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Abstract 

Variation in somatic growth plays a critical role in determining an individual’s body size and the expression of its 
life history. Understanding the environmental drivers of growth variation in mobile organisms such as fishes 
can be challenging because an individual’s growth expression integrates processes operating at different 
spatial and temporal scales. Traditionally, otolith (ear stone) based growth analyses have focussed on temporal 
environmental variation by assuming an individual spends its whole life at its capture location. This approach ignores 
the movement potential of individuals and thus the role of spatio-temporal variation in conditions experienced. Here, 
we develop a modelling framework that incorporates individual movement information reconstructed via the analysis 
of chemical tracers in otoliths. We assess whether consideration of movement histories is important to estimating 
growth of a mobile freshwater fish, golden perch (Macquaria ambigua) at three spatial resolutions: basin-scale, 
reach-scale (movement-exclusive), and reach-scale (movement-inclusive). The predictive capacity of annual growth 
models slightly improved from the basin to the reach spatial scales (inclusive or exclusive of movement histories). 
Contrary to expectations, incorporating individual movement information, did not improve our ability to describe 
growth patterns. Golden perch growth was linked to the magnitude of and variation in spring, summer, and previous-
year (antecedent) discharge, and spring temperature. The direction and magnitude of these effects was, however, 
dependent on life stage. Adults benefitted strongly from any increase in discharge or temperature, whereas juveniles 
benefitted only from increased summer discharge and grew slower in years characterised by wetter and warmer 
springs. We suggest that, for highly mobile fish like golden perch and in the absence of fine, ‘within reach’ scale 
biological data, coarser ‘reach-scale’ environmental variation may adequately describe individual growth trajectories.
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Introduction
An individual’s growth rate is sensitive to the 
environmental conditions it experiences across its 
life [8, 43]. This environmental experience naturally 
varies through time and can be further modulated by 
movement through the landscape. Although movement 
is energetically expensive [11], it provides animals the 
opportunity to change the environmental conditions 
that they experience [4]. Traditional approaches to 
modelling growth generally ignore individual movement 
history and instead assume a fixed location throughout 
an individual’s life [47, 73], likely because undertaking 
long-term tagging projects and obtaining time-varying 
life history parameter estimates are expensive and 
practically difficult to implement [1, 13]. Such paucity 
of data precludes the detailed assessment of how spatio-
temporal environmental variation affects growth.

The resolution at which environmental predictors 
influence somatic growth depends on the interplay 
between an individual’s genotype, the spatial pattern and 
extent of environmental variation that they experience, 
and how that individual moves through the environment 
[18]. In some cases, regionally resolved environmental 

drivers may explain much of the variation in individual 
growth, especially when environmental conditions 
are highly correlated across larger spatial scales [28]. 
This situation may occur in environments that exhibit 
distinct seasonal variation or those prone to episodic 
climatic events where regional processes outweigh 
small-scale differences among habitats [9, 10]. However, 
regional environmental drivers may not capture more 
localised differences in environmental conditions that 
are important for growth [58]. Further, individuals that 
move may experience many different local environmental 
conditions throughout their life [61]. In these cases, 
linking individual growth to environmental predictors 
may require both finely resolved environmental variables 
and information on an individual’s location throughout 
their life (Fig. 1).

For many animals, it is difficult to retrospectively 
identify where they have previously lived [24, 32]. Con-
sequently, analyses attempting to identify the environ-
mental determinants of individual growth typically rely 
on regional climatic conditions or environmental data 
from locations where individuals are assumed to have 
lived, such as their capture location [44, 47]. Although 

Fig. 1 Conceptual representation of the capture location and spatio-temporally resolved location models compared in this study. The letters 
represent different locations within the river system. We highlight four individuals with different lifetime movement histories among the four river 
locations. All individuals inhabited a different number of locations, but were all captured in the same location, D, shown by the red squares. The pie 
charts represent the proportion of time that each individual spent at their capture location
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these methods have been used successfully for both 
marine and freshwater species [6, 69], they do not 
address the potential uncertainties that arise when indi-
viduals of wide-ranging species move long distances from 
their capture locations (Fig.  1). Otoliths (ear stones) in 
fish present a possible solution to this challenge, in that 
they naturally archive growth and movement information 
across an individual’s lifetime [17]. Combining move-
ment and growth information in otoliths has the poten-
tial to improve fish growth models, especially in highly 
mobile species (e.g. [7]).

