu et al. 2013),
we calculated true skill statistic (TSS) to assess classification
accuracy of each species’ MaxEnt model and subsequently
generated a binary habitat suitability map for each species. We
also considered the relative importance of the climatic vari-
ables in the species’ distribution model based on their contri-
bution to the MaxEnt model.

2.3 | Assessing Response of Emerging Weeds to
Climate Change

To model the distribution of the invasive species considering
future climate scenarios, we used projections of the bioclimatic
variables for 2050 and 2070 (average for 2041-2060 and 2061-
2080, respectively) based on five global circulation models
(GCMs)—ACCESS-CM2, BCC-CSM2-MR, IPSL-CM6A-LR,
MIROC6 and MPI-ESM1-2-HR. For each GCM, we chose two
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shared socioeconomic pathways (SSP1-2.6 and SSP5-8.5) of
the 6th Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC) for incorporating the future cli-
mate scenarios into the model projections. The SSP1-2.6 is
the most optimistic scenario, and SSP5-8.5 -is the most pes-
simistic climate change scenario. For SSP1-2.6, the assump-
tion is that global warming would increase by 1.7°C between
the years 2041 and 2060 and by 1.3°C-2.4°C between 2081
and 2100. In contrast, SSP5-8.5 assumes that global warm-
ing would increase by 2.4°C between the years 2041 and 2060
and by 3.3°C-5.7°C between 2081 and 2100. The narrative
description of SSP scenarios is ‘Suitability’ and ‘Fossil-fuelled
Development’ for SSP1-2.6 and SSP5-8.5, respectively (Riahi
et al. 2017). Although there is a more optimistic scenario
known as SSP1-1.9, in this study, we focused on these two
scenarios to assess the impact of climate change on the dis-
tribution of the target weed species under sustainability and
uncontrolled development pathways. Accordingly, for each
time period and each species, we generated 10 future climatic
projections (5 GCMs x 2 SSPs); these GCM projections are av-
eraged for each species in this comparative work.

Predictive models often exhibit reduced reliability when ex-
tended beyond the training domain (Elith et al. 2010). This
is particularly evident in climate change predictions, where
fitted models based on current conditions are projected onto
novel future climatic conditions. To address this challenge,
Elith et al. (2010) proposed measuring the similarity between
new environments (future climatic conditions) and those
within the training sample using multivariate environmental
similarity surface (MESS) analysis. Following this approach,
we generated a MESS map after climate change projection
and employed negative MESS values, representing dissimilar
areas, to mask future projections. Like the current suitability
map, we transformed future climatic projections into binary
maps using MaxSS threshold. Finally, we calculated two indi-
ces based on the binary maps of current and future projections
to quantify the proportion of range change: (i) habitat gain,
defined as the number of pixels currently unoccupied but
predicted to be suitable for occupation in the future, and (ii)
habitat loss, defined as the number of pixels currently suitable
but predicted to be unsuitable in the future. Using ArcGIS, we
created a cumulative invasion risk map (species richness) by
overlaying the presence/absence maps for the 54 focal species
(Thuiller et al. 2005).

2.4 | Climatic Niche Comparison Between Plant
Growth Forms

Across the 54 species data and grouped by plant growth form,
we carried out a principal component analysis (PCA) using the
eight a priori identified bioclimatic variables. PCA (following
data transformation, normalisation and creation of resemblance
matrix formulation using Euclidean distance) discriminates be-
tween the ecological niches (e.g., climate) of species or species
groups and has been shown to accurately identify niche over-
laps, niche differences and shifts (Broennimann et al. 2012;
Eckert et al. 2020). For evidence of climatic (niche) overlap or
difference among the plant growth forms of our 54 focal spe-
cies, we used multidimensional scaling (MDS) and analysis of

similarities (ANOSIM) options with the PRIMER (v.7) software
(Clarke and Gorley 2015). MDS is an ordination technique that
is similar to PCA but uses a different resemblance measure
and thus allows estimation of similarities (ANOSIM) between
groups of data. ANOSIM is analogous to ANOVA, and it com-
pares the mean difference of ranks within and between groups
(in our case, between plant growth forms), generating the sta-
tistic R (Clarke and Warwick 2001). R values range from -1 to
+1, with negative values and values near 0 indicating similarity
among groups, while values approaching R=1 are suggestive of
a strong dissimilarity (in our case, climatic difference) among
groups. We also used a generalised linear model (GLM) to test
for the effect of weed origin (continent) on species distribution
in QLD.

2.5 | Weed Species Ranking for Biosecurity Risk
Assessment and Prioritisation

Across the 54 focal species, we performed normalisation on

our three species distribution parameters, i.e., on current dis-

tribution (derived from ALA/GBIF, etc.), (ii) potential distribu-

tion and (iii) range shift (the latter two as predicted by MaxEnt

model) in QLD. To achieve this, we converted each parameter to

a common range (0-1) using Min-Max scaling, defined as
X-X

min
X, = — Cmin_
Xmax - Xmin

We then summed these three parameters to derive an index of
invasion risk and, consequently, a statewide risk assessment for
the focal species (see also Lohr et al. 2015; Osunkoya, Froese,
Nicol, Perrett, et al. 2019). We chose the summation approach
as the three distribution parameters were found not to be sig-
nificantly correlated with each other and thus contribute inde-
pendently to the risk score (FAO 2004; USDA-APHIS-PPQ 2004).
In the risk assessment procedure, inclusion of potential distribu-
tion provides information on how far a weed can spread, while
range shift (if any) will standardise such spread prediction in
response to climate change (Lozano et al. 2024; Szyniszewska
et al. 2024). For example, a particular climate change scenario
could render previously unsuitable climates favourable for cer-
tain species (Mainka and Howard 2010; Lozano et al. 2024).
Ideally, the potential impact of the focal species should be an
important inclusion variable in the weed prioritisation exercise,
but we lack such data for many species (see also Rockwell-Postel
et al. 2020; Lozano et al. 2024; and the Section 4) and hence was
not included.

