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ABSTRACT

Camera traps are widely used in wildlife research andmonitoring, so it is imperative to understand their strengths, limitations,
and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012–2022) with a case study on
Australian terrestrial vertebrates using amultifaceted approach.We (i) synthesised information froma literature review; (ii) con-
ductedanonlinequestionnaire of 132professionals; (iii) hostedan in-personworkshopof 28 leading experts representing acade-
mia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources. We
predicted that the last decade would have shown: (i) exponentially increasing sampling effort, a continuation of camera usage
trends up to 2012; (ii) analytics to have shifted from naive presence/absence and capture rates towards hierarchical modelling
that accounts for imperfect detection, thereby improving the quality of outputs and inferences on occupancy, abundance, and
density; and (iii) broader research scales in terms ofmulti-species,multi-site andmulti-year studies.However, the results showed
that the sampling effort has reached a plateau, with publication rates increasing onlymodestly. Users reported reaching a satu-
ration point in terms of images that could be processed by humans and time for complex analyses and academicwriting. There
were strong taxonomic and geographic biases towardsmedium–largemammals (>500 g) in forests alongAustralia’s southeast-
ern coastlines, reflecting proximity tomajor cities. Regarding analytical choices, bias-prone indices still accounted for�50%of
outputs and thiswas consistent across usergroups.Multi-species,multi-site andmultiple-year studieswere rare, largelydrivenby
hesitancy around collaboration and data sharing.There is nowidely used repository forwildlife camera images and theAtlas of
Living Australia (ALA) is the dominant repository for sharing tabular occurrence records. However, the ALA is presence-only
and thus is unsuitable for creating detection histories with absences, inhibiting hierarchical modelling. Workshop discussions
identified a pressing need for collaboration to enhance the efficiency, quality and scale of research andmanagement outcomes,
leading to the proposal of aWildlife Observatory of Australia (WildObs). To encourage data standards and sharing,WildObs
should (i) promote a metadata collection app; (ii) create a tagged image repository to facilitate artificial intelligence/machine
learning (AI/ML) computer vision research in this space; (iii) address the image identification bottleneck via the use of
AI/ML-powered image-processing platforms; (iv) create data commons for detection histories that are suitable for hierarchical
modelling; and (v) provide capacity building and tools for hierarchical modelling. Our review highlights that while Australia’s
investments in monitoring biodiversity with cameras position it to be a global leader in this context, realising that potential
requires a paradigm shift towards best practices for collecting, curating, sharing and analysing ‘Big Data’. Our findings and
framework have broad applicability outside Australia to enhance camera usage to meet conservation andmanagement objec-
tives ranging from local to global scales.This review articulates a country/continental observatory approach that is also suitable
for international collaborative wildlife research networks.

Key words: Australia, terrestrial vertebrates, biodiversity conservation, data sharing, sampling methods, occupancy
modelling, big data.
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I. INTRODUCTION

(1) The need for wildlife monitoring at large spatial
and temporal scales

Accurately and affordably sampling and monitoring wildlife
populations is crucial for addressing the biodiversity crisis and
managing invasive species but challenging for many species
(Dinerstein et al., 2019; Leclere et al., 2020). Large-scale or long-
term monitoring is only common for the most charismatic
(e.g. koalasPhascolarctos cinereus) or valuable species (e.g. gamespe-
cies for hunters; Likens & Lindenmayer, 2018), and high
temporal-resolution data are limited to easily accessible areas
(Jetz et al., 2019). For most species and locations, data are sparse
and often limited to distributed networks of contributors such
as online biodiversity crowd-sourcing platforms like the Global
Biodiversity Information Facility (GBIF), iNaturalist, Ocean
Biodiversity Information System (OBIS), and eBird
(Mesaglio & Callaghan, 2021; Sullivan et al., 2009;
Telenius, 2011).While these platforms provide useful presence-
only observations for range mapping and some species distribu-
tion modelling frameworks, repeated sampling with consistent
protocols is needed for quantifying population dynamics
[e.g.occupancy,abundance,anddensity (Guisan et al., 2013; Jetz
et al., 2019; Leung et al., 2020)]. Numerous professional research

networks promote standardised monitoring programmes to
meet this challenge (Jansen et al., 2014; Enetwild-consortium
et al., 2023;Casaer et al., 2019), aswell as initiatives that blend cit-
izen science and standardised sampling, suchas ‘SnapshotUSA’
or Birdlife Australia’s Birdata programme (Baker, Clarke &
McGeoch, 2019;Cove et al., 2021).However, there remain very
fewdata suitable for terrestrial vertebratepopulationmonitoring
inmany regions, including Australia.

(2) Cameras for sampling wildlife

There are numerous strategies for observing free-ranging
terrestrial animals in natural settings. Traditional human
visual observations can be challenging or time-consuming
when animals are rare or cryptic, which is becoming more
problematic as wildlife populations continue to dwindle
(Field, Tyre & Possingham, 2005; Moore et al., 2023; Rob-
inson et al., 2018). Physically capturing species using traps
can be labour-intensive and faces limitations in ensuring
wildlife welfare (Waudby, Petit & Gill, 2019). Salaries for
field staff can make these approaches prohibitively
expensive.
A variety of stakeholders and users from across the globe

have increasingly turned to non-invasive surveying tech-
niques using passive sensors such as acoustic monitors,
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drones, and wildlife cameras. While we focus on wildlife
cameras in this review, many of the themes and issues will
be similar across disciplines of passive monitoring, including
eco-acoustics and environmental DNA (eDNA). Wildlife
cameras are triggered by passive or active infrared heat-
in-motion sensors (also called camera traps or sensor cam-
eras), hereafter referred to as ‘cameras’ (Kays et al., 2020)
(see Table 1 for glossary). Cameras feature prominently in
field-based monitoring programs that generate data to
understand animal abundance, distribution, diversity, sur-
vival, and behaviour. Cameras are used extensively in
applied contexts to monitor the effectiveness of conservation
interventions and pest species management, track ecosystem
responses to threats like climate change, fires or disease, or to
inform and reduce the environmental costs of human
impacts and economic developments such as mining
(Greenberg, Godin & Whittington, 2019; Kays et al., 2020;
Meek et al., 2015).

Cameras have logistical advantages over conventional tech-
niques that require physical capture or direct observation.
Cameras produce objective, verifiable, archivable data sets.
Cameras can be active 24 h a day and readily detect elusive
and cryptic animals, especially in disturbed habitats where ani-
mals are generally more nocturnal or increase their flight dis-
tance, reducing direct sightings (Gaynor et al., 2018; Tobler
et al., 2008). Arguably, one of their greatest strengths is that
they can also be deployed for long periods (weeks to months),
allowing potentially higher detection rates for particular spe-
cies, e.g. long-nosed potaroo (Potorous tridactylus), long-nosed
bandicoot (Perameles nasuta), and southern brown bandicoot
(Isoodon obesulus) (Claridge, Paull & Welbourne, 2019).

Cameras can be deployed in a targeted manner to monitor
an individual species, but still usually gather substantial
amounts of ‘by-catch data’ detecting species that were not
the initial target of the survey (Henderson et al., 2022), or they
can be explicitly deployed tomonitor a large proportion of ter-
restrial vertebrate species within a wildlife community; thus a
single survey can be used to answer multiple research or mon-
itoring questions (Kays et al., 2020; Kelly & Holub, 2008). As
camera data have become more prevalent, the number of dif-
ferent analytical approaches available has also proliferated,
enabling robust approaches to assess diversity, occupancy,
density, abundance, behaviour, and interactions between spe-
cies (Sollmann, 2018).