Rivers provide an excellent opportunity to test how 
the resolution of environmental predictors affects fish 
growth, as species inhabiting rivers are exposed to condi-
tions that vary both spatially and temporally in an essen-
tially linear environment [57, 74]. Climatic processes, 
such as the El Niño-Southern Oscillation in Australia, 
can drive large-scale anomalies in water temperature and 
discharge levels [21]. This regional-scale environmental 
variation can have wide-ranging impacts on conditions 
dictating growth, such as promoting system productiv-
ity and habitat accessibility in years of flooding [20]. In 
contrast, environmental variation can be specific to indi-
vidual reaches within larger river basins, such as local 
fluctuations in discharge and water temperature, the 
presence of barriers, and prey abundance [25]. These 
local-scale processes can have considerable influence 
on fish growth by affecting physiological demands and 
access to feeding opportunities [27, 46, 69]. Importantly, 
most management interventions are focussed at the more 
local reach scale, so understanding the relative role of 
regional versus local environmental conditions has signif-
icant implications for the scale at which future manage-
ment regimes are designed [26, 72].

In this study, we explored how environmental drivers 
operating at different spatio-temporal scales affect the 
growth of a highly mobile fish, golden perch (Macquaria 
ambigua) in the Murray–Darling Basin (MDB) in east-
ern Australia. As the prevalence of partial migration of 
this species creates potential discrepancies between the 
actual locations occupied by individuals at a given time 
and those inferred from their capture locations (Fig.  1), 
we used otolith-derived data to determine whether an 
individual’s growth is best explained by regional, local, 
or movement-inclusive local environmental conditions. 
Specifically, we compared environmental predictors 
representing three spatio-temporal resolutions (Fig.  1): 
basin-scale, encompassing regional climatic condi-
tions affecting the entire MDB, reach-scale (movement-
exclusive), the current technique using environmental 
conditions from the capture location, and reach-scale 
(movement-inclusive), including environmental condi-
tions from actual locations of individuals in each year of 

their lives. In so doing, our study addresses fundamental 
links between growth, movement, and environmental 
conditions. We also present a methodological advance 
in how we model individual fish growth, by testing the 
implicit assumption in most growth models that fixing an 
individual’s location to the place of capture is sufficient to 
characterise the environmental conditions experienced 
over its lifetime.

Methods
Study region, sample collection and preparation
Our study encompassed 10 of the 22 major catchments 
in the Murray–Darling Basin (MDB) in eastern Australia. 
The MDB covers 1,073,000  km2, and contains two of the 
longest rivers in Australia: the Murray River (2530 km in 
length) and the Darling River (2245  km in length) [42]. 
We focussed on 11 capture locations in river reaches 
from across the MDB that vastly differ in climatic and 
hydrological characteristics (Table  1): the lower Mur-
ray River, mid Murray River, upper Murray River, Con-
damine-Balonne Rivers, Macquarie River, Murrumbidgee 
River, Loddon River, Goulburn River, Campaspe River, 
lower Darling River, and the mid Darling River (Supp. 
Figure  1). Fish were collected between 2013 and 2018 
and ranged from 2 to 26  years of age. The study there-
fore spanned a period of considerable hydrological varia-
tion, including the longest drought on record (Millenium 
Drought 2001–2009 [70]) followed by large, drought-
breaking floods in 2010–2011.

We sourced 559 golden perch otoliths from previous 
studies conducted by Zampatti et al. [79], Zampatti et al. 
[78], and Zampatti et  al. [76] (Table  1). A 400–600  μm 
thick transverse section was prepared from each otolith 
for stable isotope and annual growth increment analyses, 
allowing us to recreate individual movement and growth 
histories.