3 | Results
3.1 | General Pattern

With multiple species (54), two future scenarios, two emission
pathways, 5GCMs, and multiple ways to analyse the data, we
selected a subset of results for this paper (i.e., presented a sum-
mary of the full range of outcomes and their averages). This ap-
proach allows for an overview of incoming (horizon) weeds and
climate change impacts on their realised and potential habitat
suitability in the eastern part of Australia with a focus on the
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QLD. Additional analyses and species-by-species results and
maps for all scenarios can be found in Appendix S2.

Most of the focal horizon weed species are from the Americas
(Mexico, Central and South America, 34/54 species=63%)
(Table 1). The remaining species are evenly distributed be-
tween Asia and Africa (~17% each), with none from Europe.
No plant taxon (e.g., family) dominates the list. As expected,
the majority of our 54 species are of recent incursions, as in-
dicated by their current small population size and extent (i.e.,
low number of 4.5x4.5km pixels infested in QLD, Table 1,
Appendix S2 and S3). The degree to which different species have
already spread in Queensland varies significantly. Noteworthy
are low occurrence records (<0.02% of total area currently in-
fested) for Acanthospermum australe, Asparagus retrofractus,
Coix lacryma-jobi, Gliricidia sepium, Manihot glaziovii, Miconia
racemosa, Mimosa pigra, Opuntia dejecta, Opuntia sulphurea,
Setaria parviflora, Sieruela rutidosperma and Toxicodendron
radicans to no records for Artemisia verlotiorum and Ziziphus
mucronata. On the other hand, there were moderate to high cur-
rent distribution records for Praxelis clematidea, Hyparrhenia
rufa and Chromolaena odorata (0.2%-0.4% of total QLD areas
currently infested).

3.2 | Species Distribution and Climatic
Requirements

Of the eight bioclimatic variables used, temperature seasonal-
ity (BIO4) was the main predictor of habitat suitability for 34
out of 54 (63%) focal emerging IAS, making an overall mean
value of 35.14% contribution to the total variation in the data-
set (Figure 1A, Appendix S3). Other major contributors, in de-
creasing order, are minimum temperature of the coldest month
(BIO6-18.96%) and precipitation seasonality (BIO15-10.32%).
Precipitation of the wettest month (BIO13) made the least con-
tribution (4.07%). Note, however, that the relative contribution
of the bioclimatic variables varied significantly across the focal
species and was largely unaffected (p>0.05) by plant growth
form (Appendix S3).

Ordination of focal species distribution based on their biocli-
matic datain QLD indicated that Axes I and II—having captured
54% and 29%, respectively, of the total variation in the dataset
are—enough to explain the extent of the spatial variation in the
dataset (Figure 1A). Axis I was majorly a temperature axis—
with temperature seasonality (BIO4), minimum temperature of
the coldest month (BIO6), annual mean temperature (BIO1) and
precipitation of the wettest month (BIO13) making the greatest
contribution to the variation in distribution and habitat require-
ments of the 54 focal species. Axis II was both precipitation
and temperature gradients—mainly explained by precipitation
of the driest month (BIO14) and maximum temperature of the
wettest month (BIOS5) acting in opposing directions. Hence, an
increase in temperature seasonality (BIO4) tends to favour the
establishment of succulents relative to any other plant growth
forms. In contrast, an increase in the minimum temperature
of the coldest month (BIO6), an increase in annual mean tem-
perature (BIO1) and to some extent increases in precipitation
seasonality (BIO15) and precipitation of the wettest month
(BIO13) favour the occurrence of trees (Figure 1, Appendix S4).

A combination of increasing annual precipitation (BIO12) and
increasing precipitation of the driest month (BIO14) tends to fa-
vour the establishment of vines. Climatic requirements of herbs
and grasses (and to a limited extent that of shrub) appeared
diffused. In all, succulent plants appeared to have habitat re-
quirements (i.e., climatic variables) that are distinctly different
from those of other growth forms—a trend confirmed by both
ANOSIM (Global R=0.202, p=0.001) and bootstrap averaging
estimation technique (Figure 1B).

3.3 | Model Fit, Species Range Size and Range Shift

Total global occurrence samples for the 54 focal emerging (hori-
zon) weeds varied between species (Appendix S3) but were gen-
erally high, with an overall mean of 918 and 229 as training and
test samples, respectively. Note that there are extreme cases of
low (e.g., Acaciella glauca [23 samples] and Artemisia verlot-
iorum [34 samples]) and very high total samples (e.g., Arundo
donax [7996 samples], Chromolaena odorata [4315 samples] and
Toxicodendron radicans [10,639 samples|, Appendix S3). The
AUC and TSS values varied among species but were consistently
high across all species (mean AUC =0.90 and mean TSS=0.67)
(Appendix S3).

