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Abstract
Mungbean is an important sub-tropical legume crop grown across Asia, Africa, and

Australia. Yield improvement is crucial for expanding production, but phenotyping

important traits across diverse environments using current approaches is challenging,

limiting the scale and complexity of information captured. High-throughput phe-

notyping platforms offer a solution by rapidly screening traits at scale. This study

deploys an unmanned aerial vehicle (UAV) platform to determine the potential of

phenotyping a range of agronomic and physiological traits within a diverse mungbean

population evaluated across three field trials. Three predictive data-driven modeling

approaches were undertaken to evaluate performance accuracy in predicting these

traits: linear regression, stepwise regression, and partial least squares regression.

Results show that using the geometric trait “coverage” as a proxy is most suitable

for screening visual traits like early vigor. For functional traits (i.e., aboveground

biomass), predictive data-driven models demonstrate high accuracy during early- and

mid-canopy development stages (R2 0.79, root mean square error [RMSE] 4.08 and

R2 0.8, RMSE 26.92, respectively), but accuracy declines in late-canopy development

(R2 0.33 and RMSE 43.15). Prediction accuracy can be optimized by using different

modeling approaches at different stages during the transition from early- to mid-

canopy development as well as canopy closure. Similar findings were observed when

examining the prediction models for the physiological trait, stomatal conductance

(R2 0.69 and RMSE 0.10). These approaches are expected to enable breeders and

researchers to incorporate UAV-based phenotyping systems into mungbean improve-

ment programs. Such approaches might be most efficiently used at scale if applied

as part of a “real-time” calibration approach.

Abbreviations: DEM, digital surface elevation model; GCP, ground control point; LM, linear regression model; NDRE, normalized difference red edge;
NDVI, normalized difference vegetation index; OSAVI, optimized soil-adjusted vegetation index; PLS, partial least squares; RMSE, root mean square error;
SWR, stepwise multilinear regression; UAV, unmanned aerial vehicle; VI, vegetative index; VIF, variation inflation factor.
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1 INTRODUCTION

Mungbean [Vigna radiata (L.) R. Wilzeck var. radiata] is a
significant cash and food crop globally, occupying over 6 mil-
lion ha (Kim et al., 2015). Mungbean has a short growing
duration, making it an ideal rotation crop for inclusion in a
wide range of subtropical farming systems. Australian mung-
bean production has steadily grown in the past three decades
from an average of 17,583 tonnes across 33,325 ha between
1990 and 1995 to 107,318 tonnes across 89,297 ha between
2015 and 2021 (ABARES, 2020). Demand is expected to
increase significantly over the next decade with the increased
interest in the plant-based protein sector (Colgrave et al.,
2021). Despite the nutritional and economic value of mung-
bean becoming more apparent (Nair & Schreinemachers,
2020), mungbean expansion in Australia is constrained by
yield variability across seasons (Y. S. Chauhan & Williams,
2018; Rachaputi et al., 2019). This is a result of susceptibility
to abiotic and biotic stresses and physiological constraints that
could be optimized to improve productivity under different
production scenarios (Van Haeften et al., 2023). Conse-
quently, concerted efforts are underway to identify new
genetics for important agronomic and physiological traits
that could support and improve productivity across different
production environments (Australian Centre for International
Agricultural Research (ACIAR), 2022; Sandhu & Singh,
2020).

In crop improvement programs, field-based phenotyping is
key to assess and characterize trait value and trait relationships
that underpin productivity at a single plant- or canopy-scale
(Pieruschka & Schurr, 2019). However, current field-based
phenotyping methods for traits such as vigor, aboveground
biomass, and plant height often require manual collection of
data, and are labor intensive, costly, and prone to subjectiv-
ity, as well as potentially destructive to plants (Borra-Serrano
et al., 2020; Potgieter et al., 2018). For example, harvest
index is a key trait in mungbean as it is associated with effi-
cient conversion of resources to grain yield (Collins et al.,
2019; M. R. Smith et al., 2018). However, one of the major
components of estimating harvest index is total aboveground
biomass accumulation, which due to the phenotyping chal-
lenges, makes it difficult to evaluate this trait at a large scale
across multiple environments. There are also many other key
physiological traits that contribute to yield potential and adap-
tation to abiotic stress that cannot be captured by eye or
efficiently at a large scale. For instance, canopy temperature
is linked to water use efficiency, particularly under water-
limiting environments (Conaty et al., 2015; Condon et al.,
2004). These limitations create a phenotyping bottleneck,
which can ultimately restrict the scale of experiments across
environments and limit the number of genotypes examined
(Furbank et al., 2019; Potgieter et al., 2018). This bottleneck is
further pronounced as advances in gene sequencing technol-

Core Ideas
∙ Unmanned aerial vehicle (UAV)-derived coverage

serves as a useful proxy for early vigor, surpassing
traditional scores in resolution and accuracy.

∙ Prediction of aboveground biomass can be opti-
mized by applying different prediction models
across crop development.

∙ UAV-derived imagery can phenotype canopy traits
unable to be visually assessed, such as stomatal
conductance.

ogy have increased the availability of genomic information,
which requires connectivity with phenotypic data to be able
to connect the plant’s genetic makeup with an observable
characteristic that could be optimized for crop improvement.

The recent development of high-resolution sensors onboard
unmanned aerial vehicle (UAV) platforms offers the oppor-
tunity to overcome many of the challenges associated with
traditional phenotyping methods, due to their ability to rapidly
capture accurate, non-destructive measurements at a large
spatial and temporal scale (Chapman et al., 2014; Hassan
et al., 2018; D. T. Smith et al., 2021). A range of sensors can
be placed onboard these platforms, for instance, multispectral
and hyperspectral sensors, to capture high-resolution data that
may not be captured from the ground. The reflectance data
captured by multispectral and hyperspectral sensors allow for
the determination of vegetative indices (VIs) that are used
as a proxy for vegetation classification and plant productiv-
ity estimates (e.g., Brunner et al., 2024; Selvaraj et al., 2020).
Additionally, digital surface models can be generated, which
allow researchers to capture additional physiological traits
such as plant height and volume, which have been shown to
improve prediction accuracy of complex traits such as above-
ground biomass (Bendig et al., 2015; Hassan, Yang, Fu et al.,
2019; Yue et al., 2017).

