Login | DPI Staff queries on depositing or searching to era.daf.qld.gov.au

Pelagic larval duration and settlement size of a reef fish are spatially consistent, but post-settlement growth varies at the reef scale

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Leahy, S. M., Russ, G. R. and Abesamis, R. A. (2015) Pelagic larval duration and settlement size of a reef fish are spatially consistent, but post-settlement growth varies at the reef scale. Coral Reefs, 34 (4). pp. 1283-1296. ISSN 0722-4028

Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link.

Article Link: http://dx.doi.org/10.1007/s00338-015-1330-y

Abstract

Recent research has demonstrated that, despite a pelagic larval stage, many coral reef fishes disperse over relatively small distances, leading to well-connected populations on scales of 0–30 km. Although variation in key biological characteristics has been explored on the scale of 100–1000 s of km, it has rarely been explored at the scale relevant to actual larval dispersal and population connectivity on ecological timescales. In this study, we surveyed the habitat and collected specimens (n = 447) of juvenile butterflyfish, Chaetodon vagabundus, at nine sites along an 80-km stretch of coastline in the central Philippines to identify variation in key life history parameters at a spatial scale relevant to population connectivity. Mean pelagic larval duration (PLD) was 24.03 d (SE = 0.16 d), and settlement size was estimated to be 20.54 mm total length (TL; SE = 0.61 mm). Both traits were spatially consistent, although this PLD is considerably shorter than that reported elsewhere. In contrast, post-settlement daily growth rates, calculated from otolith increment widths from 1 to 50 d post-settlement, varied strongly across the study region. Elevated growth rates were associated with rocky habitats that this species is known to recruit to, but were strongly negatively correlated with macroalgal cover and exhibited negative density dependence with conspecific juveniles. Larger animals had lower early (first 50 d post-settlement) growth rates than smaller animals, even after accounting for seasonal variation in growth rates. Both VBGF and Gompertz models provided good fits to post-settlement size-at-age data (n = 447 fish), but the VBGF’s estimate of asymptotic length (L ∞ = 168 mm) was more consistent with field observations of maximum fish length. Our findings indicate that larval characteristics are consistent at the spatial scale at which populations are likely well connected, but that site-level biological differences develop post-settlement, most likely as a result of key differences in quality of recruitment habitat.

Item Type:Article
Corporate Creators:Department of Primary Industries, Queensland
Business groups:Animal Science
Subjects:Aquaculture and Fisheries > Fisheries > Fishery resources
Aquaculture and Fisheries > Fisheries > Fishery conservation
Aquaculture and Fisheries > Fisheries > Fishery research
Live Archive:07 Feb 2025 04:20
Last Modified:07 Feb 2025 04:20

Repository Staff Only: item control page