Under the current climatic conditions, Ziziphus mucronata (a
tree), Florestina tripteris (a herb) and Cereus hildmannianus
(a succulent) have the highest extent of climatically suitable
habitats in QLD (61.3%, 40.5% and 28.5%, respectively), while
Arundo donax (a grass), Opuntia sulpurea (a succulent) and
Toxicodendron radicans (a vine) had the least (all <0.05%)
(Table 1). Across all our 54 tested species, the mean area of
current suitable habitats (potential) based on the eight climatic
variables was 7.21% % 0.69% of QLD. However, the ranges varied
significantly (p < 0.05) among species and between plant growth
forms, being of the order: tree (12.3%), succulents (9.4%) > herb
(7.5%) >shrubs (4.6%) > grass (4.8%) >vines (3.98%) (Figure 2).

In response to climate change (Table 2), the highest positive
range changes, i.e., range shifts (300%-900% increase from
current size), were predicted for Opuntia elata, Murraya koe-
nigii, Dalbergia sissoo, Khaya senegalensis and Sieruela rutido-
sperma and the lowest/neutral changes (< 5% change) were for
Miconia racemosa, Praxelis clematidea, Cereus hildmannianus,
Diplachne uninervia, Florestina tripteris, Spathodea campanu-
lata, Ziziphus mucronata and Cenchrus purpureus. Significant
losses in response to climate change (> 60% from current size)
were predicted for Artemisia verlotiorum, Opuntia sulphurea,
Cylindropuntia fulgida, Asparagus retrofractus, Arundo donax,
Heteranthera reniformis and Paspalum mandiocanum (Table 2).

In all, in response to climate change, we found minimal/no
changes in size ranges (<5% change) in 7/54 species (13.96%)
(species numbered 7, 9, 11, 22, 43, 49 and 54 in Table 2), neg-
ative changes in 25/54 species (46.3%) and positive changes in
22/54 (40.7%) in our focal emerging IAS (Table 2). Range shift
was driven more by precipitation variables than changes in
temperature (Table 3); in contrast, range stability was driven by
temperature variables. The current or potential range sizes have
no significant effect (p >0.05) on the prediction of range shift in
response to climate change. We found that plant growth form
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(A)

Principal component analysis (PCA)

PC2 (29.2%)
<

Plant form
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FIGURE1 | Ordination of 54 emerging invasive alien species of QLD, Australia based on global bioclimatic data of four precipitation and four
temperature-related variables that are derived from their invaded and native ranges. Species have been grouped by plant growth form. (A) Species
ordination using principal component analysis (PCA) and (B) ordination using metric multidimensional scaling (MDS) and bootstrap averaging tech-
nique to indicate the centroid point (black symbol) for each plant group. The direction and magnitude of influence of the climatic variables (BIO1,
BIO4, BIOS, BIO6, BIO12, BIO13, BIO14, BIO15 and BIO16) are indicated on the biplot.

influenced range shift and range stability in response to climate
change, to the extent that the greatest positive changes and sta-
bility are in trees (Figures 3 and 4). Range shifts in shrubs and
succulents, though positive, were non-significant as their 95%
confidence interval bracketed the zero line (Figure 3). In con-
trast, predicted habitat suitability of grasses and vine will mar-
ginally decrease. For trees, the majority of the expansion will be
in the Northwest (e.g., in the Gulf of Carpentaria area), in Far
North QLD (especially Cape York Peninsula areas) and along the
eastern coastal habitats of the State, except for Ziziphus mucro-
nata where the increase in habitat suitability is wide—covering

both central and southern parts of the State (Appendix S2). The
expansion of shrubs also mirrored that of trees—being along the
coastal habitats of the eastern side of QLD (e.g., Chromolaeana
odoratum) and in the Gulf of Carpentaria area (e.g., Jatropha
curcas and Mimosa pigra). Few of the grasses that will expand
their ranges significantly (e.g., Echinochloa polystachya [49%
expansion] and Setaria parviflora [98% expansion]|) are pre-
dicted to do so mainly within the coastal habitats of the Gulf
of Carpentaria and in FNQLD (Table 2, Appendix S2). Despite
their current, wider distribution spanning many regions of
QLD, some grasses—Arundo donax, Diplachne uninervia and
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Range size (% + SE)

Grass Herb Shrub

Succulent Tree Vine

Plant growth form

FIGURE 2 | Range size (potential, and as a % of QLD area) by plant
growth form of the 54 emerging weeds of QLD. Data have been pooled
across species.

Paspalum mandiocanum—are exceptionally noted to decrease
significantly in their habitat ranges (retreating southerly to
coastal fringes of the State) in response to climate change
(Appendix S2). Vine expansion, if any, in response to climate
change will be limited to the coastal eastern fringes of the State,
except for Amphilophium crucigerum that is additionally pre-
dicted to proliferate in Far North Queensland, especially in the
Cape York Peninsula area (Appendix S2).

Overall, and irrespective of climate change scenario and/or plant
growth form, the model predicted an increase in habitat range
relative to current conditions (positive change: 40.94% +7.32%)
than a decrease (negative change: 23.05% +1.76%), thus sug-
gesting a net gain of 17.89% +8.03% for the emerging (horizon)
weeds of QLD. Despite the above climate change dynamics, most
invasion hotspot areas are projected to remain geographically
stable (76.95% + 1.78%) (Figures 4 and 5)—mainly in the Gulf of
Carpentaria, Far North Queensland and along the eastern coast
of the state. The model also predicted that the highest magni-
tudes of range shifts will be for SSP5-8.5 (16.35%-47.9%) and the
lowest in SSP1-2.6 (2.1%-5.09%) scenarios (Figure 6). For most
species studied, close to half of the predicted climatic optimum
shifts for 2070 would have occurred by 2050, especially under
SSP5-8.5 (Figures 5 and 6). After accounting for the influence of
plant growth form, we detected no effect of geographical origin
(i.e., continent) on current and potential habitat suitability nor
on range shift dynamics (e.g., for potential habitat suitability:
Two-way GLM ANOVA: F5’12=1.21; p=0.37; for range shift:

Two-way GLM ANOVA: FS’12 =0.45; p=0.82).