Cameras also have disadvantages when considering their
use for large-scale, long-term terrestrial wildlife monitor-
ing, especially where it is desirable to identify, take a sample
from, or closely examine individuals. Limitations compared
to live trapping and direct observations include the inability
or difficulty to monitor ectothermic taxa (Corva
et al., 2022), reliably identify individuals within a species
(Dorning & Harris, 2019), assess demographic characteris-
tics such as sex or breeding status (Dheer et al., 2022), and
collect samples for genomic approaches, health surveillance
or disease prevalence monitoring (Driessen et al., 2021;
Hohnen et al., 2019). Specific taxa present unique difficul-
ties; for example, identifying between morphologically sim-
ilar species, such as small rodents, can be challenging,
combined with their smaller body size leading to them
being less likely to be detected by cameras (Meek &
Vernes, 2016; Potter, Brady & Murphy, 2018; Kays
et al., 2022). Small mammal detectability can be improved

Table 1. Glossary.

Wildlife camera Also called camera traps, game cameras, trail cameras, sensor cameras, or field cameras. A device specifically
designed to capture images of wildlife without a human present. Most commercially available cameras use a
passive infrared sensor to detect when there are variations in both temperature and movement.

Detectability The probability that a species will be detected, if it is present at a site, using a defined survey method.
Detection history A matrix describing the captures through time per species and per site, with cells populated by either binary data

(presence–absence zeros and ones) or counts per detection period.
Hierarchical
modelling

In the context of wildlife camera analysis, this is a statistical approach used to analyse detection histories to derive
animal population parameters while accounting for imperfect detection. The key innovation of hierarchical
modelling is simultaneously modelling the process of animal presence – sometimes referred to as ‘state
variables’ such as occupancy, abundance, or density – and adjusting this estimate based on estimated detection
probability. Hierarchical modelling addresses the limitations and biases associated with the detection of wildlife
in the field, often leading to more robust and informative results.

Site Small area (less than ca. 1 km2) with a single or cluster of camera deployments. For example, in mark–recapture
studies, paired cameras at a single point are used to capture markings on both sides of a predator, and paired or
clustered setups are used to sample nearby on- and off-trail locations simultaneously.

Landscape Contiguous area (ca. 1 km2 to ca. 1000 km2) where multiple camera sampling sites are grouped into a survey.
Survey A synchronous deployment of >10 cameras spaced at >0.1 km intervals and left for >10 days. Many surveys are

designed to produce detection histories that are suitable for multiple types of analysis, including species
accumulation curves or hierarchical modelling, and include metadata that describes the site characteristics and
sampling (e.g. coordinates of each camera, elevation, camera placement on or off a trail or road, baiting).

Study A study could include data from multiple surveys, such as comparing results from surveys of the same site across
multiple years or comparing results from surveys in different protected areas.

Monitoring
programmes

A series of surveys utilising similar methods with the objective of understanding how the population of a target
species or community changes through time.
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through custom deployment strategies like downward-
facing white flash cameras, although this renders cameras
less suitable for surveying large mammals (Meek &
Vernes, 2016). Programmes seeking to monitor different-
sized animals could adopt both methodologies in paired
deployments, which would result in a doubling of required
cameras to maintain the same total spatial coverage. Simi-
larly, cameras placed on roads and trails predominately
capture predators (e.g. dingoes, foxes, and cats), while cam-
eras in the habitat are more likely to detect native mam-
mals. Monitoring the entire terrestrial mammal
community thus requires three cameras, one on roads or
trails and two in the habitat, with one of the habitat cameras
angled downwards.

Further, in practice, camera images are easier to acquire
than to process and analyse, albeit with the caveat that this is
predominantly a historical problem with technological
advances (Glover-Kapfer et al., 2019; Greenberg et al., 2019).
A single study may produce millions of images that must be
annotated to the level of species or individual – a laborious,
expensive process that bottlenecks research and decision-
making (Ahumada et al., 2020). While artificial intelligence
(AI), machine learning (ML), and collaborative data sets
[e.g. eMammal and ClassifyMe (McShea et al., 2015; Falzon
et al., 2019)] have sped up the conversion of images into data
sets, human oversight is still necessary, albeit with diminishing
intensity, as data sharing of labelled images increases (Vélez
et al., 2022; Whytock et al., 2021). Image-processing platforms
such as Wildlife Insights use detectors like MegaDetector and
computer vision image classifiers to identify species, facilitating
users’ ability to sort, organise, and store images and produce
standardised spreadsheets for analysis (Ahumada et al., 2020;
Beery, Morris & Yang, 2019; Harris et al., 2010;
Microsoft, 2020). Until recently, most camera data sets have
been stored offline, likely due to the cost of some collaborative
platforms. Consequently, different projects are hard to inte-
grate into larger data sets, hindering collaboration among
camera users and organisations. Despite similar camera
deployment strategies, this isolation has prevented powerful
cross-site or longitudinal analyses of population trends.
Australia is an ideal case study to facilitate large-scale, long-
term wildlife monitoring with cameras, given its substantial
financial investments into monitoring across diverse stake-
holders and high levels of access to education and advanced
training in wildlife ecology, e.g. the Northern Environmental
Science ProgramResilient Landscapes projects (NESP, 2023).

(3) Wildlife cameras in Australia

Australia faces pressing challenges to conserve its native wild-
life, given its highest global rates of contemporary mammal
extinctions (Bergstrom et al., 2021). Key threats include land
clearing, invasive species and climate change, the latter
increasing stochastic events like floods, droughts and mega-
fires (Legge et al., 2023; Woinarski et al., 2019). Australia’s
vast and often rugged and remote landscapes and extreme
climates make cameras a safer and more efficient monitoring

solution than traditional methods like line distance sampling
transects and live trapping (Moore et al., 2023; Wearn &
Glover-Kapfer, 2019). Meek et al. (2015) reviewed wildlife
camera use in Australia and showed a transition from early
adopters undertaking small-scale exploratory studies to
broader use in the mainstream research and conservation
community between the mid-2000s and early 2010s. Meek
et al. (2015) also reported increasing affordability and reliabil-
ity of camera technology, including longer battery life and
larger image storage, and the introduction of robust analyti-
cal methods such as hierarchical occupancy modelling
(MacKenzie et al., 2002).
Today, many Australian stakeholders use cameras exten-

sively, including academics, industry (e.g. environmental
impact assessments, environmental consultancies), and
government and non-government organisations (NGOs).
Thousands of cameras are deployed across Australia annu-
ally, collecting millions of images that could be used for
large-scale, long-term wildlife monitoring and to enhance
environmental and economic outcomes. However, a lack
of coordination and synthesis has resulted in duplication
of effort instead of larger and richer data sets. The review
of camera use in Australia by Meek et al. (2015) revealed
an increasing trend in published studies and technical
reports (from one in 1991 to 19 in 2013), reflecting global
camera trends (McCallum, 2013; Speaker et al., 2022).
Building on this, we quantify the ‘where, what, how,
and who’ of camera use across the Australian continent
from 2012 to 2022 and identify gaps and opportunities for
collaboration. We evaluate the strengths and weaknesses
of Australia’s most used wildlife camera methods and
distributed sampling networks to enable large-scale, long-term
monitoring of wildlife populations. This forward-looking syn-
thesis aims to leverage investments in cameras for large-scale,
long-term wildlife monitoring, including whether a distributed
network of data providers would be advantageous.