Recent studies exploring UAV-derived data have success-
fully evaluated a range of morphological and physiological
traits in many major crops such as sorghum (e.g., Gano et al.,
2021), wheat (e.g., Aparicio et al., 2000), maize (e.g., Vina
et al., 2004), and soybean (e.g., Crusiol et al., 2019). Fur-
ther complex approaches have utilized plant height, plant
width and two VIs, normalized difference vegetation index
(NDVI), and normalized difference red edge (NDRE) index
to estimate aboveground biomass with high precision in com-
mon bean (Barboza et al., 2023) and predicted radiation use
efficiency in wheat by using VIs within partial least square
models (Robles-Zazueta et al., 2021). In mungbean specif-
ically, UAV-based phenotyping is emerging but limited. A
recent study demonstrated the potential of this technology
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by successfully linking fractional canopy cover and VIs with
light interception and aboveground biomass across multi-
ple vegetative stages in three mungbean cultivars (Xiong
et al., 2023). While traditional ground-based phenotyping
approaches in mungbean have provided invaluable insight into
the mechanisms that drive yield development (Geetika, Ham-
mer et al., 2022, Geetika, Collins et al., 2022), the application
of UAV imagery platforms in related legume crops and the
recent mungbean UAV study showcase the promising results
of increasing accuracy and precision of data collection across
a larger scale, as well as measuring unexplored traits, while
reducing cost and labor requirements.

We expand this approach further in mungbean and predict
a range of traits across vegetative and reproductive stages in
diverse mungbean pre-breeding germplasm. Therefore, this
study aims to explore the potential of utilizing UAVs mounted
with a multispectral sensor to phenotype several types of agro-
nomic traits (visual, functional, and physiological), including
early vigor, aboveground biomass, and stomatal conductance,
in diverse mungbean accessions grown across multiple envi-
ronments. Using the multispectral sensor, this study will iden-
tify key VIs and geometric traits that can be used to predict
traits of interest for utilization in crop improvement programs.

2 MATERIALS AND METHODS

2.1 Plant material and field trial design

This study was conducted using a mungbean nested associ-
ation mapping (NAM) population previously developed by
the Queensland Department of Primary Industries (DPI) and
the Queensland University of Technology (Noble, 2017). The
population of 2060 lines was developed using 31 donor par-
ents, which covered known genetic and phenotypic diversity
for phenology, architecture, grain size, and grain yield. In
addition, a diversity panel was also studied, which included
the NAM parents, five Burmese cultivars that are widely
growth throughout southern Asia, as well as a blackgram
(Vigna mungo) cultivar, Onyx-AU. Accessions AGG 325964
(M10403), AGG 325968 (M12130), AGG 325973 (M11238),
68 AGG 325977 (M08019), and AGG 325976 (Maus12-
053) are co-owned by DPI and the Grains Research and
Development Corporation.

A subset of the NAM population, as well as the NAM par-
ents and additional lines, was sown in 2022 and 2023 at the
Pacific Seeds Foundation Farm, Allora (Allora22–28.06 ˚S;
151.96 ˚E) and The University of Queensland (UQ) Gatton
Campus (Gatton22–28.06 ˚S; 151.96 ˚E). An additional trial
undertaken in 2023 also at UQ Gatton Campus (Gatton23)
was sown with just the NAM parents (Table 1). Allora22 and
Gatton22 were grown under rainfed conditions with no sup-
plementary irrigation, whereas Gatton23 was irrigated. These T
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T A B L E 2 Summary of flights captured in this study corresponding to the ground-based measurement captured.

Allora22 Gatton22 Gatton23
Trait Date DAS Date DAS Date DAS
Vigor Feb. 10 20 Feb. 22 21 Jan. 10 19

Aboveground biomass
(vegetative)

NA NA NA NA Jan. 25 34

Aboveground biomass
(flowering)

Mar. 16 54 Mar. 22 49 Feb. 13 53

Aboveground biomass
(podding)

Apr. 12 81 Apr. 19 77 Mar. 9 77

Stomatal conductance
(reproductive development)

Mar. 16 54 Apr. 5 63 NA NA

Note: Date of flight and days after sowing (DAS) are presented. NA, measurement not captured for that particular trait at that specific trial.

trials used a partially replicated design where the diversity
panel was replicated four times and NAM lines were repli-
cated twice. All germplasm was planted in two rows with a
0.76 m row spacing in Allora22 and Gatton22. Plot length
varied with location where Gatton22 had 4-m plots and Allora
had 3.5-m plots. In Gatton23, germplasm was sown in a ran-
domized block design within two rows in 4-m × 1-m plots
(0.5 m row spacing). All trials were sown in model-based row-
column design using genetic relatedness (Cullis et al., 2020),
which was implemented using the R statistical package “od”
(https://mmade.org/optimaldesign/).

Consistent management was applied across all trials includ-
ing inoculation of seeds at sowing with Group I inoculum
(EasyRhiz, New Edge Microbials Pty. Ltd.) and basal appli-
cation of Starter Z fertilizer at a rate of 25 kg ha−1. Field trials
were monitored regularly throughout the growing season
for pest, disease, and weed presence. Appropriate herbi-
cide, fungicide, and pesticide applications were implemented
promptly at the first sign of pest pressure or disease symp-
toms as recommended by industry standards (GRDC, 2017)
to ensure optimal plant growth and development. In addition,
all weeds were manually removed, when required, to ensure
trials were free of weeds at the time of each UAV flight.

2.2 Ground-based measurements

2.2.1 Early vigor visual scoring

Early vigor refers to the rapid development of leaf area at the
early stage of the crop’s development. High early vigor has
been shown to improve weed competitiveness, which is of
value to mungbean production systems (Bertholdsson, 2005;
Rebetzke & Richards, 1999). Across all four trials, early vigor
was captured by recording a 1–9 visual score 2 weeks after
sowing, with 1 denoting the most vigorous phenotype (larger
plants with greater coverage and biomass) and 9 denoting
the least vigorous phenotype (smaller plants with reduced

coverage and biomass) (Table 2). The vigor score incorpo-
rates multiple plant characteristics including ground coverage,
plant height, and overall plant robustness, providing a com-
posite assessment of early-stage plant development and this
visual scoring system is the established standard in breeding
programs (Kipp et al., 2014; Nguyen et al., 2018). To ensure
scoring consistency, reference cultivars (Crystal and Celera
II-AU) with known high and low vigor characteristics were
used as benchmarks to anchor the scoring scale across trials.