Quantifying movement and growth
We took a digital image of each otolith using a CCD digi-
tal camera mounted onto a Leica M80 dissecting micro-
scope at 16 × magnification. We estimated the age of each 
individual by counting the opaque zones on the dorsal 
side of the otolith section [2]. We re-aged a subsample 
of the otoliths (n = 123) to calculate the average percent 
error (APE) of ageing estimates, a common measure of 
precision in age estimation. Next, we measured the dis-
tance between the outer edges of sequential opaque 
zones to estimate annual growth rates [17]. We did not 
include the first annual increment, as the width of this 
increment can vary due to factors unrelated to growth, 
such as spawning date and sample preparation.

Previous work [78, 79] had already analysed transects 
of strontium isotope ratios (87Sr/86Sr) in otolith 
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sections using laser ablation inductively coupled mass 
spectrometry (LA-ICP-MS). Dissolved 87Sr/86Sr in 
water is primarily derived from the underlying geology 
of the local and upstream areas and can provide a 
geographically unique marker in otoliths [36]. Otoliths 
were ablated along a transect from the primordium to the 
outer edge to reveal movement histories of individuals 
throughout their lives.

To estimate individual locations, we used an 
assignment algorithm described in Zampatti et  al. [76], 
and Zampatti et  al. [77], that is based on an algorithm 
developed by Brennan and Schindler [12]. The algorithm 
used a regression tree approach, which began at the 
location of capture and assigned a probability that each 
stationary section in an otolith 87Sr/86Sr profile was 
from any of the possible river reaches. The algorithm 
divided otolith 87Sr/86Sr profiles into non-transitionary 
sections. Working backwards from the capture location, 
the algorithm assigned a probability that each non-
transitionary section was formed in each river reach, 
by comparing the average 87Sr/86Sr from the stationary 
period in the otolith transect with the average 87Sr/86Sr 
from each river reach. The algorithm then considered 
the distance of each reach from the current location 
of the individual, by using a multiplier that decreased 

with distance to essentially rule out reaches that aren’t 
possible for a fish to have moved to and to assign a 
higher probability to nearby reaches. In cases where 
the fish had moved location within a growth increment, 
the location with the higher percentage of growth was 
selected. The algorithm also included an option for a 
hatchery natal origin, whereby individuals were assigned 
as a hatchery fish if 87Sr/86Sr matched that of the water 
at a hatchery and the 87Sr/86Sr profile of the fish had a 
sharp change between 200 and 800 μm from the core of 
the otolith (within approximately the first two months 
of life after which individuals are stocked into the wild). 
All assignments were reviewed and validated by experts 
familiar with the study species and relevant system. 
Approximately 92% of model-derived spatial allocations 
were deemed correct by experts, with the remaining 8% 
of individuals having at least one manual change to their 
annually resolved location. Changes may have occurred 
when, for example, the algorithm predicted a fish to be 
residing in a reach when actual environmental conditions 
such as low flow levels made instream barriers impassible 
and thus precluded a fish moving into the reach.

Table 1 The total number, age and size range of golden perch collected from locations across the MDB, the average, minimum 
and maximum number of increments measured per year and location combination, and a summary of hydrological and climatic 
conditions

Capture Location Number of fish Year range 
of growth 
measurements

Growth 
increments per 
year × location 
(mean & range)

Age 
range 
(years)

Size range (mm) Mean 
annual flow 
(ML/Y)

Climatic conditions 
From Larkin et al. 
[40]

Lower Murray River 146 1998–2017 42.4 (6–141) 2–21 134–515 5,052,505 Wet winter, low sum-
mer rainfall

Mid Murray River 109 1998–2017 36.4 (1–98) 2–20 240–522 3,173,092 Wet winter, low sum-
mer rainfall

Upper Murray River 87 1992–2017 27.2 (1–84) 3–25 273–549 4,332,736 Wet winter, low sum-
mer rainfall

Lower Darling River 43 2009–2017 25.8 (7–29) 2–10 95–451 629,869 Seasonally uniform 
rainfall

Mid Darling River 31 2008–2017 14.7 (1–31) 3–11 298–479 1,216,745 Seasonally uniform 
rainfall

Loddon River 12 1997–2017 4.4 (1–12) 2–22 305–518 56,240 Wet winter, low sum-
mer rainfall