(4) Hypotheses about camera trends

We quantify trends in camera deployment strategies, analysis,
and reporting/publication across stakeholders at various
institutions that use cameras to monitor wildlife populations.
Our hypotheses, predictions, results, and methods used are
summarised in Table 2. We used four approaches to investi-
gate these questions in Australia: a literature review, an online
questionnaire, an in-person workshop, and a compilation and
visualisation of camera use in Australia.

II. METHODS

(1) Literature review of wildlife studies using
cameras

We conducted a systematic literature review to extract pub-
lished or publicly available information. We located peer-
reviewed papers, book chapters and grey literature using
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the software Publish or Perish, which searches and indexes
publications from Google Scholar into a spreadsheet
(Harzing, 2007). We first used the search terms ‘camera
trap’, ‘research’, and ‘Australia’ in November 2022. A sec-
ond search in August 2023 used slightly different search
terms: ‘camera trap’ OR ‘camera-trap’ OR ‘remote cam-
era’ OR ‘camera’ AND ‘wildlife’ OR ‘animal’ OR ‘mam-
mal’ OR ‘vertebrate’ OR ‘terrestrial vertebrate’ AND
‘Australia’. The software only allows a maximum of 1000
results per search, resulting in 2000 potential matches to
review. We reviewed the search results to identify peer-
reviewed studies on vertebrates in terrestrial habitats. We
excluded studies using drone and arboreal cameras, includ-
ing nest box monitoring, and studies focused on evaluating
camera performance, rather than wildlife, and on captive
animals. Our focus was camera deployments in larger-scale
monitoring of vertebrate populations, so we excluded
smaller-scale studies, such as pilot studies testing novel cam-
era designs. To do this, we only included studies using ≥10
cameras spaced ≥100 m apart and deployed for ≥10 days
in any study area to qualify for further analysis and inclusion.
The process for how these metrics were established is
reported as online Supporting Information in Table S1.
Studies were also excluded if they did not report these funda-
mental attributes, except for spacing, which was assessed
visually if not reported based on maps in the publication.
We only retained literature items published between 2012
and 2022. All data management and analyses were con-
ducted in R (R Core Team, 2022).

We note that this review likely misses camera users who
rarely publish in peer-reviewed journals such as private con-
sultancy firms conducting environmental impact assess-
ments. The findings of these surveys are kept confidential,
at least until the developer submits their assessment. By
encouraging collaboration with private industry and envi-
ronmental consultants, an Observatory (see Section IV.5)
could leverage these rich private data sources and fill in mon-
itoring gaps in Australia while providing advanced analytics
to the private sector.

(2) Questionnaire of camera users

We solicited stakeholder experiences about the use of
cameras from 132 camera users working in Australia using
an online questionnaire distributed via email (UQ ethics per-
mit 2022/HE001653; questionnaire available at: https://
www.dropbox.com/scl/fi/94f4l4ev2k1z9vs6y9u5i/WildObs-
Camera-trap-participant-survey-Google-Forms_2023_11_
14.pdf?rlkey=yy840dyu58j5n5n9buf7bqj5c&dl=0). The
questionnaire had 52 questions and sought to understand the
motivation for using cameras compared to traditional moni-
toring methods, the locations of study sites in Australia, which
taxa and habitats were surveyed using cameras, and which
analysis methods were used for camera trap surveys. We
emailed the questionnaire to authors of wildlife camera litera-
ture before the list was limited to peer-reviewed publications
targeting vertebrates in terrestrial habitats to reduce potential

bias and to include camera users with diverse motivations
and backgrounds. We used snowball sampling via referrals,
where existing participants recruited future participants
based on a prior relationship with them to reach as many
camera users as possible. When a participant submitted
multiple responses to describe variable methods across
surveys – such as changing practices as new technology became
available – we only retained a single response reflecting their
most recent experience.

We assessed the influence of participants’ organisations on
their preferred outputs and provided four choices: single
site/species peer-reviewed; single-site/species internal man-
agement report; multi-site/species peer-reviewed publica-
tion; and multi-site/species internal report. We repeated
the same process for the type(s) of analyses used: presence/
absence; relative abundance indices; hierarchical occupancy
modelling; or density estimates. If participants identified that
they worked for multiple organisations, their responses were
assigned to both.

(3) Expert working group

We hosted an in-person workshop over three days dedicated
solely to assessing and improving the use of cameras for
Australian wildlife research, monitoring, and management.
The working group participants represented key Australian
wildlife research, conservation and management initiatives
across academia, NGOs, and government. The 28 attendees
included the directors of government environmental depart-
ments, such as those focused on conservation and invasive ver-
tebrate management, Chief Executive Officers and regional
managers of conservation NGOs and environmental compa-
nies, and academics (Table S2). Other stakeholders represent-
ing a diversity of organisational backgrounds were included to
solicit their experiences with cameras. Our speakers, activities,
and discussions covered preliminary results from the literature
review and questionnaire described herein and discussions of
problems, solutions, and vision to leverage Australia’s invest-
ment in cameras for large-scale wildlife monitoring.

(4) Camera contributions from the Atlas of Living
Australia (ALA)

We identified potential camera deployments in the Atlas of
Living Australia (ALA) – which provides data to the
GBIF – using five steps to produce a conservative map of sur-
vey locations based on the following data-filtering process: (i)
we retained only records of mammals attributed as “Human
records”, as this was the most common record type for cam-
era trap data. (ii) We excluded aquatic, volant, arboreal, and
semi-arboreal mammals. We acknowledge this could lead to
underestimating the number of camera deployments, but we
wanted to focus our search on terrestrial wildlife using cam-
era traps. (iii) We retained records that contained the term
‘camera’ in any row. (iv) We were interested in
surveys – sets of camera deployments that are spatially and
temporally clustered – not in every individual camera. To
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identify spatially clustered records, we laid a grid of hexagons
with an area of 20 km2 each across Australia. We then
retained one record representing a ‘potential camera survey’
for each 20 km2 hexagon per 100-day period. In doing this,
we assumed that records gathered from nearby cameras at
similar times were part of the same survey (although we rec-
ognise this would not have always been the case). We chose a
random record to represent the survey in that grid, as we are
only interested in the presence of the camera deployment
rather than in the species it detected. (5) To remove active
cameras operated by humans, as opposed to cameras set
for weeks to months to monitor species, we excluded ALA
records with effort measured in time units less than days
(e.g. minutes) and removed records that explicitly stated they
were using another sampling protocol that did not show evi-
dence of using a camera trap.

(5) Data compilation and cleaning

Wesummarised the temporal trends from the literature review
data set using the dplyrpackage inR (Wickham et al., 2023). For
any summaries of survey statistics, for example, the number of
cameras,we removedduplicate recordswhen the samedata set
was used for multiple publications. When choosing between
duplicates,wechose the recordpublishedclosest to the survey’s
enddate.Wecalculated the time lagbetween thecompletionof
data collection and publication using the latest sampling end
date.We determined themedian values for deployment dura-
tion in days, number of cameras, and sampling effort (deploy-
ment duration × number of cameras) for each year in which
the sampling ended. For each study, if different areaswere sur-
veyed, for the total number of cameras, we summed all the
cameras deployed across the different sites and assigned it to
themost recent year that sampling ended. For the deployment
duration and sampling effort, if there were multiple studies in
different areas, we retained the value from the survey that
had themost recent year that the sampling ended; if therewere
multiple studies where sampling ended in the same year, we
retained the highest value for the metric in question in that
year. For the number of cameras, deployment duration, and
sampling effort,we treated the year sampling endedas a factor,
and log10 transformed each metric for plotting.