3.4 | Species Ranking for Biosecurity Risk
Assessment and Prioritisation

The risk ranking (prioritisation) of emerging weeds of QLD
based on normalisation and summation of (i) current distri-
bution, (ii) model prediction of potential distribution and (iii)
species range shift in response to climate change is given in
Table 4, with Hyparrhenia rufa, Praxelis clematidea, Ziziphus
mucronata and Chromolaena odorata topping the list. Overall,
and irrespective of climate change scenarios, species current

distribution made the greatest contribution to the risk ranking
(Pearson correlation value, r=0.693; p <0.001), followed by po-
tential distribution (r=0.579; p<0.001) and the least by range
shift in response to climate change (r=0.40; p<0.001). The
ranking of species did not vary significantly among climate
change scenarios (F, 4, =0.57; p=0.63) but was marginally af-
fected by plant growth form (F; 4 =6.71; p=0.07) in the order:
trees and succulents>shrubs and herbs > grasses > vines. Note
that though trees made up a large proportion of the top 20 priori-
tised species on the list (7/20), the top of the list is not dominated
by a particular plant growth form. We detected no significant
association (via correlation analyses, p>0.05) between assigned
risk (prioritisation) score and weed arrival time, or between risk
score and current range size.

4 | Discussion

Where feasible, the early detection and control of invasive plants
before they become widely established can be cost-effective and
highly desirable. A crucial factor influencing any decisions to
commit to control operations is knowledge of the risk posed
by the full suite of potentially invasive species. This knowl-
edge facilitates ranking and prioritisation of targets, and the
efficacy of such a prioritisation exercise is maximised when
climate change and other anthropogenic disturbances are also
taken into consideration (Jarnevich et al. 2023; Szyniszewska
et al. 2024). ENMs, as applied in this study using the MaxEnt
model, are traditionally calibrated using environmental data
from both native and invaded ranges and then projected onto
other regions/continents to predict areas likely open to inva-
sions (Phillips et al. 2006; Elith et al. 2010). Similarly, Shabani
and Kumar (2015) showed that utilising complete distribution
data, including both native and exotic occurrences, is the pre-
ferred approach when the objective is to map the future dis-
tribution of invasive species. An essential consideration when
projecting distribution models to new data is the dissimilarity
of environmental conditions, particularly for invasive species
prone to range shifts in novel environments (Elith et al. 2010).
To address this issue, we implemented the multivariate environ-
mental similarity surface (MESS) analysis in our climate change
projections. This approach enabled us to exclude novel habitats
that are likely to result in extrapolation due to their distinct cli-
matic conditions compared to the species’ current range (Elith
et al. 2010). Our use of this correlative modelling approach and
incorporation of various climate change scenarios strengthened
the utility of the prioritisation exercise undertaken and the ensu-
ing watch list ranking generated (Downey et al. 2010; Jarnevich
et al. 2023).

In all, it appeared that increased tolerance to certain abiotic
factors will encourage IAS establishment, range stability and/
or expansion and plant group differentiation. For succulents,
these are extreme values of BIO4, BIO5 and BIO12, i.e., in-
creased seasonality of temperature, increased maximum tem-
perature of the warmest month and decreased annual rainfall
(Figure 1, Appendix S4). This is not surprising as all our focal
succulents (except Ceropegia gigantea) are from deserts of
South and North America where extreme temperature and
aridity are the order of the day (Pillet et al. 2022). The habi-
tat envelopes of our focal succulents in the invaded ranges of
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| (Continued)

TABLE 2

Climate change effect

Overall
prediction

Potential range size

after climate change
effect by 2050/2070

Range stability (future
habitat size after loss, % of

Range gain as a Range shift (gain

percentage of current

Range lost as a
percentage of current

inrange

to loss, % of current

size
relative
to current
(potential)
condition

(potential) size [potential] size) current [potential] size) (% of QLD)

(potential) size

95% CI

95% CI

95% CI

95% CI

95% CI

Mean

Mean

Mean

Mean

Mean

Sp.
No.

Lower Upper (%) Lower Upper (%) Lower Upper (%) Lower Upperer (%) Lower Upper
—-27.8