2.2.2 Aboveground biomass

Canopy structure as well as canopy development is critical
for crops to intercept the light required to support growth and
productivity (Hikosaka, 2005). Further, understanding how
the plant remobilizes resources from aboveground biomass to
yield components is critical in improving grain yield. Above-
ground biomass cuts were performed on the diversity panel at
two growth stages (mid- and late-canopy development) across
all field trials with the early-development stage also captured
at Gatton23 only (1.52 m × 0.5 m in Allora22 and Gatton22;
1 m × 0.5 m in Gatton23). The number of plants within each
cut was recorded, and biomass dried for 7 days at 65˚C and
weighed for total aboveground biomass dry weight.

2.2.3 Stomatal conductance

Stomatal conductance refers to the rate of diffusion through
the stoma and is a key indicator of photosynthetic capacity
and water use efficiency (Bertolino et al., 2019). Stomatal
conductance at reproductive development in Allora22 and
Gatton22 was captured for the diversity panel using a LI-
600 porometer (LI-COR Inc). To standardize measurements
and minimize diurnal variation effects, all measurements were
consistently captured from 10:00 a.m. to 12:00 p.m. Mea-
surements were taken from the same section of the plot that
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F I G U R E 1 Workflow schematic representing methodology for unmanned aerial vehicle (UAV) data processing and modeling for trait
prediction. DEM, digital surface elevation model; GCP, ground control point; OSAVI, optimized soil-adjusted vegetation index; VI, vegetative index;
VIF, variation inflation factor.

was captured for biomass cuts (1.52 m × 0.5 m in Allora22
and Gatton22; 1 m × 0.5 m in Gatton23). For each plot,
measurements were sequentially repeated three times on the
topmost fully expanded leaf for five randomly selected plants
within the plot. This standardized and replicated sampling
approach helped to capture natural variation in stomatal con-
ductance under field conditions, allowing for a diverse dataset
for calibration.

2.3 UAV sensing data processing and
collection

2.3.1 UAV campaign

The workflow involved four phases: (1) field preparation and
image acquisition, (2) image pre-processing, (3) data extrac-
tion, and (4) data analyses (Figure 1). Images were captured
using a MicaSense Altum sensor (MicaSense Inc.) mounted
on the Matrice 300 RTK (DJI) UAV platform, which was
flown over the field trials on the day that corresponded with
the respective ground-based measurement (Table 2). Flights
were captured during sunny, cloud-free conditions between
10:00 a.m. and 12:00 p.m. The Altum sensor captured
images across six spectral bands: blue (475 ± 32 nm), green
(560 ± 27 nm), red (668 ± 14 nm), red edge (717 ± 12 nm),
near infrared (842 ± 57 nm), and long-wave thermal infrared
(11 ± 6 µm). Prior to the first flight, between 7 and 8 ground
control points (GCPs) were placed around the borders of the

trial as well as uniformly inside the trial using Propeller Aero-
Points (Propeller Aerobotics Pty Ltd.) to provide positional
accuracy of the UAV images captured. The UAV and camera
were flown across the trials at an altitude of 20 m with 80%
side and frontal image overlap and a pixel size of 0.86 cm
and 13.5 cm for the multispectral and thermal bands, respec-
tively. Before and after the commencement of each individual
flight, an image of a calibrated reflectance panel (MicaSense
Inc.) was captured to correct the imagery based on the light
conditions during the flight time.

2.3.2 Image pre-processing

Using a customized Python script originally developed by
Das et al. (2022) and further developed by one of the authors
(Daniel Smith), raw images captured were stitched together
to generate a geo-referenced orthomosaic and digital surface
elevation model (DEM) using the software AgiSoft (Agisoft
LLC) (D. T. Smith et al., 2024). This process involves align-
ing the images together, using the AeroPoints ground control
reference points (GCPs) that have centimeter-level accuracy
(Propeller) and calibrating the reflectance values based on
the calibration panel. Several plot boundaries across each site
were generated using ArcMap (Esri), with the size and place-
ment of the shapefiles being determined by the ground-based
measurement protocols for each trait type examined (.shp
format). For the visual assessment of early vigor, which evalu-
ated the entire plot, shapefiles encompassed the complete plot
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T A B L E 3 Remote sensing traits investigated in this study.

Remote sensing trait Calculation Reference
OSAVI
(optimized soil-adjusted vegetation index)

(1 × 0.16) × (NIR − RED)
(NIR +RED +0.16)

(Rondeaux et al., 1996)

NDVI
(normalized difference vegetation index)

(NIR − RED)
(NIR +RED)

(Rouse et al., 1974)

NDRE
(normalized difference red edge)

(NIR − RED EDGE)
(NIR +RED EDGE)

(Fitzgerald et al., 2006; Li et al., 2018)

Thermal band THERMAL BAND (Tunca et al., 2023)

area. For the physiological and destructive traits (i.e., stomatal
conductance and aboveground biomass), measurements were
captured from small subsections at the plot ends and smaller
shapefiles were generated to specifically cover these sampling
areas. For each individual plot boundary detailed plot descrip-
tions including crop name, genotype, pedigree, plot ID, row
spacing, and sowing density were attached, which is required
for the software used for the extraction of sensing data.

2.3.3 Extraction of sensing data from
multispectral and RGB imagery

VIs, canopy cover, and geometric traits (i.e., height and
volume) were extracted using Xtractori, which is a python
environment-based program developed by UQ to extract
indices from five- and six-layer multispectral cameras (Das
et al., 2022) (Table 3). This program extracts a range of VIs
and canopy traits from the orthomosaic by first distinguish-
ing plant material from soil background using a masking
approach. This approach utilizes the optimized soil-adjusted
vegetation index (OSAVI) along with the Otsu’s threshold-
ing method to separate green plant matter (D. T. Smith
et al., 2024). The Otsu’s method automatically determines an
optimal OSAVI threshold value (OSAVIthreshold) selected
based on a discriminant criterion by maximizing the between-
class variance between plant and soil pixels (Otsu, 1979).
Pixels with OSAVI values above this threshold were clas-
sified as plant material (OSAVI > OSAVIthreshold), while
those below this threshold were classified as soil back-
ground (OSAVI < OSAVIthreshold). The effectiveness of this
approach is demonstrated visually in Figure S1, which shows
the progression from original image to final segmentation.