(6) Statistical analyses

Totestour literature reviewhypothesis that thenumberofcam-
era publicationswould increase through time (linearly or expo-
nentially), we compared a linear and non-linear regression
using Akaike Information Criterion corrected for small sample
sizes (AICc) model selection in the package AICcmodavg

(Mazerolle, 2020). The top model with the lowest AICc value
includeda linear relationship.Toassessmotivationsandprefer-
ences for using cameras in the questionnaire, we calculated the
percentage of participants that identified each method as their
first, second or third choice for each criterion and used a Likert
scale with three points to rank monitoring methods for data
quality and cost-effectiveness (Bryer & Speerschneider, 2016).T
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We analysed the influence of questionnaire participants’
organisations which they self-identified as either NGO, gov-
ernment, or university, with binomial generalised linear
models (GLMs) with odds ratios in the lme4 package, follow-
ing Sockhill et al. (2022) and Bates et al. (2015). Each organi-
sation type was included as a binary predictor variable (0/1)
to allow participants to identify multiple types, and they
could also use multiple methods.

(7) Spatial mapping and visualisation

To visualise the distribution of surveys in Australia spatially,
we created maps in ggplot2 (Wickham, 2016). First, we plotted
each survey identified from the literature or the question-
naire as a single point, the size of which was scaled to the
number of cameras deployed. Then, we overlaid 2,500 km2

hexagons across Australia and counted the number of studies
from the literature review and questionnaire and separately
from the ALA data per 2,500 km2 hexagon. We assessed
the potential number of surveys conducted across ecoregions
in Australia (as defined by Olson et al., 2001). Each survey
from the literature and questionnaire was assigned to the rel-
evant biome based on their spatial coordinates. The total
number of surveys conducted in each biome was then calcu-
lated in dplyr. If a survey was reported in the questionnaire,
the same survey was identified in the literature review, or
the same data set was used for multiple publications, only
one record was retained to prevent duplicate counts from
influencing our summaries.

To understand if human population density (Australian
Bureau of Statistics, 2022) or distance to the nearest city
influenced the number of surveys, we correlated the number
of surveys from both the literature and provided by
questionnaire respondents per 2,500 km2 hexagons for
each variable. To calculate the distance to the nearest city,
we used the database of world cities from the maps package
in R (Becker & Wilks, 2022). We measured the distance
from each hexagon to its nearest city using the sf package
(Pebesma, 2018). We excluded any hexagons with zero sur-
veys for the correlation analyses.

III. RESULTS

(1) Slowing growth of wildlife cameras (literature
review)

The growth of peer-reviewed camera studies was modest and
linear (coefficient = 1.9455, t = 4.014, p = 0.003; Fig. 1A),
not meeting our predictions of exponential growth. Even
more discouraging, sampling effort plateaued from 2013 to
2022 in terms of cameras deployed and total trap nights
(Fig. 1B–D). There was also no change in the time lag
between data collection and publication. COVID-19 lock-
downs in 2020 did not induce significant changes in publica-
tion lag time (Fig. 1A).

(2) Scale of wildlife cameras research (literature
review)

In the literature review of published studies using cameras,
89 (65%) included sampling from a single year, and
47 (35%) included sampling from multiple years or the
deployment duration exceeded 365 days. There were
78 studies carried out in a single site (e.g. a national park)
and 58 studies carried out across multiple sites. This suggests
that two-thirds of studies focused on a snapshot in time and
space (single year, single site), and reveals opportunities to
combine single-site data sets to enable larger-scale and
longer-term monitoring without substantially infringing on
the original authors’ aims.

(3) Motivations for using cameras (questionnaire)

The questionnaire was completed by 39 government-,
24 NGO- and 60 university-affiliated camera users, and
by nine participants who identified themselves as working
across multiple sectors. Cameras yielded the highest data
quality regarding reliability and confidence in the data for
the least financial investment, with 88% of respondents
indicating cameras were their first choice for high-quality
data sets and 73% as the most cost-effective choice
(Fig. 2A, B). ‘Scat, tracks and signs’ was the most prevalent
third choice for data quality (57% of responses), and moni-
toring with transects was seen as the least cost-effective
method (46% of responses; Fig. 2A, B). The motivations
for using cameras for university-affiliated camera users sig-
nificantly leaned towards multi-site/species peer-reviewed
publications, compared to NGO- or government-
associated camera users (Fig. 2C). NGOs were significantly
more likely to generate single species/site management
reports (Fig. 2C).
There was little evidence that the use of AI/ML com-

puter vision (CV) to process Australian images is wide-
spread. Only 38/132 respondents indicated they used
some form of CV in their image processing. Seven of the
38 respondents who indicated they used CV reported using
custom or bespoke software during data processing. Online
CV models were the most frequently used CV model, with
30/38 respondents using either a globally trained detection
model (MegaDetector) and/or detector plus classifier
(Wildlife Insights, which itself uses MegaDetector), or inter-
faces with MegaDetector (e.g. tools on Ecoassist). Three
used Evorta, a for-profit Australian-specific online AI
model that charges per image.
The questionnaire also revealed that NGO affiliates

were more likely to use presence–absence metrics than
government or university affiliates (Fig. 3C). There was no
significant variation in the other metrics respondents
reported they used between the different groups (Fig. 3C).
The literature review and the questionnaire found that
around half of the respondents and peer-reviewed papers
used analyses that considered detectability (Fig. 3A, B).
This pattern varied across organisation types, with 54%
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Fig. 1. Temporal trends in the use of wildlife cameras in Australia from peer-reviewed literature. (A) Year of publication (dark grey
bars) and the last year of sampling (light green bars). The black line and numbers indicate the median time lag between the year
sampling ended and the year the item was published. (B–D) Median effort, which remained highly variable but may have started
to plateau at 75–100 cameras deployed per survey that were left for 50–65 days, thus totalling �5000 total trap nights. All values
on the y-axis in (B–D) are log10 transformed; black dots in the box plot indicate the median value for the year sampling ended; red
points are outliers. Trap nights are calculated as the number of cameras multiplied by duration.
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of papers with government-affiliated contact authors
accounting for detectability, whereas NGO- (17%) and uni-
versity- (37%) affiliated authors had fewer papers consider-
ing detectability.

Respondents to the questionnaire identified that cameras
were most often (78% of participants) used to target invasive
species and canid predators such as foxes, dingoes, and other
wild/domestic/feral dogs. Insects/arthropods received the
least use by cameras (1.5%; Fig. 4). Various-sized native
mammals received similar monitoring levels, with native
mammals >2 kg monitored by 69% of participants, <2 kg

to >500 g by 72%, and < 500 g by 58%. By contrast, rep-
tiles/amphibians, birds, and arboreal mammals garnered
less attention, with fewer than 30% of participants reporting
using cameras to monitor these taxa.