Goulburn River 46 1995–2017 12.6 (1–40) 2–24 171–520 1,000,958 Wet winter, low sum-
mer rainfall

Campaspe River 20 2005–2017 5.6 (1–20) 2–14 220–490 117,905 Wet winter, low sum-
mer rainfall

Macquarie River 6 2011–2017 5.3 (5–6) 3–8 319–397 61,994 Seasonally uniform 
rainfall

Condamine-
Balonne River

20 2009–2017 11.3 (3–20) 2–10 214–462 217,655 Wet summer, low 
winter rainfall

Murrumbidgee 
River

39 1998–2017 14.2 (1–39) 3–21 295–500 2,441,447 Wet winter, low sum-
mer rainfall
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Statistical analysis
We used a series of linear mixed effects models to 
relate annual growth (otolith increment width, mm) to 
environmental predictors measured at each of three 
spatial scales. Fixed effects were age, life stage, and age 
class. We included age to describe the strong effect of age 
on growth, and included life stage as an interaction term 
with the environmental predictors because we expected 
environmental conditions to have different effects on the 
growth of juveniles (2  years old), sub-adults (3–4  years 
old), and adults (> 4 years old) [38, 64]. Age class was the 
age at which an individual was captured and was included 
to account for any biases in growth rate associated with 
differential mortality or unintentional age selectivity in 
the capture of individuals [48].

We included a series of random effects specific to each 
model. At all three spatial scales, we included a random 
intercept and slope that allowed the effect of age to dif-
fer among individuals (age | fish identity). This term 
also accounted for the non-independence of increments 
formed in otoliths of the same fish. The basin-scale model 
included a random intercept for year (1 | year) to account 
for non-independence of increments formed by different 
fish in the same year, and had the following structure:

Basin‑scale

growth ~ (life stage × basin-scale environmental pre-
dictors) + 
age + age class + 
(age | fish identity) + 
(1 | year).

The reach-scale (movement exclusive) model included 
a random intercept for capture location to account for 
differences in growth among capture locations (1 | cap-
ture location), and a nested random effect of years within 
capture locations to account for spatio-temporal varia-
tion in growth (1 | capture location: year):

Reach‑scale (movement exclusive)

growth ~ (life stage × capture location environmental 
predictors) + 
age + age class + 
(age | fish identity) + 
(1 | capture location) + 
(1 | capture location: year).

The reach-scale (movement inclusive) model included 
a random intercept for annual location to account for 
spatial differences in growth (1 | annual location) and a 

random intercept to account for differences in growth 
among natal locations (1 | natal origin). This model also 
included a nested random effect of years within annual 
locations to account for spatiotemporal variation in 
growth (1 | annual location: year):

Reach‑scale (movement inclusive)

growth ~ (life stage × spatio-temporally resolved envi-
ronmental predictors) + 
age + age class + 
(age | fish identity) + 
(1 | natal origin) + 
(1 | annual location) + 
(1 | annual location: year).

Environmental predictors
We used a different set of environmental predictors at 
each of the three spatial scales. Predictors were defined 
by water years (Jul 1–Jun 30) to ensure that each vari-
able captured the key fish growing seasons, particularly 
over the Austral summer (Dec–Feb) that extends across 
multiple calendar years and when water temperature 
is higher and food is more abundant. The basin-scale 
model included the southern oscillation index (SOI) for 
each year and the annual air temperature anomaly for the 
MDB region. SOI and temperature anomaly data were 
sourced from http:// www. bom. gov. au/ clima te/. The SOI 
is a measure of El Niño and La Niña events in the Pacific 
Ocean, with negative values (El Niño) reflecting warmer 
and dryer conditions and positive values (La Niña) 
reflecting cooler and wetter conditions across eastern 
Australia [14]. The mean annual temperature anomaly 
describes the deviation of annual mean temperature from 
the long term (1961–1990) mean temperature [14].