Seven UAV-derived traits (VIs and geometric traits) were
extracted for examination in this study, including OSAVI,
NDVI, NDRE, and the thermal band (Table 3). Coverage was
also calculated by Otsu thresholding by estimating the pro-
portion of pixels within plot boundary that are denoted plant
material. Additionally, two geometric traits were extracted
from the DEM orthomosaic. Height was calculated by sub-
tracting the digital terrain model (ground elevation from

emergence flight) from the crop surface model (top of canopy
surface at each imaging timepoint). The digital terrain model
provided baseline ground elevation, while, date-specific crop
surface models captured crop development over time. The
98th percentile of these height values was used as the repre-
sentative plant height for each plot, due to its previous strong
relationship with ground-based plant height (Malambo et al.,
2018; Wang et al., 2022). Volume was calculated as the sum
of pixel heights within each plot multiplied by the ground
sample distance (pixel size), then standardized by dividing
by the plot area to enable cross-site comparisons (Maimaiti-
jiang et al., 2019; D. T. Smith et al., 2024). The thermal data
were standardized by subtracting the thermal value from the
air temperature and then dividing by vapor pressure deficit.

3 STATISTICAL ANALYSES

3.1 Predictive modeling

To understand the association between the ground-based
and aerial-based traits, a traditional Pearson product-moment
correlation was undertaken using plot-level data. Three
approaches were then undertaken to identify the most appro-
priate prediction model for each trait. For all approaches, the
dataset for each trait from each trial was split where 80% was
used for training the models and 20% used as a validation set
for evaluating the model performance. To ensure a balanced
representation of trait variation across experiments, the train-
ing and validation datasets were stratified by both the range
of trait values and the experiment they originated from. All
data for aboveground biomass were combined and partition-
ing was undertaken on all datapoints, excluding aboveground
biomass determined at the vegetative stage as these data were
only collected from one site and serve as an initial exploration
of aboveground biomass prediction for this stage.

The first approach was a simple linear regression model
(LM), which was fitted using the UAV-derived traits that
were found to be the most significantly correlated across all
trials. The second approach was a stepwise multilinear regres-
sion (SWR) using both the VIs and geometric traits. This
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VAN HAEFTEN et al. 7 of 18

approach was undertaken using the “MASS” package in R
and involves iteratively adding and removing predictor vari-
ables in the model to identify a subset of these variables
that best predicts the trait and reduces prediction error. As
this approach cannot handle multicollinearity in variables,
an initial step was undertaken to reduce the number of vari-
ables that had high collinearity with others (Zhi et al., 2022).
The variation inflation factor (VIF) was used to select traits
with reduced multicollinearity. A higher VIF indicates greater
multicollinearity, and a VIF value less than 10 is consid-
ered acceptable (Thompson et al., 2017). After subsetting
these variables, Akaike information criterion was used in the
stepwise regression to determine the model with the best fit
(Yamashita et al., 2007).

The third approach was a partial least squares (PLS) regres-
sion method, which is a multivariate analysis used widely
due to its ability to manage collinearity across traits using
dimension reduction techniques. This approach was under-
taken using the “caret” package in R. The model was tuned to
find the optimal number of components “ncomps” that were
needed to be incorporated. The data were also transformed
to be centered and scaled using the “preprocess” function in
the package. A k-fold cross-validation method was undertaken
on the training dataset as a resampling method to estimate
the performance of the model. This approach divides the data
into several folds, which are used to estimate the error rate of
machine learning-based classifications on iteration and out-
puts the final model with the least error rate. In this study, we
used five folds and 10 repetitions.

After developing the models for all three approaches, they
were then evaluated on the validation dataset. The perfor-
mance of these approaches was then assessed by evaluating
the coefficient of determination (R2), which represents the
fraction of the trait variance explained by the model, and the
root mean square error (RMSE), which captures the average
magnitude of error.

3.2 Spatial analyses

Spatial analyses were conducted for the predicted values for
each trait, in addition to the early vigor scores, to correct for
spatial heterogeneity within each trial. A systematic model
building approach was implemented using ASReml-R, to fit
a linear mixed model to estimate the best linear unbiased esti-
mates (BLUEs) (Butler et al., 2009). The base model included
plot-level trait observations and genotype as fixed effects,
with block fitted as a random effect. A separable autoregres-
sive process of order one (AR1 ×AR1) was fitted as a residual
variance structure to account for spatial correlation. Addi-
tional spatial terms were systematically evaluated to optimize
the model for each trait. These included linear column and lin-
ear row effects as fixed effects, and column and row as random

T A B L E 4 Pearson correlation coefficient (r) between
UAV-derived traits (VIs and geometric traits) and early vigor scores
across three field trials (Allora22, Gatton22, and Gatton23).

Allora22 Gatton22 Gatton23 All trials
NDRE −0.52 −0.27 −0.3 −0.17

NDVI −0.53 −0.35 −0.72a −0.2

OSAVI −0.54a −0.32 −0.68 −0.17

Thermal 0.52 0.22 0.29 0.01

Coverage −0.37 −0.42a −0.69 −0.23a

Height −0.42 −0.29 −0.64 −0.08

Volume −0.22 −0.08 −0.26 −0.01

Abbreviations: NDRE, normalized difference red edge; NDVI, normalized differ-
ence vegetation index; OSAVI, optimized soil-adjusted vegetation index; UAV,
unmanned aerial vehicle; VI, vegetative index.
aVegetative index or geometric trait used for linear regression model.

effects. The significance of each additional term was assessed
using Wald chi-squared tests for fixed effects and likelihood
ratio tests for random effects. Terms were only retained in the
final model if they significantly improved model fit (p< 0.05).
The specific spatial terms retained for each trait’s final model
are detailed in Table S1. The broad-sense heritability (H2) of
each trait was also determined using the following equation:

𝐻2 = 1 −
𝐴tt
(2γ𝑣)

,

where Att is the average prediction error variance and 𝛾v
denotes the genetic variance (Cullis et al., 2006).

4 RESULTS

4.1 Vegetative indices can be used as a
proxy trait to phenotype early vigor

Across all sites, all traits were negatively correlated with
early vigor, excluding thermal, which was positively corre-
lated (Table 4). The UAV-derived trait, coverage, overall had
a strong correlation with early vigor across sites. In Allora22,
OSAVI had the strongest correlation with early vigor (R2

−0.54), whereas in Gatton22, coverage had the strongest asso-
ciation (R2 −0.42), and in Gatton23, NDVI had the strongest
association (R2 -0.72).

Based on correlation analyses, the UAV-derived trait that
had the strongest correlations to early vigor across the three
sites was fit in an LM (Figure 2a). Across each individ-
ual site using this approach with the predictor OSAVI for
Allora22, coverage for Gatton22 and NDVI for Gatton23
generated low- to moderate-performing prediction models
(Allora22: R2 0.29, RMSE 1.37; Gatton22: R2 0.25, RMSE
1.40; and Gatton23: R2 0.60, RMSE 1.01). To test whether
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8 of 18 VAN HAEFTEN et al.