(4) Habitats sampled (questionnaire and literature
review)

The spatial distribution of camera trap surveys across the lit-
erature, questionnaire data, and the ALA data was concen-
trated along the east coast of Australia, with apparent

Fig. 2. Preferences and motivations for different methods used to sample wildlife. Results show responses from 132 Australian
camera users who completed an online questionnaire. Sampling approaches demonstrated a strong preference for cameras
regarding (A) data quality and (B) cost-effectiveness. (C) Results of a binary logistic regression showing odds ratios where values >1
(vertical black line) indicate a positive association (more likely) and <1 a negative association (less likely). An asterisk next to the
variable name indicates the overall model was significant using a chi-squared test. A solid filled point is used where the 95%
confidence intervals do not overlap 1.
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Fig. 3. Only half of Australian wildlife camera analyses correct for detection probabilities. (A) Summary of published studies.
(B) Responses from 132 Australian camera users who completed an online questionnaire. Methods were grouped by whether they
ignored bias associated with the imperfect detection, such as in presence/absence, naïve occupancy (percentage of cameras detecting
the species) or capture rates [or their modified forms, such as relative abundance index (RAI) or Allen’s index]. Animal behaviour
studies were primarily concerned with behaviours like carcass and nest discovery and likely used indices to understand issues such as
bait uptake. (C) Results of a binary logistic regression showing odds ratios where values >1 (vertical black line) indicate a positive
association (more likely) and <1 a negative association (less likely). An asterisk next to the variable name indicates the overall model
was significant using a chi-squared test. A solid filled point is used where the 95% confidence intervals do not overlap 1.
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gaps in the state of Western Australia and large areas of
arid Australia (Fig. 5A–C). The number of surveys
reported by questionnaire respondents and the literature
review was highest in Queensland, with 51 and 48 surveys,
respectively, and the lowest was in the smallest territory,
the Australian Capital Territory, with three surveys found
in the literature, one of which was reported again by a
questionnaire respondent. The remaining states and terri-
tories had similar numbers of surveys (Table S3). There
was a negligible weak negative correlation between the dis-
tance to the nearest city and the number of studies con-
ducted in a 2,500 km2 hexagon. Despite being the third
smallest of Australia’s seven biomes (Fig. 5D), the biome
with the most camera surveys was temperate broadleaf
and mixed forests. Desert and xeric shrublands occupy
around 46% of Australia’s landmass but were only the
fourth most frequently studied biome. There was no clear
relationship between the number of surveys and the size
of each biome.

(5) Qualitative findings from the workshop

There was broad agreement during group discussions that
building a distributed network of data providers – hereafter
an ‘Observatory’ – would efficiently enhance biodiversity
monitoring in Australia and has already been successfully
implemented in other countries (Enetwild-consortium, 2024).
The key challenges were data sharing amongst different
investigators and institutions, with concerns about equitable
acknowledgment, intellectual property (IP) rights, and attri-
bution for resulting products and publications. Further, a

successful Observatory would require a multidisciplinary
team of wildlife ecologists as well as data scientists and
experts in the fields of archiving data, technology and digital
infrastructure, the latter being a strength of Australia’s fed-
erally funded Terrestrial Ecosystem Research Network
(TERN) that operates other earth observatories. Through-
out the discussions, Traditional Owners and their needs
were central. Another theme was that Australian camera
users often embarked on bespoke deployment strategies,
such as baiting or placement in specific habitats
(e.g. facing wombat burrows), which strongly dictates
detectability. Thus, any Observatory must account for and
accommodate diverse sampling strategies, which requires
standardised metadata on deployment details. A key con-
cern for an Observatory was the ongoing funding necessary
to operate across a longer temporal scale than most grants
and funding cycles. For an Observatory to have its desired
impact, it must identify funding beyond these avenues and
thus be better suited for inclusion in permanent governmen-
tal infrastructure, for example, by ensuring standardised
indices are mandatory in the State of Environment reports.

(6) Steps towards large-scale and long-term
monitoring with wildlife cameras

Establishing an effective wildlife Observatory to fill the
gaps identified requires the following steps, which are not
exhaustive:

(1) Deployment – promote increased standardisation of
deployment methods as far as possible and ensure a baseline

Fig. 4. Questionnaire participants indicated which taxa they sampled with cameras, summarized here with larger areas reflecting
more users. Animal symbols courtesy of the NESP Resilient Landscapes Hub, nesplandscapes.edu.au.
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of appropriate metadata is collected while allowing flexibility
to accommodate specific projects. This could be accom-
plished by providing a free metadata collection app that
automatically adds surveys to a national ecology fieldwork
registry. Guidance can be provided about how to align ethi-
cal and permit requirements for carrying out camera surveys
across jurisdictions.
(2) Image storage and processing – promote the use of
CV-powered image management platform(s) to provide
image storage, expedite image classification

(e.g. species), and export standardised tabular data sets
(i.e. spreadsheets for analysis that include the image con-
tents and metadata).
(3) Automated wildlife identifications – facilitate AI/MLCV
research in the biodiversity space by providing a tagged
image repository. More robust Australia-specific CV algo-
rithms can be trained using data from a broader range of
biomes and species, resulting in increased precision of species
identifications and reduced levels of human oversight as the
WildObs user base grows.

Fig. 5. Distribution of camera surveys in Australia. (A, B) Number of camera surveys per 2500 km2 hexagonal cell from published
literature and questionnaire data (A, with the inset showing values per state), and potential (unconfirmed) sites from the Atlas of
Living Australia (B). (C) Published (grey) and questionnaire survey locations (green), with symbol size scaled to the number of
cameras reported to be deployed. (D) Published and questionnaire surveys per habitat, ordered from largest area (left) to smallest
(right). Above the bars, drawings indicate the biome: trees represent largely forested biomes; grass indicates grassland or savannah;
spinifex grass indicates shrub and desert biomes. The inset map shows the spatial distribution of each biome in Australia. Specific
biome names from the ecoregion layer, from left to right, are: (i) deserts and xeric shrublands; (ii) tropical and subtropical
grasslands; (iii) mediterranean forests; woodlands and scrub; (iv) temperate grasslands and savannahs; (v) temperate broadleaf and
mixed forest; (vi) tropical and subtropical moist broadleaf; and (vii) montane grasslands and shrublands.
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(4) Data standards – create a national wildlife data com-
mons (or Observatory) with data standards that enable
the production of detection histories and adhere to FAIR
(Findable, Accessible, Interoperable, and Reusable) data
principles (Fig. 6): (i) enabling viewing of maps where sur-
veys have been conducted to reduce spatial or taxonomic
bias and options to submit data and collaboration
requests; (ii) allowing concealment of sensitive habitats or

species locations in public-facing maps and overviews, with
only approved users able to access specific coordinates fol-
lowing the ARDC protocol (ARDC, 2021); and (iii) pro-
viding transparent and secure storage for contributed
images and spreadsheets and efficient means to contribute
and download spreadsheets.
(5) Analytics – provide capacity building (training) and hier-
archical modelling tools to monitor population trends while

Fig. 6. Framework for a distributed network of wildlife camera data providers and its outputs. Data are ingested as raw images or
spreadsheets, then standardised, collated, and stored permanently as a data commons, located in existing trusted data providers
such as the Atlas of Living Australia (ALA) and the Terrestrial Ecosystem Research Network (TERN). ALA and TERN must add
new functionality to store and share detection histories as opposed to presence-only data. The data are then analysed using
hierarchical modelling on high-performance computing clusters (HPCC) with open-access code hosted on GitHub. This
transparent workflow scales rapidly and is designed for timely outputs for government or NGO reports or peer-reviewed
publications. Data contributors are updated with biannual newsletters and collaboration requests generated between users
requesting specific access to data sets. AI, artificial intelligence.

Biological Reviews (2025) 000–000 © 2025 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

18 Tom Bruce and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13152 by R

esearch Inform
ation Service, W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



accounting for differences in deployment strategies and
detectability.
(6) Reporting – provide intuitive model outputs for the
public via a web portal and reports for key stake-
holders (e.g. Office of the Threatened Species
Commissioner).