The two reach-scale models used the same 
environmental variables but measured at different 
locations. The movement-exclusive model used predictor 
variables measured at the location of capture, while the 
movement-inclusive model used predictor variables 
measured at annually resolved locations inhabited by 
individuals. The reach-scale models included water 
temperature in spring (Sep–Nov) (spring temperature) 
and summer (Dec–Mar) (summer temperature), median 
daily discharge in spring (Sep–Nov) (spring discharge) 
and summer (Dec–Mar) (summer discharge), the 
coefficient of variation in spring discharge (Sep–Nov) 
(spring discharge variability) and summer discharge 
(Dec–Mar) (summer discharge variability), and 
maximum discharge in the previous (antecedent) water 
year (antecedent discharge). We divided median daily 
discharge (for the specified months) and maximum 

http://www.bom.gov.au/climate/
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antecedent discharge by the median of maximum 
annual discharge at each location from 1991–2019. 
We standardised variables in this way to improve 
comparability of discharge metrics among rivers that 
differed substantially in size. We standardised by the 
median of maximum values rather than median discharge 
because the median discharge in the intermittently 
flowing Condamine-Balonne Rivers was 0 ML for some 
years during the reference period (1991–2019). Water 
temperature data were only available for some years 
and reaches so missing values were estimated from a 
modelled relationship between water temperature, date, 
river discharge, and air temperature data (Supp. Table 1.). 
All data were sourced from:

http:// data. water. vic. gov. au/ static. htm, https:// river 
data. mdba. gov, https:// water- monit oring. infor mation. 
qld. gov. au/, https:// realt imeda ta. water nsw. com. au/, and 
http:// www. bom. gov. au/ clima te/ data/.

We examined the collinearity between environmental 
predictors with pairwise Pearson’s r and excluded models 
that included two variables that had a correlation greater 
than 0.7 [22]. Spring and summer temperature exceeded 
this pairwise correlation (Supp. Figure  2) and so were 
included only in competing models. To support interpre-
tation of model comparisons we used linear regressions 
to estimate correlations between environmental predic-
tors from the movement-exclusive and movement-inclu-
sive models, that is, comparing environmental predictors 
for each individual assuming they do not move from their 
capture location to those where movement was allowed. 
In addition, we used a correlation matrix to identify spa-
tial correlations in environmental predictors among loca-
tions in the MDB.

Model selection and validation
We used model selection based on Akaike’s Informa-
tion Criterion (AICc) corrected for small sample size to 
identify the highest-ranking models at each spatial scale, 
where the model with the lowest value was deemed to 
be the most parsimonious [15]. First, we compared all 
models within each spatial scale, then compared the best 
model from each of the three spatial scales against each 
other. We inferred strong support for any models within 
2 AICc of the top-ranked model (equivalently, ΔAICc < 2) 
[16]. We fitted models with maximum likelihood for ini-
tial model selection and refitted the highest-ranked com-
bination of fixed and random effects at each spatial scale 
with restricted maximum likelihood (REML) to produce 
unbiased parameter estimates. We fitted models using 
the lme4 package (Bates et  al. 2015) in the program R 
(v3.6.2) [59] and compared them using the AICcmodavg 
package [45].

We approximated the predictive capacity of the fitted 
models at each spatial scale using tenfold cross validation 
[62]. Ten-fold cross validation involves splitting the data 
into ten equal-sized folds, fitting the model to the data 
set with each fold removed, and using the fitted models 
to predict growth in the held-out fold. We split out data 
into ten groups of equal numbers of fish, which included 
all increments associated with each fish. We calculated 
cross-validated model fits using the marginal  R2 [53], 
which assesses model fit at the population level (i.e., 
without knowledge of random effect levels in the hold-
out data).

Results
We measured 3538 annual otolith increments formed 
between 1992 and 2017 in 559 golden perch (Table  1). 
The average number of growth increments that were 
measured for each year and capture location combination 
and included in the models ranged between 4.4 and 42.4 
(Table  1). The average percent error from the precision 
analysis was 1.05%, and 84.55% age estimates were agreed 
across readings. Based on the assignment algorithm, 51% 
of fish moved at least once in their life and 49% remained 
resident, and 82% of the annual growth increments were 
formed within the capture location, while 18% were 
formed in another location (Supp. Table  2). There were 
24 otolith increments that were assigned to two river 
reaches (the Broken River, and the Edward-Wakool River 
system) that were not from any of the reaches where fish 
sampling occurred. Across all models, the fixed effect 
of age explained the most variation in growth, with 
growth rates (otolith growth increments) declining as age 
increased (Supp. Table 3). There was also an effect of age 
class, with individuals captured at younger ages having 
faster growth rates (Supp. Table 3). Growth rates differed 
among years but showed similar annually resolved 
patterns in the movement-exclusive and movement-
inclusive models (Fig. 2).

