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Abstract

Bread wheat and durum wheat genotypes were grown in field experiments at two locations in
New South Wales, Australia across several years and using two sowing times (‘early’ v. ‘late’).
Genotypes were grouped based on genetic similarity. Grain yield, grain size, soil characteristics
and daily weather data were collected. The weather data were used to calculate water and heat
stress indices for four key growth periods around flowering. Least absolute shrinkage and
selection operator (LASSO) was used to predict grain yield and to identify the most influential
features (a combination of index and growth period). A novel approach involving the crop
water supply–demand ratio effectively summarized water relations during growth. LASSO pre-
dicted grain yield quite well (adjusted R2 from 0.57 to 0.98), especially in a set of durum gen-
otypes. However, the addition of other important variables such as lodging score, disease
incidence, weed incidence and insect damage could have improved modelling results.
Growth period 2 (30 days pre-flowering up to flowering) was the most sensitive for yield
loss from heat stress and water stress for most features. Although one group of bread
wheat genotypes was more sensitive to water stress (drought) in period 3 (20 days pre-flower-
ing to 10 days post-flowering). Evapotranspiration was a significant positive feature but only
in the vegetative phase (pre-flowering, period 1). This study confirms the usefulness of LASSO
modelling as a technique to make predictions that could be used to identify genotypes that are
suitable candidates for further investigation by breeders for their stress-tolerance ability.

Introduction

Wheat (Triticum aestivum L.) is the world’s third most abundant staple cereal food crop, after
maize and rice in terms of production. The Organization for Economic Co-operation and
Development and Food and Agriculture Organization of the United Nations (OECD/FAO,
2023) report that its annual output for the 2022–23 period was approximately 800 million
tonnes. In Australia, wheat is the fifth most exported commodity (OEC, 2023). However, cli-
mate change-induced abiotic stresses, such as drought and increased temperatures, pose sig-
nificant challenges to wheat production (Collins and Chenu, 2021). Drought occurs when
the potential evapotranspiration (ET) is higher than usual for a particular production envir-
onment (Langridge and Reynolds, 2021), and these areas are expanding due to climate change
impacting wheat yields globally (Lobell et al., 2011). In the last 40 years, drought-sensitive
areas have ballooned by an area roughly equivalent to the size of South Africa (1.2 million
km2), according to a new study by Li et al. (2024). Additionally, water scarcity significantly
hinders wheat cultivation in Australia, prompting growers, breeders and agronomists to
focus on improving water-use efficiency (WUE) (Sadras and McDonald, 2012). Drought con-
ditions, particularly those experienced in eastern Australia from 2017 to 2020, can severely
restrict wheat yields (NSW Government Water, 2020; PDI, 2022). Durum wheat (Triticum
turgidum L. subsp. durum (Desf.) Husn.) is a secondary wheat crop in Australia – grown
for use in pasta production (GRDC GrowNote, 2017) with an annual production in
Australia of around 0.5 million tonnes – much less than the total bread wheat production
of about 36 million tonnes in 2022 (ABS 2024).

High temperatures during critical crop development stages, such as flowering, can reduce
grain yield by directly affecting grain number and grain weight (Stone and Nicolas, 1994;
Talukder et al., 2014; Trethowan, 2022). Even a short period of high temperature during
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flowering can significantly reduce grain weight and set, especially
in sensitive cultivars (Talukder et al., 2013). For example, a field
experiment by Nuttall et al. (2012) showed that a temperature
of 36–38°C for 6 days after flowering resulted in a 12% reduction
in grain number and a 13% loss in grain yield. Additionally,
environmental factors like water shortages and high temperatures
significantly impact global wheat production through plant
phenotypic and physiological changes (Abhinandan et al.,
2018). Studies indicate that for each additional degree of global
mean temperature increase, wheat yields could decline by up to
6%, under the assumption of no CO2 fertilization, continued
effective management practices and no changes in crop genetics
(Asseng et al., 2015; Zhao et al., 2017). This impact has been
already evident in Australia, where simulations suggest a huge
and concerning 27% decline in water-limited potential wheat
yield from 1990 to 2015 (Hochman et al., 2017). This decrease
is likely attributable to a combination of stressors such as seasonal
rainfall and increased temperatures, coupled with the limited abil-
ity of increased atmospheric concentration (CO2) to fully com-
pensate for these negative factors (Wang et al., 2017; Li et al.,
2022). While climate change and climate variability present
major hurdles, analysing the connections between climate, soil
and wheat yield empowers the scientific community to design
actionable strategies to mitigate yield losses. By unravelling the
relative importance of various variables, we can guide future
research towards developing climate-resilient wheat cultivars
and innovative management practices, ultimately transforming
vulnerability into opportunity.

In any individual wheat crop, in addition to climatic and
edaphic influences, many other biotic and abiotic stresses will
affect crop growth and yield. In this work, we were particularly
interested in abiotic soil water deficit and heat stresses, especially
during the reproductive period of the crop’s growth. We explored
how we can use soil characteristics and weather variables to
improve the prediction of phenology and yield via modelling. In
addition, we wanted to identify the most influential variables and
the most sensitive crop growth period upon which these variables
act. Least absolute shrinkage and selection method (LASSO) has
shown good utility for identifying the most influential variable in a
multiple-regression situation of this type (Didari et al., 2023). This
methodologymayassist wheat breeders by identifyingdifferent influ-
ential variablesdependingon the typeofwheat genotypebeing exam-
ined. Lohithaswa et al. (2022) used LASSO for genetic selection in
maize breeding against abiotic and biotic stresses. In addition, if
other traits are of interest, the same approach can be used to dissect
the influential variables (Shafiee et al., 2021). This study aimed to
achieve the following objectives:

• Utilize an existing wheat data set encompassing six sets of bread
wheat and durum wheat genotypes (with varying genotype
numbers) grown in multi-year experiments across two sites
and up to two sowing times. These data were used to investigate
the possibility of predicting grain yield from a suite of weather-
and soil-based climatic variables, particularly focusing on crop
water-use, crop water stress, and crop heat stress.