(7) Case study: Eyes on Recovery (WWF) and
WildCount

Two monitoring deployments were conducted using very
different approaches in New South Wales (NSW). WWF’s
Eyes on Recovery programme aimed to evaluate impacts
and track the status of fauna following the 2019–2020
Australian wildfires, and conducted surveys from November
2020 to June 2023. The programme supported monitoring
at nine locations where 17 camera surveys were undertaken
in collaboration with 24 on-ground partner organisations,
including government agencies and universities (Fig. 7A).
Each survey employed unique deployment strategies based
on local-scale questions, target species, or management objec-
tives. WildCount aimed to monitor wildlife trends across
NSW for a decade using a standardised methodology (NSW
NPWS, 2020). Across 146 national parks and reserves, each
of WildCount’s 204 sites were sampled annually from 2012
to 2021, however, each site only used four cameras (Fig. 7B).

Image processing and analytics varied between these two
initiatives. WWF managed the collation and processing of
images with Wildlife Insights and facilitated the training
of Wildlife Insights’ global CV model to include Australian

species. WildCount did not use publicly available CV-
powered software to process images, although these were una-
vailable at the project’s onset. WWF’s on-the-ground partners
conducted their own site-level analyses using different
approaches but engaged WildObs to analyse the data set as
a whole using hierarchical occupancy modelling. WildCount
generated standardised five- and 10-year progress reports that
employed hierarchical modelling to assess changes in occu-
pancy across years. WildObs provided estimates of occupancy
of 56 species through time at all sites. Both programmes
carried out workshops following their completion. WWF
focused on the logistical challenges of a large deployment
and gaining meaningful inference from the distributed net-
work. TheWildCount reflections workshop focused on identi-
fying opportunities stemming from its large data set, including
using its tagged images to aid developments in ML and AI,
improving survey protocols, refining future study sites, and
assessing workflows. The WWF results are available in their
NGO reporting (https://wwf.org.au/what-we-do/species/
eye-on-recovery/) and are in preparation for peer review.
Similarly,WildCount provided historical data to contextualise
impacts from the 2019–2020 Australian wildfires, available in
Lavery et al. (2024). The strengths and limitations of these two
projects are compared in Table 3.

In hindsight, improvements could be made to both
approaches to identify locations or species that changed in occu-
pancy (or other metrics) over the last 10 years. For example,
WildCount’s high coverage but low local effort may be effective
at locating areas of concern. This information could then direct
additional finer-scale research – such as the Eyes on Recovery
project – to key regions (e.g. a national park) or species of

Fig. 7. Case studies using cameras for large-scale long-term monitoring in Australia. (A) Locations of the 10 major ‘Eyes on
Recovery’ study sites denoted by circles with the extent of areas that burnt according to the Google Earth Engine Burnt Area Map
(GEEBAM) data set. Low to Moderate burning is represented in orange and High to Very High is in red. (B) Locations of the
204 WildCount monitoring sites denoted by hollow white circles distributed across 146 national parks and reserves in New South
Wales; Fire Extent and Severity Mapping (FESM) where burns that were Low to Moderate are represented in orange and High to
Extreme are in red (redrawn from Fig. 1 of Lavery et al. 2024).

Biological Reviews (2025) 000–000 © 2025 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Camera monitoring: Australian wildlife synthesis 19

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13152 by R

esearch Inform
ation Service, W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://wwf.org.au/what-we-do/species/eye-on-recovery/
https://wwf.org.au/what-we-do/species/eye-on-recovery/


concern. This early warning system was one of the rationales for
setting up WildCount. For example, if WildCount detects com-
mon species in decline, this may trigger the rollout of finer-scale
studies to investigate the severity and causes of the change.

IV. DISCUSSION

(1) Trends in camera use and motivations (H1
and H2)

Most workshop participants and questionnaire respondents
considered cameras the most cost-effective approach to gen-
erating high-quality data sets for monitoring terrestrial verte-
brates. This presents a paradox because the growth
of Australian camera surveys and publications has slowed
over the last decade, especially compared to the decade pre-
ceding (Meek et al., 2015). Users’ rationale for this slowing
included logistical issues such as declining investments in
environmental space [i.e. reduced staff numbers (Preece &
Fitzsimons, 2022; Wintle et al., 2019)], increased red tape
for camera deployments (e.g. approvals from multiple over-
lapping jurisdictions), and a general increase in other duties.
Importantly, the respondents and participants also suggested
this plateau in sampling effort and time lag to publication is
partly due to reaching capacity for processing camera
images, analysing data, and writing publications. Many peo-
ple anticipated that camera trap stagnation will not persist if

AI/ML-assisted CV image processing becomes widespread,
increasing capacity (Meek et al., 2020).
There were several reasons given for why Australia has

delayed the widespread adoption of CV to process images
and in using collaborative CV-powered image-management
platforms. First, there were concerns about image ownership
and intellectual property security, although this appears
unfounded as – to our knowledge – there were no breaches
or negative repercussions from using CV tools. Second was
doubts about the effectiveness of international open-access
CV models for classifying Australian wildlife, which was
deemed generally true as of 2023. Australian camera users
also showed a desire to develop and train their own CV
models with their own data, rather than using collaborative
platforms that leverage the collective skills and data sets from
many contributors. This led to AustralianCV image-processing
tools being limited to – and replicated within – specific research
groups, NGOs, or government departments (e.g. NSW DPI)
and the use of local software (Falzon et al., 2019; AWC, 2023;
Ahumada et al., 2020). Things may be changing however, with
Wildlife Insights investing in developing the Australian repre-
sentation in their global CV model and there is now
Australian open-source software for local models (Brook,
Buettel & Aandahl, 2023). Addressing this issue should include
infrastructure for collaborative CV development such as by
hosting a public tagged image repository and providing train-
ing, computing expertise, and community for researchers
in the CV space. For users focused on ecology versus computer
science, there is a high demand for free access to a

Table 3. Comparison of the strengths and limitations of the approaches to large-scale and long-term wildlife monitoring of theWWF
‘Eyes on Recovery’ and the WildCount case studies.

WWF eyes on recovery

Strengths Limitations

• Large sampling effort (over 1,100 cameras used), unimpeded by
state and protected area boundaries.

• Non-standardised, and more targeted methodology made data
relevant and useful for management/research at local scales and
for specific species/habitats.

•Reactive, with no existing (or available) pre-burn data set at almost
all survey sites.

• Slow to mobilise post-fire sampling due to delayed access to sites
following high-intensity fires, restrictions on movement and
fieldwork during the COVID-19 pandemic, and time lags for
funding, planning, and implementing surveys.

• Targeted taxa and camera deployment strategy differed between
sites, making analysis of the whole data set more challenging.

NSW WildCount

Strengths Limitations

• Long-term data set (10 years) over a large spatial scale.
• Standardised methods for camera deployment maintained across
the whole project, both spatially and temporally, allowing the effect
of the environment on target species to be more readily quantified.

• Proactive monitoring resulted in before-after–control-impact
opportunities to examine unanticipated, large-scale disturbances
(2019–2020 Australian wildfires).

• Standardised species identification methods and assigned levels of
identification confidence applied across the programme produced
a reliable data set.

• Cameras deployed for a relatively short duration, a minimum
14-day period.

• The intentional design to monitor common fauna species across
NSW meant statistical power was lacking to examine occupancy
trends among rarer species.
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collaborative CV-powered image-management platform
focused on Australia.

In terms of Australian wildlife camera research analyses
and publications, we found around half of the analyses
ignored variable species detectability. As many ecologists
anticipate the bar for camera publications to increase over
time, this may leave one-off surveys and/or species-specific
work (e.g. university student projects) relegated to more eso-
teric journals. Established and widely read ecology and con-
servation journals are shifting their preferences towards
multi-year and multi-site studies, as well as foci on multi-
species or species interactions, and imposing stricter analyti-
cal criteria (e.g. accounting for detectability). Such large
and complicated studies take a long time, regardless of
the potential increase in CV image-processing speeds. To
enable longer-term larger-scale analyses with outputs in
management-relevant timescales may require standardised
image and analytical processing systems.