The top-ranked basin-scale model included both the 
interaction between life stage and SOI and the interaction 
between life stage and temperature anomaly (Table  2). 
This model had a cross-validated  R2 equal to 0.78, which 
was 0.01 more than the base model that excluded envi-
ronmental effects (Table  2). There was a weak, negative 
effect of SOI for juvenile and sub-adult growth and a 
weak, positive effect of SOI on adult growth (Supp. Fig-
ure  3). There was a stronger negative effect of annual 
temperature anomaly on juvenile growth and a positive 
effect on adult growth (Supp. Figure 3). The second high-
est-ranked basin-scale model had ΔAICc of 4.

The AICc value of the best movement-exclusive model 
was over 400 units less than the best basin-scale model, 
which revealed that including environmental variables 

http://data.water.vic.gov.au/static.htm
https://riverdata.mdba.gov
https://riverdata.mdba.gov
https://water-monitoring.information.qld.gov.au/
https://water-monitoring.information.qld.gov.au/
https://realtimedata.waternsw.com.au/
http://www.bom.gov.au/climate/data/
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with finer resolution improved model fit (Table  2). 
Four models had strong support among the movement-
exclusive models that were compared (ΔAICc < 2). The 
top-ranked model included proportional spring and 
summer discharge, variability in spring and summer 

discharge, antecedent discharge, and spring water 
temperature (Table  2). This model had cross validated 
 R2 equal to 0.81, which suggests that it had only slightly 
higher predictive capacity than the best basin-scale 
model (Table 2). The other three models that had strong 

Fig. 2 Plot of temporal growth deviations (best linear unbiased predictors [BLUPs] ± SE) among river reaches, with positive and negative 
values indicative of years with faster/ slower growth than average (horizontal dotted line). The red line is the average growth deviation 
of individuals across the Murray–Darling Basin. The green line is growth from the fixed movement-exclusive locations and the blue line is growth 
from the spatio-temporally variable movement-inclusive model
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support included different combinations of the same 
predictors as in the top-ranked model (Table 2).

Including individual movement histories and adding 
spatially resolved random effects did not appreciably 
improve the performance of the growth models relative 
to that of the movement-exclusive models (Table  2). 
The top-ranked, movement-inclusive model included 
proportional spring and summer discharge, antecedent 
discharge, and spring water temperature (Table  2). 
The other model with ΔAICc < 2 from the movement-
inclusive model comparison included the same predictors 
as the best model with the addition of summer discharge 
variability (Table  2). Despite having a larger AICc value 
than its movement-exclusive counterpart (ΔAICc = 37), 
the top-ranked movement-inclusive model had an 
identical cross validated  R2 value of 0.81, indicating that 
both models had the same predictive capacity (Table 2).

Golden perch growth differed among years and among 
locations, with similar fitted trends and estimated 
environmental effects in the top-ranked movement-
exclusive and movement-inclusive models (Fig.  3; Supp. 
Figure  4). Growth of juveniles was positively associated 
with summer discharge, spring and summer discharge 
variability, and negatively associated with spring 
discharge, antecedent discharge, and spring temperature 
(Fig. 3; Supp. Figure 4). Growth of adults was positively 
associated with spring discharge, summer discharge, 

antecedent discharge, summer discharge variability, 
and increased spring temperatures, but was negatively 
associated with spring discharge variability (Fig.  3). 
Growth of sub-adults was negatively associated with 
spring discharge, antecedent discharge, spring discharge 
variability, and spring temperature, and was positively 
associated with summer discharge and summer discharge 
variability (Fig. 3; Supp. Figure 4).