(%)
28.9

Species name

43.1 0.0 -0.5 0.6 0.0 -2.3 2.4 Reduction

-98.7

37.6 1.1 —69.3 71.5

20.2

Toxicodendron

53

radicans

Reduction

-5.0 12.5 0.9 —69.5 71.3 -2.9 —73.8 68.0 58.9 58.4 59.5 59.5 57.1 61.8

Ziziphus mucronata 3.8

54

Gain

—27.7 113.0 21.0 —49.9 91.9 6.4 5.9 7.0 8.5 6.2 10.9

2.6

4

12.9 30.4

21.6

Mean

QLD appeared geographically wide and varied (Appendix S2).
However, the prediction of marginal range shift and lowest
range stability (Figures 3 and 4) for succulents (compared to
the other growth forms) was surprising as expected future cli-
mates with hotter and drier climates are usually predicted to fa-
vour species with Crassulacean acid metabolism (CAM)—the
photosynthetic pathway of most succulents (Pillet et al. 2022).
Contributory factors to these observed retreat trends for suc-
culents, except for the SSP5-8.5 (2070) scenario, could be
the following: (i) differences in habitat availability/occupied
between the invaded ranges of QLD and their native ranges
as matching climatic conditions of the native range may be
lacking in the invaded range of QLD (Gallagher, Beaumont,
et al. 2010; Gallagher, Hughes, et al. 2010; Pillet et al. 2022)
and (ii) increased intensity of rainfall and humidity (due to
climate change) despite higher temperature as succulents tend
to thrive better in hotter and drier, rather than wetter climates
(Pillet et al. 2022). Only Opuntia elata was predicted to thrive
and expand (297% increase relative to current condition). The
projected range gain for this species can be attributed solely to
the higher climatic suitability in the future, which favours its
ecological niche and climatic requirements. Though not con-
sidered in the study, other contributory factors to the projected
success of Opuntia elata may be attributed to a combination of
its succulency, CAM metabolism, highly competitive ability,
multiple reproductive strategies (e.g., clonal reproduction for
local dominance and persistence) and human-induced propa-
gule pressure like nursery sale (Barbosa et al. 2017).

The habitat range/climatic envelope of emerging invasive trees
in QLD appeared opposite to that of the invasive succulents
(Figure 1). Interestingly, trees were predicted to have the larg-
est positive range shift of all the plant growth forms examined.
Aside from the expectation that similar but opposing climatic
reasons adduced for succulents will play out for trees, there is evi-
dence that trees have a much larger dispersal range (Clark 1998;
Higgens et al. 2003; Broennimann et al. 2006). These factors
coupled with the greatest affinity for increased preference
for more than half of the environmental variables used in the
model (increasing annual mean temperature (BIO1), increasing
minimum temperature of the coldest month (BIO6), increas-
ing precipitation of the wettest month (BIO13) and increasing
precipitation seasonality (BIO15)), most of which aligned with
future climate change scenarios (Stocker et al. 2013; Shabani
et al. 2020), ensure that trees, as a focal group, can establish,
thrive, spread much faster and hence exhibit the highest range
and associated dynamics (size, stability and shift) than any other
plant group now and into the future (Figure 4, Appendix S4).
Additionally, in our analyses, we observed that range shift/
gain in response to climate change is driven more by precipita-
tion than by temperature variables (Table 3) and trees were the
winners (Figure 3). In general, QLD being a subtropical region,
experiences higher volatilities (extremities) in rainfall than in
temperature (http://www.qld.gov.au/environment/climate/
climate-change/); this observed climatic dynamics could have
also contributed to the predicted proliferation of invasive trees
at the expense of other plant growth forms. Further studies
could explore this conclusion in greater detail.

The remaining plant growth forms (grasses, vine, shrub and
herb) did not show signs of significant range shift or preference
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FIGURE 3 | Range shift by growth form (gain-lost) as a % of poten-
tial susceptible habitat area of QLD in response to climate change for
54 emerging weeds of the State. For each plant growth form, data have
been pooled across species and time scenarios (A) and across species
only (B). Analyses based on GLM two-way ANOVA.

for any environmental variable. Note, however, for grass spe-
cies that were predicted to significantly expand their ranges
(Echinochloa polystachya, Hyparrhenia rufa and Setaria parvi-
flora, with 49%, 27% and 98% increase, respectively; see Table 2),
the main climate drivers were tolerance to increasing tempera-
ture seasonality (BIO4) and increasing minimum temperature
of the coldest month (BIO6). Our finding for Setaria parviflora is
similar to that reported by Chuine et al. (2012) for the same spe-
cies. Suitable climate space for some of the tested grasses (e.g.,
Arundo donax, Diplachne uninervia and Paspalum mandioca-
num) with known infestations in subtropical and tropical areas
of the state will contract towards the coast (Appendix S2), sug-
gesting that climatic conditions in inland areas may become less
suitable by 2050/2070 for invasive grasses (see also Gallagher
et al. 2013). It is also likely that this latter set of invasive grasses
lacks the physiological characteristics for tolerance to increasing
temperatures (Barbosa 2016) as the climate warms up. It is fair
to conclude that generality cannot be drawn as per the influence
of a particular set of climatic variables on range shifts of IAS or
plant growth form because responses are species and landscape
(i.e., context) specific.

Overall, the model predicted that ~7.2% of QLD area will be cli-
matically suitable for our 54 focal species, which is projected to
increase to 8.4% in response to climate change. Most of the pos-
itive range shift in QLD is predicted to occur along the eastern
coastlines and the Gulf area of FNQLD and NWQLD (Figure 5).
This finding, coupled with the proximity of FNQLD (and indeed
the whole top end of Australia) to neighbouring oceanic islands
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FIGURE 4 | Range stability by growth form (as a % of potential sus-
ceptible habitat area QLD) in response to climate change for 54 emerg-
ing weeds of the State. For each plant growth form, data have been
pooled across species and time scenarios (A) and across species only
(B). Analyses based on GLM two-way ANOVA.

and the States of Papua New Guinea (PNG) and Indonesia, will
suggest that Biosecurity QLD must continue to step up its sur-
veillance in the regions, as these are vulnerable pathways of
introduction of IAS. The ecological systems in these two top
end regions of the state (i.e., NWQLD and FNQLD) are unique:
the interior of NWQLD consists of vast Mitchell grasslands (the
xerophytic Astrebla spp.) interspersed with Acacia trees and
Eucalyptus and Melaleuca woodlands (tropical savannah). The
Gulf country (of FNQLD and NWQLD) needs to be protected
from range-expanding IAS, especially alien trees. Thus, from
the results of the habitat suitability work, we can expect global
climate change to increase the capacity of alien plant species
to invade, thrive and expand into these areas while lowering
native community resistance to invasion by disrupting the dy-
namic equilibria that maintain native communities (see Kriticos
et al. 2003; Ngugi and Neldner 2024).