F I G U R E 2 Predicted and actual vigor scores (1–9) for diverse mungbean genotypes grown across three environments: Allora22 (blue),
Gatton22 (yellow), and Gatton23 (red) and all trials combined using (a) linear regression model, (b) stepwise regression model, and (c) partial least
squares (PLS) model. Model performance indicators (R2 and root mean square error [RMSE]) for each site are presented. LM, linear regression
model.

combining data across sites could improve predictions, the
three types of prediction models were tested using the
complete dataset (all environments included). However, this
combined-site approach using coverage as a predictor for the
LM model showed reduced accuracy (R2 0.04, RMSE 2.91)
compared to site-specific models. A multivariate approach
(stepwise regression) and a machine learning regression
approach (PLS) was undertaken to understand whether a com-
bination of VIs and geometric traits could improve prediction
accuracy (Figure 2b,c; Table S2; Figure S2). Accuracy of
SWR models for Allora22, Gatton22, Gatton23, and all sites
showed low to moderate performance (Allora22: R2 0.55,
RMSE 1.11; Gatton22: R2 0.4, RMSE 1.25; and Gatton23:
R2 0.61, RMSE 0.95), with similar lower prediction accuracy
when data from all sites were combined (all sites: R2 0.18,
RMSE 1.31). For Allora22, the predictors used in the model
were thermal, NDRE, coverage, and volume. For Gatton22,
the predictors were coverage, NDVI, height, volume, and ther-
mal. For Gatton23, the predictors were OSAVI, coverage, and
NDRE, and for all sites, they were coverage, OSAVI, volume,
and thermal. This was similarly observed when examining the
PLS models, whereby the main contributing predictors in the
model for each site were OSAVI, thermal, NDVI, and NDRE
for Allora22; height and coverage for Gatton22; and height,
coverage, NDVI, and OSAVI for Gatton23 and thermal for
all sites (Allora22: R2 0.56, RMSE 1.09; Gatton22: R2 0.4,
RMSE 1.25; Gatton23: R2 0.46, RMSE 1.06; and all sites: R2

0.29, RMSE 1.23). This suggests that prediction models may
not be the most appropriate approach for this trait. Using cov-
erage, which was the most correlated with early vigor across

F I G U R E 3 Best linear unbiased estimates (BLUEs) for coverage
values captured across the mungbean diversity panel at Allora22 (blue),
Gatton22 (yellow), and Gatton23 (red). Coverage values of genotypes
were grouped by the BLUEs of the visual scores that were captured
with only scores 1–5 being presented. With 1 denoting the most
vigorous genotypes (larger plants with greater coverage and biomass)
and 5 denoting the less vigorous genotypes (smaller plants with reduced
coverage and biomass).

all trials, would be more appropriate to use as a “proxy” trait
for this ground-based visual measure.

Using coverage across each site as a proxy for early vigor,
substantial genotypic variation in early vigor was observed
across sites (Allora22: 0.04–0.12, Gatton22: 0.08–0.22, and
Gatton23: 0.03-0.16). Early vigor also differed with environ-
ment where Allora22 recorded the lowest values, followed
by Gatton23 and Gatton22 (Figure 3). Genotypes that were
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VAN HAEFTEN et al. 9 of 18

T A B L E 5 Broad-sense heritability (H2) of early vigor visual
scores and coverage across three field trials.

Traits Allora22 Gatton22 Gatton23
Early vigor score (1–9) 0.67 0.74 0.84

Coverage 0.68 0.85 0.93

recorded using traditional scoring as the most vigorous and
least vigorous were similar across sites. However, the geno-
typic differences were more pronounced when using coverage
as a proxy compared to traditional visual scoring (Figure 3).
Only scores 1–5 are presented as these were the scores
recorded across all three trial sites, enabling direct cross-site
comparisons of genotypic variation in early vigor. Specifi-
cally, genotypes that have a low vigor score in Allora22 and
Gatton22 had a coverage value that would suggest a higher
vigor value and vice versa than determined from visual scor-
ing. Several genotypes were also observed to have higher
vigor values compared to the commercial cultivar Crys-
tal (0.06–0.15), including AGG 325966 (0.12–0.17), Berken
(0.10–0.19), Black Berken (0.1–0.19), and AGG 325968
(0.1–0.17) (Table S3).

When comparing the broad-sense heritability of these two
approaches, the UAV-derived trait showed a higher heritabil-
ity across all three sites (Table 5), suggesting that coverage
can provide a more informative and reliable assessment of the
genetic variation of early vigor in the field.

4.2 Different UAV traits can be used to
predict biomass across growth stages

Across all growth stages, significant associations were deter-
mined between UAV-derived traits and total aboveground
biomass (Table 6). During the early-canopy development
stage, coverage (R2 0.9) had the strongest positive relation-
ship with biomass, and for mid-canopy development stage,
height had the strongest positive relationship (R2 0.73).
Comparatively, for late-canopy development, coverage had a
strong relationship with aboveground biomass although, this
relationship was moderate in association (R2 0.41).

All models predicted aboveground biomass with a
high accuracy at the early-canopy development stage
(Figure 4a–c). The LM approach using coverage recorded the
highest prediction accuracy (R2 0.79, RMSE 4.08), followed
by the PLS approach where the main contributing predictor
was coverage, and the SWR approach using the predictor
variables volume, thermal, and height (R2 0.76, RMSE 4.85
and R2 0.73, RMSE 4.89, respectively). Similarly, all models
for predicting biomass at the mid-canopy development
stage also performed well (Figure 4d–f). In this case, the
SWR approach (predictors: height, thermal, NDRE, and

coverage) recorded the highest accuracy (R2 0.80, RMSE
26.92), followed by the PLS approach (main contributing
predictors: height, NDRE, and OSAVI) (R2 0.79, RMSE
28.01) and the LM approach using height (R2 0.68, RMSE
36.50) (Table S2; Figure S3). When examining the models
for predicting biomass at the late-canopy development stage
the prediction accuracy for all models reduced significantly
(Figure 4g–i). The SWR model performed best at this stage
using the predictors coverage and NDVI (R2 0.33, RMSE
43.15), followed by the LM approach using coverage (R2

0.30, RMSE 82.90), and finally the PLS approach with the
main contributing predictors of coverage, NDVI, OSAVI,
volume, and NDRE (R2 0.26, RMSE 45.76).