Environmental predictors used in the movement-
exclusive and movement-inclusive models were posi-
tively correlated (Pearson’s r = 0.61–0.96; Supp. Figure 5). 
Environmental predictors were highly correlated among 
reaches within the southern region of the MDB, includ-
ing reaches of the Murray River and tributaries, and 
within the Barwon-Darling River system in the north of 
the basin (Supp. Figure 6). There were, however, negative 
correlations between antecedent discharge and between 
summer variable discharge in the northern and southern 
reaches of the MDB (Supp. Figure 6).

Discussion
Our study used information naturally archived in golden 
perch otoliths to identify links between individual growth 
and regional, inferred local, or actual local environmental 
conditions. Although reach-scale environmental predic-
tors outperformed basin-scale predictors, incorporating 
information on individual movements over a large spatial 

Table 2 Comparison of models including environmental conditions from the three different spatial scales

The left column describes the environmental conditions in all basin-scale models, and the five best movement exclusive and movement inclusive location models. 
The three right columns are the degrees of freedom in the model (df ), the AICc value, ΔAICc value, and marginal  R2 values based on tenfold cross validation. The top 
ranked model from each model comparison is shown in bold

Environmental predictors df AICc ΔAICc within 
spatial scale

ΔAICc across 
spatial scale

Cross-
validated 
 R2

Basin-scale models

Life stage × (SOI + Temp anomaly) 16 − 670.70 0.00 419.75 0.78
Life stage × Temp anomaly 13 − 666.46 4.24 0.79

Life stage × SOI 13 − 646.48 24.22 0.79

Null model 8 − 615.76 54.94 0.77

Reach-scale models (movement exclusive)

Life stage × (Spring discharge + Summer discharge + Antecedent discharge + Spring 
discharge variability + Summer discharge variability + Spring temperature)

29 − 1090.45 0.00 0.00 0.81

Life stage × (Spring discharge + Summer discharge + Antecedent discharge + Spring 
discharge variability + Spring temperature)

26 − 1090.37 0.08 0.81

Life stage × (Spring discharge + Summer discharge + Antecedent discharge + Spring 
temperature)

23 − 1090.16 0.30 0.81

Reach-scale models (movement inclusive)

Life stage × (Spring discharge + Summer discharge + Antecedent discharge + Spring 
temperature)

24 − 1053.42 0.00 37.03 0.81

Life stage × (Spring discharge + Summer discharge + Antecedent discharge + Summer 
discharge variability + Spring temperature)

27 − 1052.01 1.40 0.80

Life stage × (Spring discharge + Summer discharge + Antecedent discharge + Summer 
temperature + Spring temperature)

27 − 1049.91 3.51 0.80
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scale did not yield further improvements in model per-
formance. Here, we discuss our findings in relation to 
golden perch ecology before exploring the wider impli-
cations of movement and an individual’s environmental 
experience on models of fish growth.

Environmental determinants of growth in a highly mobile, 
freshwater fish
Spring water temperature was positively associated with 
adult growth. Fast growth in response to increased water 
temperature has been recorded in many fish species [46, 
49], likely explained by close association between water 
and fish body temperatures [33]. Water temperature 

Fig. 3 The predicted effect (± 95% CI) of relative values of A spring discharge, B summer discharge, C antecedent discharge, D spring temperature, 
E variability in summer discharge, and F variability in spring discharge on life stage-specific golden perch growth (otolith increment, mm), 
as derived from the best temporally resolved reach-scale (movement exclusive) model. The blue lines are juvenile growth, the orange lines 
sub-adult growth, and the green lines adult growth
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influences several important determinants of somatic 
growth, such as metabolic rate, digestion rate, muscle 
activity, and reproductive energy allocation [3, 41]. Sur-
prisingly, spring water temperature was negatively asso-
ciated with juvenile and sub-adult growth. Although 
consistent with a recent study of another, less-mobile 
MDB freshwater fish [64], the mechanisms driving 
decreased juvenile growth rates in higher temperatures 
are unclear. These negative associations may reflect 
changes to metabolic activity in different temperatures, 
or shifts in the abundance, size, and behaviour of impor-
tant macroinvertebrate prey species at warmer tempera-
tures, which would influence food quality and availability 
and, consequently, growth rates [56].