(2) Variation in the camera analyses among
stakeholders/institutions (H3–H5)

Variations in how institutions analyse their camera data sets
and distribute their findings have often been discussed anec-
dotally but rarely quantified. We found relatively small vari-
ation in general among academics, NGOs and government,
but we also identified opportunities for these user groups to
come together for mutually beneficial collaborations. First,
all users can increase the scale of inferences and statistical
power through data sharing. Second, by sharing comple-
mentary resources, such as extensive long-term govern-
ment/non-government data sets (infeasible for academics’
limited funding) and academics’ comparative expertise in
some of the more recent and complex analytics. During the
workshop, ample opportunities were identified for NGOs
and governments to collaborate with academics. This over-
comes two obstacles by leveraging NGOs’ and governments’
resources for sampling with quantitative expertise in acade-
mia, but such collaboration must be encouraged through trust
and reciprocally beneficial deliverables. Some key steps
towards data sharing include: (i) making camera surveys dis-
coverable; (ii) improving interoperability by having descriptive
and standardised reporting of themethodology; and (iii) ensur-
ing camera users are satisfied with how their data are shared
and protected, e.g. restricted access to sensitive species,
(Bubnicki et al., 2023). Using cloud platforms such as Wildlife
Insights has improved the discoverability of some data sets,
but its use is limited in Australia. A key issue is that biodiversity
repositories like GBIF and ALA do not allow for explicit
searching for camera surveys. However, there is hope that
these issues can be retrospectively addressed because detection
histories can still be constructed from historical camera data
using standardised data commons, assuming the detections
and deployment metadata have been retained.

National Commonwealth grant recipients (e.g. ARC) must
submit occurrence data to the ALA, yet enforcement is weak,
and submission data standards do not permit the government

to use this for many of their desired modelling applications
(e.g. occupancy). The issues governments face trying to reuse
biodiversity data from publicly funded surveys could be
addressed by encouraging grant reporting criteria to have
higher standards of data deposition. Expanding data sharing
in grant reporting criteria to a broader range of funding
agencies (e.g. state-level, NGO, and private foundation
grants) would similarly improve data sharing across acade-
mia, government, and NGOs.

(3) Improving inferences by accounting for
detectability (H5)

The metrics used to interpret the findings of camera surveys
depended on study objectives, outputs, and target audience
preferences. We found only approximately half of published
Australian studies and questionnaire participants used ana-
lytics that account for detectability in their analyses, often
resorting to presence/absence or relative abundance indices
(RAI). Both those outputs offer accessible interpretations for
diverse audiences but repeatedly have been shown to have
systematic biases. Accounting for variable detection is espe-
cially problematic when trying to track species population
trajectories (e.g. the Threatened Species Index; Bayraktarov
et al., 2021) or the variables influencing them (Parsons
et al., 2017). There is a growing scientific consensus around
the importance of factoring in detectability for a more robust
and nuanced interpretation of camera data sets (Guillera-
Arroita et al., 2014), and this issue has previously been raised
for Australia (Hayward & Marlow, 2014). This is also rele-
vant in the context of recent natural disasters (e.g. fires) and
species undergoing rapid declines driven by multiple factors,
some of which are known to affect their detectability. For
instance, a study on the NewHolland mouse (Pseudomys novae-
hollandiae) demonstrated that decreasing detectability values
confounded studies over the past 40 years, rendering previ-
ously acceptable search efforts inadequate (Burns et al., 2019).

Increasing Australia’s use of hierarchical modelling will
contribute to delivering more nuanced inferences, but its
adoption faces barriers, including access to full detection
histories, statistical knowledge, coding skills, and computing
power (Ahumada et al., 2020; Delisle et al., 2021).
These challenges may explain why RAIs (which tend to be
much more analytically tractable for novice data analysts)
remain prevalent despite most questionnaire respondents
reporting they understood detectability and wished to
account for it. In practical terms, this implies that some
Australian wildlife studies and monitoring programmes
focusing on population trends may have conflated changes
in species detectability and genuine population shifts, posing
significant concerns for robust threat assessments and man-
agement decisions and interpretations of existing products.
This issue is hardly limited to Australia or cameras, including
critiques of the Living Planet Index (Buschke et al., 2021;
Puurtinen, Elo & Kotiaho, 2022). We argue that accounting
for detectability is crucial for large-scale, long-term monitor-
ing of wildlife populations. The proposed Observatory will
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remove some significant barriers, like requiring access to
advanced statistical knowledge, coding skills, and computing
power, by getting users to contribute data and collaborate.

(4) The distribution of research across taxa,
habitats, and the country (H6 and H7)

Camera surveys have historically focused on medium–large
terrestrial mammals (>500 g; Delisle et al., 2021). When
Delisle et al. (2021) reviewed how trends in camera use had
changed globally from 1995 to 2020, they found that since
2013, publications of studies focusing on birds or herpeto-
fauna have notably increased. This trend has been attributed
to subtle changes in camera technology designed to move
away from their origins as a tool for big game hunters
towards more research-focused devices and deployment
strategies (Ahumada et al., 2020; Green et al., 2020). We
found only equivocal evidence of this trend in Australia, with
arboreal mammals, reptiles, and birds being monitored using
cameras by less than 30% of questionnaire respondents. The
relatively recent development and adoption of vertical-
downward camera-deployment strategies, which are better
at detecting these taxa, could address this in the future. There
are also concerns about how reliably smaller animals can be
identified at the species level based on infrared imagery alone
from horizontally and vertically oriented cameras (Corva
et al., 2022; Dundas et al., 2019; Meek, Vernes &
Falzon, 2013; Meek & Cook, 2022).

Addressing biases in camera spatial and taxonomic cover-
age may be difficult. Globally, 62% of camera surveys occur
in forested habitats (McCallum, 2013). This intuitively makes
sense because forests’ physical structure limits the relative
effectiveness of direct observation sampling approaches,
and it is easier to hide the cameras relative to more open hab-
itats (Silveira, J�acomo & Diniz-Filho, 2003). Similarly,
deserts and xeric shrubland habitats – Australia’s largest
ecoregions – were less frequently sampled with cameras than
temperate broadleaf and mixed forest ecoregions. Instead,
Australia’s arid habitats are often sampled using tracks or
driven transects. The distribution of surveys also demon-
strates a bias towards the country’s south-eastern coast,
which has more people and is more accessible (closer
to cities, better infrastructure) (Woinarski, Burbidge &
Harrison, 2018). Similar large-scale studies on reptile and
bird research in Australia found that proximity to universi-
ties, areas with the highest species richness, and sites with
high human footprint indices were most likely to be moni-
tored (Piccolo et al., 2020; Weston et al., 2020). Future studies
may struggle to address this spatial bias without also increas-
ing costs for remote deployments.