Models were applied to UAV traits from every plot to
predict total aboveground biomass at each developmental
stage (early-, mid-, and late-canopy development), and spatial
analyses were undertaken to calculate BLUEs (Figure 5). Sig-
nificant phenotypic variation was observed across all stages
and environments. Across all stages, Gatton23 had the highest
predicted biomass compared to all three sites (Figure 5a–c).
During early- and mid-canopy development stages, Allora22
had higher predicted biomass compared to Gatton22; how-
ever, as the plants developed and reached the late-canopy
development stage, a higher total biomass was recorded at
Gatton22 compared to Allora22. The broad-sense heritabil-
ity for predicted biomass across all growth stages and all sites
was high (H2 0.65–0.87).

The amount of aboveground biomass produced by com-
mercial cultivar Crystal in comparison to other NAM parents
varied across the environments and development stages (Table
S4). For example, during the early-development stage in
Allora22, Crystal produced a low amount of aboveground
biomass (14.14 ± 0.82 g) compared to 24 other NAM
parents (15.63–24.95 g). However, in Gatton22 and Gat-
ton23, Crystal produced a moderate amount of biomass
(16.34 ± 0.84 and 58.7 ± 3.51, respectively) compared to
most other NAM parents with only eight genotypes pro-
ducing higher biomass in both Gatton22 (16.93–20.13 g)
and Gatton23 (59.03–68.87 g), respectively. A similar trend
was observed for aboveground biomass at the mid- and
late-canopy development stage.

4.3 A combination of thermal, VIs, and
geometric traits can be used to estimate
stomatal conductance

Several indices were determined to have a strong correla-
tion with stomatal conductance (gsw) at the reproductive stage
(Table 7) where thermal had the strongest correlation (R2

0.79), followed by NDRE (R2 0.74).
By utilizing the three prediction model approaches at repro-

ductive development, it was observed that the PLS approach
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10 of 18 VAN HAEFTEN et al.

F I G U R E 4 Predicted and actual aboveground biomass (g/m2) at the plot level on the validation dataset for mungbean genotypes grown across
three environments combined (Gatton22, Allora22, and Gatton23) using different prediction models: (a) linear regression model, (b) stepwise
regression model, and (c) partial least squares (PLS) model. Model performance indicators R2 and root mean square error (RMSE) for each site are
presented. LM, linear regression model.

 25782703, 2025, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/ppj2.70016 by R

esearch Inform
ation Service, W

iley O
nline L

ibrary on [05/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VAN HAEFTEN et al. 11 of 18

T A B L E 6 Pearson correlation coefficient (R2) between UAV-derived traits (VIs and geometric traits) and total aboveground biomass across
three field trials (Allora22, Gatton22, and Gatton23).

Trait Early-canopy development Mid-canopy development Late-canopy development
NDRE 0.44 0.71 0.31

NDVI 0.71 0.08 0.4

OSAVI 0.66 0.62 0.33

Thermal −0.72 −0.29 0

Coverage 0.9a 0.7 0.41a

Height 0.35 0.73a 0.27

Volume 0.77 0.54 0.32

Abbreviations: LM, linear regression model; NDRE, normalized difference red edge; NDVI, normalized difference vegetation index; OSAVI, optimized soil-adjusted
vegetation index; UAV, unmanned aerial vehicle; VI, vegetative index.
aUAV trait with the strongest relationship with trait and used in LM approach.

F I G U R E 5 Best linear unbiased estimates (BLUEs) for aboveground biomass predicted across three key development stages captured across
the mungbean diversity panel at Allora22 (blue), Gatton22 (yellow), and Gatton23 (red). (a) Early-, (b) mid-, and (c) late-canopy development.
Broad-sense heritability was estimated for each development stage at each site and presented.

performed best (R2 0.69, RMSE 0.10) (Figure 6c) with ther-
mal being the largest contributor to the model, followed
by NDRE, volume, height, OSAVI, and NDVI (Figure S4).
The next highest performing approach was the SWR model
using coverage, height, and thermal as predictors (R2 0.67,
RMSE 0.10) and LM using thermal (R2 0.62, RMSE 0.11)
(Figure 6a,b).

The best-performing model was used to predict gsw across
the entire field trial, and BLUEs were estimated for each
genotype. Using this approach, significant phenotypic vari-
ation was observed at each location as well as variation
across locations (Figure 6d). Gatton22 had overall higher
gsw values compared to Allora22 (0.25–0.52 and 0.05–0.19,
respectively). The predicted values across both trials also
had high broad-sense heritability (Allora22: 0.49, Gatton22:

0.87). Comparing Crystal to the other NAM parents, it was
noted that Crystal had moderate stomatal conductance val-
ues across Allora22 and Gatton22 (0.1–0.38 mmol m−2 s−1,
respectively) (Table S5). In Allora22, Satin and AGG 325975
had the highest values (0.12 and 0.12 mmol m−2 s−1, respec-
tively), whereas in Gatton22, AGG 325975, AGG 325954,
AGG 325959, and AGG 325958 had the highest stomatal
conductance (0.46–0.5 mmol m−2 s−1).

5 DISCUSSION

In this study, four UAV-derived VIs and three geometric traits
were evaluated, providing an efficient and non-destructive
tool to phenotype important agronomic and physiological
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12 of 18 VAN HAEFTEN et al.

F I G U R E 6 Stomatal conductance estimation results from two trials (Allora22 and Gatton22) determined at the reproductive stage using
prediction models developed from vegetative indices (VIs) and geometric traits. (a) linear regression model (LM), (b) stepwise regression model
(SWR), and (c) partial least squares (PLS) model, (d) best unbiased linear estimates (BLUEs) of stomatal conductance predictions across all plots in
Allora22 and Gatton22. Model performance criteria (R2 and root mean square error [RMSE]) are presented for each model. LM, linear regression
model.

T A B L E 7 Pearson correlation coefficient (R2) between
UAV-derived traits (VIs and geometric traits) and stomatal conductance
across two field trials (Allora22 and Gatton22).