With climate change, the majority of invasion hotspot areas for
emerging weeds were projected to remain geographically sta-
ble by 2050 (Figures 4 and 5). Invasion hotspots in Australia
(O'Donnell et al. 2012) and the eastern USA (Evans et al. 2024)
indicated similar geographic stability despite differences in re-
gions and invasive species investigated (see also Barbosa 2016;
Lopes et al. 2023; Puchatka, Paz-Dyderska, Jagodzinski,
et al. 2023 for similar reports on invasive plant species of
Neotropics and Europe). Together, these findings suggest that
stability in invasion hotspots may be a general pattern in re-
sponse to climate change expected in the 21st century. Thus,
current invasive plants (wWhether emerging or established) will
not disappear with climate change, but invasion risk reduction
for some regions of the state (e.g., inland areas contiguous to
coastal communities of the SE and central QLD despite their
increasing human population relative to FNQLD and the Gulf
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FIGURES5 | Predicted invasion hotspots using species richness (count per pixel) of 54 emerging weeds across the Queensland landscape: Habitat

suitability based on the current situation (A) and in response to time and climate change scenarios (B-E). Local government boundaries are indi-

cated in thin lines, and the 10 Regional Organisations of Council (ROC) groupings are in thick lines. For the meaning of ROC abbreviations, see

Appendix S1.
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FIGURE 6 | Range shift (asa % of potential susceptible area) of QLD,
Australia emerging weed species in response to climate change scenar-
ios. Data have been pooled across the 54 species and are based on GLM
one-way ANOVA.

area of NWQLD) offers opportunities for coordinated conserva-
tion and restoration efforts in the intermediate future. In short,
areas predicted to no longer be suitable for invasive plants can
be targeted for adaptive management via active restoration
using desired native plants (Bradley et al. 2023).

4.1 | Biosecurity Risk Assessment
and Management

Very few studies have combined SDM and climate change sce-
narios in the scanning, risk assessment and prioritisation of
newly emerging weeds (e.g., Westbrooks 2004; Roger et al. 2015;
Hulme 2017); not doing so results in suboptimal risk assessment
and prioritisation (Downey et al. 2010; Jarnevich et al. 2023;
Szyniszewska et al. 2024). To derive an index of prioritisation
for the 54 emerging weed species of QLD, we used a simple sum-
mation procedure combining current occurrence records with
predicted potential range and mean response to two climate
change scenarios. Other aggregation procedures (e.g., different
weightage assignment) might optimise the index better, but this
is still highly debatable (see Caton et al. 2018; Osunkoya, Froese,
and Nicol 2019). Our derived risk index information will be use-
ful in management decisions for (i) pre-emptive ‘watch-listing’
where species are not yet present in QLD, (ii) local eradication
where populations are still very small and removal is techni-
cally and economically feasible or (iii) preventive containment,
if the emerging weed species has spread to the point where
complete eradication is no longer feasible. Our specific recom-
mendation on each species is made along with the rankings
generated (Table 4). In general, the top four species with priori-
tisation index values > 1 (Hyparrhenia rufa, Praxelis clematidea
and Chromolaena odorata)—being already present with large,
multiple population foci (exception is Ziziphus mucronata), are

challenging to manage and strategic containment of dispersal,
or pre-emptive development of biological control agents, may
be the only viable control options. Unlike the other 53 species
assessed, one species, Z. mucronata, appears to be currently ab-
sent from Queensland, as we were unable to confirm its pres-
ence from herbarium data. If this is in fact the case, it can be
moved onto a pre-border watch list. Z. mucronata is still consid-
ered high risk, as it was assigned a high prioritisation score due
to its predicted large potential habitat range (61% of QLD) and
minimal change (high stability) in response to climate change.
The remaining species (especially those ranked in the bottom 15,
e.g., Acanthospermum australe, Opuntia sulpurea—see Table 4)
are candidates for listing as ‘restricted biosecurity matter’ under
the Queensland Biosecurity Act 2014. This would not only pro-
hibit sale but also impose a clear legal obligation on landowners
to take all reasonable steps to reduce the risk of these species on
their land and, thereby, reduce the risk of dispersal.

Our prioritisation list is important as it enables efforts to be tar-
geted at highest risk species, particularly in cases where targets
are being actively sold for horticulture (garden trade) or habitat
restoration. However, this statewide list needs to be reviewed
periodically, especially in view of the fact that potential preven-
tative impacts (be it ecological, cultural, human-health related or
economic) and identified pathways have not been incorporated
into the prioritisation index but are known to be strong drivers
of management decisions (Rockwell-Postel et al. 2020; Bradley
et al. 2023; Osunkoya et al. 2022). Impact data are currently being
compiled using CABI (2024) Online website and Global Invasive
Species Database (GISD 2018), but we noticed a dearth of impact
information for many of our focal species (see also Rockwell-Postel
et al. 2020; Lozano et al. 2024). No doubt, the area investigated
(QLD) is huge—spanning an area ~1.853 million km?, and hence
management decisions like that of established IAS may have to
be locally/regionally specific (Osunkoya, Froese, and Nicol 2019;
Osunkoya et al. 2020). The fine-tuning (drilling) of the findings
reported in this work to local government and regional levels is an
aspect we are currently exploring to make the findings and man-
agement decisions more context and locally applicable (Osunkoya
et al. 2020). We hope this assessment will be used to prioritise pre-
ventative and control actions for QLD emerging weeds; a similar
one called the ‘invasive range expanders listing tool” already exists
in America (Allen and Bradley 2016).