(5) The Wildlife Observatory of Australia
(‘WildObs’)
A key outcome of the workshop was a commitment to collab-
oration via establishing a Wildlife Observatory (WildObs
hereafter) and the launch of WildObs (www.tern.org.au/

wildobs). Establishing a distributed network of standardised
camera deployments is an established approach, such as the
Snapshot USA and the Terrestrial Ecosystem Assessment
and Monitoring or ‘TEAM’ network (Jansen et al., 2014).
What separates WildObs from similar endeavours is the
aim to bring together data from all potential sources, regard-
less of their deployment strategy, as well as support for best
practices across deployments, image processing, data cura-
tion and sharing, analytics, and reporting (see Section III.6).
Large networks like Snapshot USA often impose standar-
dised methodologies to make the data interoperable, which
is unsuitable for Australia’s reliance on bespoke taxa-specific
deployments. Therefore, WildObs is pursuing an approach
to hierarchical modelling where deployment variation is
explicitly modelled in the detection function by including
deployment covariates (e.g. noting if cameras are sited on a
feature like a road or a burrow, the presence and type of
bait/lure, camera make and model, etc.). With large sample
sizes, this approach allows previously disparate data sets to be
analysed through an integrated modelling framework that
propagates error (Amir, Sovie & Luskin, 2022).
In the months following WildObs establishment, proof of

concept was carried out through collaboration with WWF
to analyse their Eyes on Recovery data set to determine the
impacts of the ‘Black Summer megafire’ from 2019 to
2020 (see case study in Section III.7 and Table 3). This is
one of mainland Australia’s most extensive camera endeav-
ours regarding sampling points (1171) and area covered
(17 surveys across four states). While large-scale, longitudinal
analyses have been undertaken in Australia for camera data
sets using the same deployment strategy (see WildCount;
Table 3), Eyes on Recovery permitted several different
deployment strategies and thus is effectively a distributed
research network.

(6) Strengths and limitations of a distributed
network compared to vertical integration

A key aim of WildObs is to empower camera users to use
their data sets to achieve their maximum utility across vari-
ous applications by making them Findable, Accessible, Inter-
operable and Reusable (FAIR) (ARDC, 2023). Government
and NGO reports, student theses, and the associated data
sets generated by these projects are often kept in-house, mak-
ing it difficult for other potential users to discover when or
where sampling occurred or what was detected. Australia
currently lacks a centralised repository for camera data in
its full, rich format because existing options – such as ALA
and government biodiversity databases – are largely limited
to presence-only or presence–absence data instead of detec-
tion histories (ALA adheres to Darwin Core standards). We
propose enhancing Darwin Core standards by adding a col-
lection method field, such as transect, camera, or incidental
sighting, facilitating rapid filtration by the data source. The
incorporation of camera-specific data standards and criteria
outlined in Bubnicki et al. (2023), like camera make and
model, settings, and deployment details is essential, given
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their significance in data interpretation. The ALA could then
add a dedicated field for querying the data collection meth-
odology (Belbin et al., 2021). These changes can enhance
the FAIR nature of camera data in existing databases but
may not overcome the need for a dedicated data commons
with complete detection histories, which could still be hosted
at ALA or TERN. Amajor impediment to users contributing
data is the significant time and effort required to format
metadata according to strict specifications, which can lead
individuals to take shortcuts or omit detailed metadata;Wild-
Obs would streamline this using code-based tools and AI to
ensure complete submissions. Contributing to a dedicated
camera commons (or database) must meet reporting require-
ments for government funding and could later be ‘flattened’
to presence–absence or presence-only data sets to share with
the larger biodiversity aggregator databases.

Prior examples of passive sensor networks to monitor wild-
life communities are limited in Australia. For example, the
Australian Acoustic Observatory (www.acousticobservatory.
org) is vertically integrated, essentially a single team conduct-
ing long-term multi-site monitoring using acoustic recorders
and then making the data sets publicly available (Roe
et al., 2021). The strengths of vertical integration include stan-
dardised data sets, while the negatives are the cost of sampling
is not shared (buying, deploying, and maintaining all the
equipment and data), and this likely limits coverage. By con-
trast, WildObs will be horizontally integrated with each con-
tributor in charge of their sampling. This enables much
larger coverage in space and time, including troves of data
already collected over the last decade, but hinges on effective
collaboration and data sharing. Another obstacle for horizon-
tal integration to achieve cameras’ Big Data potential is the
curation and analysis of surveys using different deployment
strategies (and doing so at speed). Government investment
and/or partnering with technology companies such as Google
and Microsoft have proved effective for scaling other environ-
mental networks and platforms (Ahumada et al., 2020).

(7) Wildlife observatories globally

WildCAMS (https://wildcams.ca/) in Canada is a distrib-
uted network without the requirement for standardised cam-
era deployments. Alternative distributed network strategies
such as TEAM, European Observatory of Wildlife, and
Snapshot USA, require standardised camera deployments
and can work at the scale of an entire country and globally
(Jansen et al., 2014; Cove et al., 2021; Enetwild-consortium
et al., 2023). On the one hand, Australia is relatively well con-
nected given its overall size and could represent the biggest
trial in a single country of a standardised initiative globally.
Thus far, such standardised deployments in Australia have
only been partly implemented for specific projects or individ-
ual states like Tasmania or New South Wales (McHugh,
Goldingay & Letnic, 2022). On the other hand, many
Australian species suffer from low detection probabilities
using standardised approaches and thus may require
species-specific deployments to attain sufficient detections to

model and monitor them reliably (Henderson et al., 2022).
Therefore, within Australia, the transition to a standardised
deployment is unlikely so WildObs will rely on accounting
for this in the detection formula of hierarchical analyses.

V. CONCLUSIONS

(1) There are immense opportunities for national-to-global
wildlife monitoring conducted using cameras and this is
essential for addressing biodiversity extinction and climate
change crises. However, collaborations and innovations are
still required to realise the potential of cameras for robust
large-scale long-term monitoring.
(2) Standardised deployments are impractical for monitor-
ing multiple species across Australia because contributors’
immediate reason for sampling is typically species and site
specific. There are techniques to overcome these limitations
through rigorous data-cleaning pipelines and hierarchical
modelling. Metadata describing camera deployments is a
crucial requirement for a distributed network.
(3) The distributed network Observatory approach to
data collation – combined with hierarchical modelling
analytics – is providing powerful new insights into the ecol-
ogy and population trajectories of hundreds of species.
(4) The Observatory approach (such as WildObs) offers
immense added value to stakeholders that are already under-
taking camera surveys for their own reasons, allowing unused
data on non-target species to be analysed. It also connects
users with similar aims for collaborations, increasing the
cost-effectiveness of sampling investments and reducing
duplication.
(5) Data sharing is crucial to the success of the Observatory
model. Trust and incentives can be generated by offering
capacity and assistance for image processing, storage, and
analysis, and supporting joint efforts for future projects.
Many funding agencies already mandate data sharing as part
of grant reporting but there are opportunities to increase the
effectiveness of this approach.
(6) Providing timely outputs to land managers and decision-
makers (e.g. within weeks) is possible by combining computer
vision-powered image processing with efficient code for data
curation and analysis.
(7) The transition from cameras being siloed within teams or
organisations to collaborative national wildlife observatories
will benefit all stakeholders and enable novel large-scale
long-term monitoring that is urgently needed.

ACKNOWLEDGMENTS

WildObs received investment (doi.org/10.3565/bvg2-b035)
from the Australian Research Data Commons (ARDC). The
ARDC is enabled by the National Collaborative Research
Infrastructure Strategy (NCRIS).

Biological Reviews (2025) 000–000 © 2025 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Camera monitoring: Australian wildlife synthesis 23

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13152 by R

esearch Inform
ation Service, W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.acousticobservatory.org
http://www.acousticobservatory.org
https://wildcams.ca/
https://doi.org/10.3565/bvg2-b035


VI. DATA AVAILABILITY STATEMENT

The questionnaire used to investigate stakeholder experi-
ences about the use of cameras is available at: https://
www.dropbox.com/scl/fi/94f4l4ev2k1z9vs6y9u5i/WildObs-
Camera-trap-participant-survey-Google-Forms_2023_11_
14.pdf?rlkey=yy840dyu58j5n5n9buf7bqj5c&dl=0.
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