Trait gsw

NDRE 0.74

NDVI 0.5

OSAVI 0.47

Thermal 0.79a

Coverage 0.61

Height 0.51

Volume 0.48

Abbreviations: LM, linear regression model; NDRE, normalized difference
red edge; NDVI, normalized difference vegetation index; OSAVI, optimized
soil-adjusted vegetation index; UAV, unmanned aerial vehicle; VI, vegetative
index.
aUAV trait with the strongest relationship and used in LM approach.

traits such as early vigor, aboveground biomass, and stomatal
conductance. Statistical approaches were used to predict each
trait across a large and diverse mungbean pre-breeding pop-
ulation and three field trials. Compared to traditional field-
based phenotyping methods, which can be time-consuming
and limiting in the number of genotypes that can be evaluated,
UAV phenotyping platforms can collect data for a large-scale
field trial in a fraction of the time. In the case of this study, fly-
ing a trial over 1.5 ha in size took only 25 min compared to the
2–3 h to collect visual vigor scores and stomatal conductance
measurements as well as over 6 days to collect, dry, and weigh
biomass samples. This efficiency makes UAV phenotyping
a highly scalable solution, particularly for larger breeding

programs, whereby collecting data across multiple hectares
and locations becomes significantly faster compared to tradi-
tional ground-based measurements. Overall, the data derived
from the multispectral sensor could be used to accurately pre-
dict the traits of interest, demonstrating the effectiveness of
the platform to predict different types of visual, functional,
and physiological traits typically captured in breeding and
pre-breeding activities.

5.1 UAV-derived traits can be used to
enhance the accuracy and repeatability of
phenotyping early vigor

A range of important agronomic traits are traditionally
captured using visual scoring. This scoring system, while sub-
jective, is the established standard in breeding programs due
to its rapid and cost-effective nature, allowing breeders to
quickly assess large numbers of breeding lines across mul-
tiple environments. However, due to the categorical nature of
visual scoring, human bias can be introduced, and the reso-
lution of data can be limited. Using UAV-derived traits, we
have demonstrated that the use of coverage as a proxy trait
offers a valuable, timely, and cost-effective solution to screen-
ing early vigor in the field. Predicting vigor using coverage
improved heritability across all environments compared to
the traditional visual scoring approach, which is critical for
selection in breeding programs. While substantial differences
in phenotypic values were observed between environments,
the high heritability estimates reflect the consistency of
genetic effects within each environment. Such variation in
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VAN HAEFTEN et al. 13 of 18

heritability across environments is often seen in multiple field
experiments (Brunner et al., 2024), and indicates that while
environmental conditions strongly influence phenotypic val-
ues, the UAV-based measurements effectively capture the
genetic differences between lines within each environment.
Further, weak correlations were observed between VIs and
vigor scores, which suggests that visual scores are not always
a reliable ground truth. Previous studies in field pea have
also demonstrated that VIs can be an effective proxy of early
vigor under both controlled and field conditions (Nguyen
et al., 2018; Tefera et al., 2022). In this study, to quan-
tify the value of UAV-based phenotyping for early vigor,
we compared the use of coverage as a proxy and traditional
visual scoring (Figure 3). The negative correlation between
drone-derived coverage and ground-based vigor scores was
expected, as plots with higher coverage naturally correspond
to lower numerical vigor scores (where 1 represents the most
vigorous plants). This revealed that genotypes assigned the
same categorical score showed a high degree of variation in
coverage which suggests that coverage may be a more reli-
able measure of early vigor than traditional visual scoring in
mungbean. Our analyses also identified genotypes with higher
vigor compared to Crystal. These genotypes may be worthy
of further investigation as enhancing early vigor is a key trait
in mungbean breeding programs to improve weed competi-
tiveness (B. S. Chauhan & Gill, 2014). Vigor was also noted
to vary across environments with higher vigor values in Gat-
ton22 compared to Gatton23 and Allora22. The UAV-based
phenotyping platform therefore provides the necessary data
to undertake genotype × environment analyses and begin to
understand the effect of the environment on early vigor. The
higher resolution resulting from utilizing the UAV approach
may offer the potential to accurately identify genotypes of
interest that are performing higher overall across a large popu-
lation as well as the overall performance of genotypes across
environments. Using more reliable phenotyping approaches
to screen for early vigor will likely increase the accuracy
of quantitative trait locus (QTL) mapping studies aiming to
unravel the genetic components of early vigor in mungbean.

5.2 Aboveground biomass can be predicted
across a high spatiotemporal scale

Aboveground biomass is a functional plant development trait
that is a crucial determinant of yield due to its function
in light interception, assimilate supply, and adaptability to
environmental responses (e.g., Turner et al., 2001). Rapidly
screening for aboveground biomass non-destructively enables
data capture at a larger spatial and temporal scale and provides
insight into detailed canopy traits that cannot be captured
on the ground. Previous mungbean studies evaluating canopy
dynamics have been limited to a small number of genotypes,

highlighting a major phenotyping gap (Geetika, Collins et al.,
2022; Kaur et al., 2015; Xiong et al., 2023). This study was
able to develop biomass prediction models using a diverse
mungbean population with substantial variation in canopy
architecture, providing new insight into mungbean canopy
development. These models could therefore be valuable in
understanding how commercial cultivars, such as Crystal, per-
form across different production environments. Additionally,
they could enable the investigation of new genetics avail-
able in breeding programs or diverse genebank accessions
that may harbor novel canopy traits. From our results, it was
observed that there were several genotypes that accumulated
higher and lower biomass at different stages compared to
Crystal, which may be of value in different environments or
farming systems. For example, genotypes AGG 325966 and
Berken had higher biomass compared to Crystal at the early-
canopy development stage. In optimal conditions where water
is not limiting, higher biomass at this stage may enhance light
capture and radiation use efficiency leading to increased pro-
ductivity. Conversely, in water-limited environments, there
may be potential trade-offs with water uptake that need to
be considered as a vigorous high-biomass genotype could
exhaust soil water supply and increase the risk of drought
stress later in the season.

A key finding from this research is the need to apply dif-
ferent prediction model approaches and UAV-derived traits at
different time points. At the early-canopy development stage,
a simple LM with canopy coverage works well to predict
biomass. This was unsurprising as mungbean has previously
been determined to have a horizontal canopy architecture
(radiation extinction coefficient 0.68) (Geetika, Collins et al.,
2022), which demonstrates that the UAV is able to capture
the entire canopy from above at this stage. The importance
of coverage at the vegetative stage in mungbean was also
identified by Xiong et al. (2023), although this approach did
not result in strong correlations post-flowering using frac-
tional vegetative cover and VIs alone. Our research reinforces
the need for more complex modeling approaches to predict
biomass during mid- and late-canopy development stages,
which is when post-flowering, pod development, and senes-
cence occur. During later canopy development stages, the
incorporation of geometric traits such as height and coverage,
as well as VIs linked to senescence such as NDRE, signifi-
cantly improves the model accuracy (Varela et al., 2021) as
the canopy is entirely closed and biomass cannot be deter-
mined accurately from a single VI captured above the canopy.
The incorporation of geometric traits to predict biomass has
also been undertaken in barley (Bendig et al., 2015) and
wheat (Yue et al., 2017). While utilizing different prediction
models and UAV-derived traits at different canopy develop-
ment stages is complex as a result of changes in physiology,
this approach ensures biomass can be accurately predicted
across all canopy development stages in mungbean. There are
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opportunities to further improve the accuracy of biomass
prediction in late-canopy development stages. Future studies
may utilize alternative modeling techniques or engineering
approaches to evaluate potential improvements to prediction
accuracy to capture the complexity of aboveground biomass
during reproductive growth stages.