4.2 | Caveats on Using SDMs for Introduced Weed
Species

The results of the SDMs for introduced weed species in QLD,
Australia highlight key ecological and methodological challenges.
While our SDMs effectively identified areas of habitat suitability,
the inability of the models to capture all occurrence points for cer-
tain species, for example, Giant Reed (Arundo donax), warrants
further scrutiny. This discrepancy underscores the complexities
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TABLE 4

Risk-based scores of prioritised emerging invasive plant species of Queensland, Australia, ordered along decreasing invasiveness

values. Prioritisation is based on the summation of extents of (i) current distribution, (ii) potential distribution and (iii) range shift in response to

climate change scenarios.

95% confidence

interval
Rank Species Common name Growth form Meanriskvalue Upper Lower
1 Hyparrhenia rufa Thatch grass Grass 1.26 1.189 1.331
2 Praxelis clematidea Praxelis Herb 1.23 1.159 1.302
3 Ziziphus mucronata Buffalo thorn Tree 1.098 1.026 1.169
4 Chromolaena odorata Crucita Shrub 0.977 0.906 1.049
5 Florestina tripteris Sticky florestina Herb 0.806 0.735 0.878
6 Murraya koenigii Curry Leaf Tree 0.688 0.616 0.759
7 Cereus hildmannianus Hedge cactus Succulent 0.648 0.576 0.719
8 Dalbergia sissoo Himalaya raintree Tree 0.602 0.53 0.673
9 Echinochloa polystachya Aleman Grass Grass 0.501 0.43 0.572
10 Opuntia elata Riverina pear Succulent 0.455 0.384 0.526
11 Pithecellobium dulce Madras thorn Tree 0.452 0.38 0.523
12 Spathodea campanulata African tulip tree Tree 0.443 0.372 0.515
13 Khaya senegalensis African mahogany Tree 0.422 0.35 0.493
14 Thunbergia fragrans White Lady Vine 0.386 0.314 0.457
15 Neptunia plena Bashful Bush Herb 0.379 0.307 0.45
16 Jatropha curcas Nutmeg plant Shrub 0.378 0.306 0.449
17 Mimosa pigra Giant sensitive tree Shrub 0.36 0.289 0.432
18 Amphilophium crucigerum Monkeys comb Vine 0.331 0.259 0.402
19 Gmelina arborea Gamhar Tree 0.328 0.256 0.399
20 Barleria repens Small Bush Violet Shrub 0.316 0.244 0.387
21 Opuntia dejecta Prickly pear Succulent 0.299 0.227 0.37
22 Ipomoea alba Moonflower Vine 0.298 0.227 0.37
23 Setaria parviflora Marsh bristlegrass Grass 0.297 0.226 0.368
24 Ceropegia gigantea Lantern flower Succulent 0.29 0.219 0.362
25 Cabomba caroliniana Carolina fanwort Herb 0.288 0.217 0.359
26 Dyschoriste nagchana Nagchana Bush Violet Herb 0.286 0.215 0.358
27 Elephantopus mollis Elephant's foot Herb 0.286 0.215 0.357
28 Sieruela rutidosperma Fringed Spider flower Herb 0.273 0.202 0.345
29 Gliricidia sepium Gliricidia Tree 0.26 0.189 0.331
30 Indigofera schimperi Schimper's indigo Herb 0.258 0.187 0.33
31 Cylindropuntia fulgida Boxing glove cactus Succulent 0.244 0.172 0.315
32 Leonotis nepetifolia Christmas candlestick Herb 0.236 0.165 0.308
33 Rhodomyrtus tomentosa Rose myrtle Shrub 0.223 0.152 0.295
34 Acaciella glauca Redwood Tree 0.219 0.147 0.29
35 Heteranthera reniformis Kidneyleaf Mud Plantain Herb 0.219 0.148 0.29
(Continues)
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TABLE 4 | (Continued)
95% confidence
interval

Rank Species Common name Growth form Meanriskvalue Upper Lower
36 Mesosphaerum pectinatum Comb hyptis Herb 0.219 0.147 0.29
37 Coffea arabica Coffee Shrub 0.205 0.134 0.276
38 Schizachyrium microstachyum Little bluestem Grass 0.201 0.13 0.272
39 Cenchrus purpureus Elephant grass Grass 0.2 0.129 0.271
40 Paspalum mandiocanum Broadleaf Paspalum Grass 0.196 0.125 0.267
41 Acanthospermum australe Spiny-bur Herb 0.192 0.12 0.263
42 Bignonia magnifica Glow vine Vine 0.187 0.116 0.259
43 Arundo donax Giant reed Grass 0.183 0.111 0.254
44 Syzygium jambos Rose apple Tree 0.173 0.101 0.244
45 Rotala rotundifolia Dwarf Rotala Herb 0.144 0.072 0.215
46 Diplachne uninervia Mexican sprangletop Grass 0.14 0.068 0.211
47 Manihot glaziovii Ceara rubber tree Shrub 0.133 0.062 0.204
48 Stigmaphyllon ciliatum Orchid vine Vine 0.12 0.049 0.192
49 Artemisia verlotiorum Chinese mugwort Herb 0.116 0.045 0.188
50 Coix lacryma-jobi Job's Tears Grass 0.114 0.043 0.186
51 Miconia racemosa Camasey felpa Shrub 0.098 0.026 0.169
52 Toxicodendron radicans Poison ivy Vine 0.079 0.007 0.15
53 Asparagus retrofractus Ming Asparagus fern Vine 0.023 —0.049 0.094
54 Opuntia sulphurea Sulphur cactus Succulent 0.022 —0.049  0.093