Increased spring and summer discharge were positively 
associated with growth of adult golden perch, likely due 
to boosts in productivity stimulated by increased river 
discharge [31]. These effects were quite pronounced in 
our data set due to the Millennium Drought between 
1997–2010 [52], followed by the significant floods of 
2011 and in 2016/17 (Fig.  3). The productivity of lower 
order consumers and prey species of predatory fish in 
large rivers are supported by organic carbon originat-
ing from both instream sources and inundation of sur-
rounding floodplains [34, 71]. The positive associations 
between growth and antecedent discharge reflect these 
productivity pathways, while also reflecting potential lags 
in productivity pulses from low to high trophic orders 
[5, 69]. The positive association with summer discharge 
variability indicates that positive growth outcomes can 
also be achieved in low flow years, possibly as a result of 
discharge variability promoting improvements in water 
quality and increases in food availability through inter-
mittent wetting of productive habitats [65, 69].

Growth of juveniles and sub-adults had similar, positive 
associations with summer discharge but were negatively 
associated with spring discharge. Juveniles may prefer 
shallow, low-velocity habitats and access to these 
areas may be limited during high spring flows [30, 64]. 
Similarly, discharge above critical thresholds can curtail 
feeding by inhibiting individual movement at local scales 
[67]. The links between growth and discharge may also 
depend on the direction of movement and the spatial 
distribution of food resources, with individuals swimming 
against or with high discharge and encountering regions 
with differing abundances of prey [19, 54]. The effects 
of high spring discharge are more likely to be prevalent 
in the southern regions of the MDB, which is where the 
majority of our samples were collected and where higher 
discharge is more regularly observed. The interactions 
between discharge and channel geomorphology in the 
northern regions of the MDB is more complex due to the 

abundance and location of floodplain habitat and variable 
timing of rainfall events.

Movement, spatial resolution, and individual growth
Knowledge of the locations an individual inhabited 
across its life, at least at the resolution possible for our 
analysis, did not improve growth model performance 
relative to equivalent models based on a single, inferred 
location. This finding suggests that in the absence of 
fine-scale, ‘within reach’ environmental data, golden 
perch growth responds to broader, reach-scale envi-
ronmental conditions that are sufficiently characterised 
without needing information on the annual location of 
individuals (light-grey shaded region in Fig. 1). Environ-
mental conditions are generally correlated across space 
and time [39, 50], and these correlations are likely to 
be exacerbated in river systems due to their directional 
and interconnected nature [35, 66]. In our study system, 
environmental conditions were correlated more strongly 
between river reaches that were geographically close 
or highly connected (Supp. Figure  6). Additionally, we 
observed limited movement between the geographically 
distinct and disconnected southern and northern reaches 
of the MDB. Given that wide-ranging and highly mobile 
animals can integrate environmental signals at multi-
ple scales, from local habitat patches to entire regions 
[44, 58], we suggest that highly mobile species may have 
similar environmental experiences even over large spatial 
extents [60, 68, 75]. This may not, however, be the case 
for animals that move across distinct environmental gra-
dients, such as diadromous fishes.

Processes operating at fine spatial or temporal resolu-
tions, such as the availability of microhabitats and short-
term, local movements, are likely to be highly relevant 
to individual growth. However, no methods currently 
exist to easily recreate these processes for historical, 
long-term datasets. Indeed, such data may never become 
available, particularly over the often large temporal and 
spatial scales relevant to mobile species. A lack of finely 
resolved environmental data is often suggested as a key 
factor leading to poor model performance or inaccu-
rate results [23, 63]. In contrast, our study suggests that 
growth patterns of long-lived, highly mobile species 
may, in some instances, be better represented by coarser, 
reach-scale environmental conditions. Importantly, it is 
these reach-scale conditions that are most often targeted 
by management interventions [29]. In the case of regu-
lated rivers, reach-specific discharge may be manipulated 
to target aspects of individual performance, be it growth, 
reproduction, recruitment, or survival [37, 51, 55], to 
facilitate the sustainable management of freshwater fish 
populations.
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