Modeling biomass across key developmental stages pro-
vides the fundamental components required to dissect mung-
bean canopy dynamic traits, such as rate and magnitude of
canopy development and senescence through a longitudinal
modeling approach. This type of longitudinal modeling has
been undertaken to evaluate stay green traits in sorghum,
barley, and wheat using the single vegetation index NDVI
(Brunner et al., 2024; Liedtke et al., 2020; Thapa et al., 2019).
A recent study applied a new two-stage longitudinal model-
ing strategy that first fit a spatial model to correct the data
at each timepoint and then fit a p-spline across all datapoints
to extract key growth curve parameters from two field trials
conducted in different phenotyping platforms (Pérez-Valencia
et al., 2022). Additionally, exploring these canopy dynamic
traits in the context of abiotic and biotic stresses offers the
opportunity to identify new physiological and genetic mech-
anisms that infer adaptation that could be incorporated into
breeding programs.

5.3 Beyond the breeders’ eye: Utilizing the
UAV platform to assess physiological traits

In this study, we have demonstrated the capacity of UAV-
derived traits in exploring stomatal conductance, which is a
complex physiological trait that cannot be captured directly
by visual scores. Current methods used to determine stom-
atal conductance, such as porometers, are relatively rapid.
However, as stomatal conductance fluctuates quickly over
the course of the day and with varying environmental con-
ditions, there are substantial challenges in capturing a large
number of genotypes and accurately comparing output. Com-
paratively, using a UAV phenotyping platform across over
600 plots (391–410 genotypes) took only 20 min. There is
now a growing number of studies that aim to link UAV-
derived traits and gsw on other major crops. For example, a
2022 study conducted using 91 tomato genotypes under well-
watered and water-deficit treatments determined that NDVI
had a significant positive relationship with gsw as well as total
assimilation rate (Fullana-Pericàs et al., 2022). Another study
in maize utilized random forest prediction models with several
VIs and determined that primarily thermal infrared regions
and a number of near-infrared and red-based VIs significantly
contributed to gsw prediction during vegetative growth, while
later development (reproductive stages) relied mostly on near-
infrared and red-based VIs (Brewer et al., 2022). This research
supports the findings observed in this study where the ther-

mal band and NDRE (uses both near infrared and red edge
bands) were determined to be significant contributors to the
highest performing prediction model for gsw, as well as vol-
ume, height, OSAVI, and NDVI, which contribute only a
small amount. The incorporation of thermal is most likely
linked to the relationship observed between canopy temper-
ature and gsw, whereby as the stomata close, the internal
temperature of the leaf increases due to the lack of transpi-
ration occurring to cool the canopy. Whereas the contribution
of NDRE to the model is likely a result of the indices rela-
tionship with the amount of chlorophyll in the plant and the
amount of photosynthetically active leaf area present in the
plot, which highlights the causal relationship that is typically
found between chlorophyll content in the leaves and stom-
atal aperture (i.e., less chlorophyll leads to reduced stomatal
aperture) (Matsumoto et al., 2005). Therefore, as the plant
transitions from vegetative to reproductive development, the
change in chlorophyll content may be a more significant driver
rather than actual changes in stomatal aperture per se. We
acknowledge that it is difficult to develop “generic” predic-
tion models of traits that work in all situations and recommend
that in using UAV for large-scale trials, researchers can benefit
from using the UAV to scan the entire trial (perhaps thou-
sands of plots) while taking additional phenotypic data or
scores on a limited subset of plots (for instance, 30–50). Mod-
els developed from these subsets can then be applied to the
UAV multispectral results as proposed by Hu et al. (2018) and
Baret et al. (2018) and have been referred to as a “real-time
calibration” approach.

This study successfully detected genetic variation for gsw
from UAV spectral data, which may be further explored
for crop improvement to match specific production environ-
ments. Our findings highlight that there may be potential
to increase the stomatal conductance of commercial cultivar
Crystal which was found to be more conservative in its stom-
atal conductance across environments compared to a range of
diverse accessions such as AGG 325958 and AGG 325975.
Therefore, the water use efficiency of accessions can now be
evaluated in irrigated environments as they may be able to
support higher gsw or within rainfed environments where peri-
ods of water deficit may be experienced and higher water use
efficiency is beneficial. Genetic mechanisms underpinning
stomatal conductance may also be explored which is not eas-
ily undertaken using traditional approaches. Nevertheless, to
further enhance the model, additional data may be collected to
accurately predict gsw in a wider range of environment types.

6 CONCLUSION

The phenotyping bottleneck in mungbean has constrained the
identification of important traits and associated genetic mech-
anisms required to rapidly and efficiently improve mungbean
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productivity. We demonstrate the potential of using UAV-
based phenotyping platforms to screen and predict several
different agronomic traits of a diverse mungbean population
across multiple field trials that are traditionally captured visu-
ally (early vigor), using specialized physiological tools (stom-
atal conductance), or destructively (aboveground biomass).
For all traits, the important role of adjusting prediction model
approaches depending on trait type (categorical, physiologi-
cal, and functional) and developmental stage at the time of
capture was highlighted. The variation in prediction accuracy
across growth stages reflects multiple underlying biological
factors including canopy closure and the initiation of com-
plex physiological processes (e.g., increased branching and
pod senescence). Further exploration of how these traits can
be more accurately captured using other indices or develop-
ing new indices may be explored in future studies to improve
prediction accuracy for later growth stages. Despite these
challenges, robust phenotyping methods for early vigor, stom-
atal conductance, and biomass have now been established
for mungbean and applied to explore genetic variation at a
high resolution and spatial scale. Further studies using these
models to undertake genotype × environment analyses, lon-
gitudinal analyses to extract dynamic traits as well as genetic
analyses are suggested to explore the potential of using this
platform to further accelerate mungbean improvement.
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