inherent in modelling invasive species with dynamic ecological
niches and varied dispersal mechanisms (Elith et al. 2010; Tingley
et al. 2014). The case of A. donax exemplifies how niche dynam-
ics and dispersal strategies influence model outcomes. Some of
our modelled weed species have become naturalised in diverse
regions across Australia, facilitated by both natural and anthro-
pogenic dispersal mechanisms. The observed distribution of these
species suggests a significant niche shift following their intro-
duction, wherein the species have expanded their ecological tol-
erance and adapted to novel environmental conditions, enabling
them to thrive in habitats distinct from their native range (Gallien
et al. 2012; Guisan et al. 2017). The observed niche shift has im-
portant implications for understanding the invasion biology of
weed species in Australia. These species' ability to exploit a broader
range of environmental conditions may be attributed to factors
such as phenotypic plasticity, genetic variability and biotic inter-
actions in the introduced range (Davidson et al. 2011; Richardson
and PySek 2011). The limitations of the standard threshold-based
approach to binarising habitat suitability maps highlight the need
for tailored modelling strategies for invasive species with complex
ecological behaviours. For species like A. donax, which exhibit
niche shifts, conventional SDMs based on global occurrence data
may fail to capture the full extent of their potential distribution in
the introduced range. Therefore, it is essential to integrate addi-
tional methodologies to enhance the accuracy and ecological rele-
vance of the models. One promising approach involves examining

the overlap between native and introduced niches to quantify the
extent of niche shift (Broennimann et al. 2012). Reciprocal model-
ling, wherein models are trained using occurrence data from one
range (native or introduced) and evaluated in the other, can pro-
vide valuable insights into the ecological adaptability of invasive
species (Tingley et al. 2014). This technique can help determine
whether the environmental conditions in the introduced range
are entirely novel or represent a subset of the species’ native niche.
Furthermore, incorporating variables related to human activity,
such as land use and transport networks, may improve model per-
formance for garden escapee weeds like A. donax that are heavily
influenced by anthropogenic factors (Gallien et al. 2012).

Overall, SDMs and their predictions possess inherent limita-
tions, including (i) issues with lack of niche saturation (equilib-
rium) and shifting environmental niches in invaded ranges for
many species, (ii) use of a limited number of climate change sce-
narios, especially of GCM, (iii) lack of explicit consideration of
species biological traits, migration rate and/or role of anthropo-
genic scenarios and (iv) suboptimal performance and inferences
where other machine learning tools (e.g., mechanistic model of
CLIMEX or Random Forest) are not used simultaneously (for a
full treatise on the above, see Gallagher, Beaumont, et al. 2010;
Elith et al. 2010; Adhikari et al. 2022; Bradley et al. 2023). In view
of the above caveats, our modelling and analyses should be in-
terpreted in the context of data limitations and our assumptions.
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Our goal, as shown in this study, is to draw generalisations rather
than provide details on invasive species effects on a case-by-case
basis. Nonetheless, in view of the increased uncertainty of spe-
cies responses to combinations of novel landscapes and climates
and imperfection with meteorological forecasting, we recom-
mend that our models are re-evaluated and revised throughout
the lifetime of their projections and, where also feasible, incor-
porate novel physiological data (Elith et al. 2010).

5 | Conclusion

We have used the MaxEnt model to predict the potential distri-
bution of 54 emerging weeds in the State of QLD, Australia. With
the AUC and TSS values obtained (AUC > 0.9 and TSS >0.6), the
models and predictions performed well. We showed that the po-
tential range and sensitivity of a given species or plant growth
form to global environmental changes do not depend upon its
geographical origin, making it impossible to use place of ori-
gin (country or continent) to forecast, a priori, the performance
of emerging weed species in their new/invaded ranges and/or
their responses to climate change (see also Gallagher, Hughes,
et al. 2010; Osunkoya et al. 2020, 2021 for similar findings for
established weeds). The model indicates that the direction and
magnitude of shift in species distribution differed among species
and plant growth types. Overall, we found evidence that trees
are range shifters with the greatest capacity in range dynamics
(size, expansion and stability)—possibly in conformity that this
group migrates fastest and disperses the furthest (Clark 1998;
Higgens et al. 2003), though other plausible explanations, such
as propagule pressure or relocation propensity beyond their
historical native environmental range (Gallagher, Beaumont,
et al. 2010), could also suffice. The remaining plant growth
forms (grasses, herbs, shrubs, vines and succulents) showed
minor and non-significant range shifts in response to climate
change. Overall, the MaxEnt model shows that climate change
is likely to increase the habitat suitability of many (but not all)
incoming invasive weeds, especially in the far north, northwest
and along coastal fringes of the eastern part of the State. This
trend reinforces the hypothesis that warming temperatures will
expand the suitable habitats of many invasive plants northward
and eastward of the Australian continent (O'Donnell et al. 2012;
Gallagher et al. 2013; Bellard et al. 2016). Based on current oc-
currence and model predictions of range dynamics in response
to climate change, we have ranked these species (risk assess-
ment/prioritisation) for policy and proactive management and
advocate for re-assessment in later years as more data on poten-
tial impact and pathways become readily available.
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