• Leverage the relatively new LASSO regression technique to identify
the most influential and effective variables for yield prediction.
Additionally, this analysis aimed to determine if the genotype
groups exhibited differential responses to these variables.

• Calculate weather and soil-based variables across four distinct
crop growth periods (overlapping developmental stages) and
assess their influence on yield prediction.

• By integrating the findings, this study sought to identify the
most critical growth period for crop damage (yield loss) caused
by water stress and/or heat stress within the different genotype
groups. This information can inform wheat breeders on which
crop traits require focus to minimize potential yield losses due
to water and heat stress.

Materials and methods

Study area and soil data

Two typical rainfed crop-livestock growing locations (Leeton and
Wagga Wagga) in southeast Australia, encompassing different cli-
matic conditions, were selected for analysis (Table 1) utilizing an
existing data set previously published to determine suitable plant-
ing windows that minimize the impact of environmental stress
(Sissons et al., 2018; Zeleke et al., 2023). The soils across the
sites are predominantly Wunnamurra clay (Leeton) and kandosol
(Wagga Wagga) according to the Australian Soil Classification
(Isbell and National Committee on Soil and Terrain, 2021). The
soil properties at these sites have been summarized by others
(Wang et al., 2017; Xing et al., 2017). Briefly, at Leeton, the
plant available water capacity (PAWC) was 293 mm, to a total
soil depth of 1.8 m, pH (1:5 water) ranged from 7.2 to 8.9, bulk
density (g/cm3) of 1.20–1.40 and initial nitrate (NO3) was
81 kg/ha. At Wagga Wagga, the PAWC was 128 mm, to a total
soil depth of 1.25 m, pH (1:5 water) ranged from 6.2 to 6.9,
bulk density was 1.37–1.56 g/cm3 and initial NO3 was 69 kg/ha.
These sites have been the subject of variable verification in
wheat cropping systems (Anwar et al., 2015, 2022) especially for
the numerous initial values and variables required for running
the Agricultural Production Systems sIMulator (APSIM) crop
growth model (https://www.apsim.info/).

Field experiments and agronomy

The layout of the field experiments, the details of the genotypes
used and the agronomy used during each year are detailed in pre-
vious publications (Sissons et al., 2018; Zeleke et al., 2023).
Briefly, the experiments were conducted at Leeton in 2011 and
2015 and at Wagga Wagga in 2012, 2018 and 2019. Two sowing
times were used at each site/year: ‘early’ and ‘late’, in order to
the maximize the differences in the weather experienced by the
crops. Following standard rates used for local irrigated wheat,
100 mm of irrigation was applied to minimize drought stress
and/or to facilitate timely sowing. Not all genotype sets were
grown in every site/year. Here we note, in addition, that some
lodging occurred in the field along with some fungal disease;
the genotypes were variously affected but the scoring used
was unfortunately inconsistent. Consequently, in this analysis
these factors were not included in the LASSO modelling (see
below) and may have contributed to some imprecision in the pre-
dicted values. We note that lodging may also have negatively
impacted the recovery of grain due to the use of mechanical
plot harvesting.

We note that the number of genotypes is not the same between
the two sowing times within a genotype group (category),
although there was a considerable overlap. The frequencies of
concurrence of genotypes across ‘site_year_sowing-time’ are
given in Table S1 in the Supplementary materials. This was due
to practical issues, such as the lack of seed supply. The
‘BreadWheat_NILines’ group was only sown once, while the
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‘Durum_Elite’ category had only a small number of genotypes.
Both of these groups were excluded from the LASSO analysis.

Wheat genotype groups

ABD lines
These are advanced breading lines of wheat (T. aestivum) pro-
duced at the International Maize and Wheat Improvement
Centre, Mexico. They are comprised of the line selections from
the high-temperature wheat yield trials, and selections made for
their large grain size (Sissons et al., 2024). Hereafter referred to
as ‘BreadWheat_ABDLines’.

Elite wheat
These are bread wheat varieties of historical significance, recently
released cultivars and parents used in breeding programmes by
the major private breeding companies (InterGrain, LongReach
and Australian Grain Technologies) in Australia. These varieties
have been bred to meet the specific needs of Australian growers,
such as resistance todiseases andpests, tolerance toheat anddrought,
good grain quality and high yield, and were chosen based on being
potentially heat tolerant (or in some cases intolerant) according to
Australian breeder recommendations and the literature (Sissons
et al., 2024). Hereafter referred to as ‘BreadWheat_Elite’.

Landrace wheat
The bread wheat landraces were sourced from heat-prone areas in
Afghanistan, Iran, Iraq and India. They were identified using the
focused identification of genotype strategy (FIGS), an approach
that uses environmental variables described in plant genotype
collection sites as selection criteria to identify materials that
most likely have undergone selection pressures for the target
variables (Sissons et al., 2018). Hereafter referred to as
‘BreadWheat_Landraces’.

Tamaroi × Saintly durum bi-parent density
These are durum wheat double-haploids, which were produced from
F1 plants of a cross between the SA-bred variety, Saintly and the
NSW-bred variety, Tamaroi. Saintly has a reputation for performing
well in seasons with terminal drought stress, while the variety
Tamaroi has a very high inherent 1000-kernel weight but is suscep-
tible to heat stress. Hereafter referred to as ‘Durum_Biparent’.

Durum elite
The durum wheat genotype comprised of a worldwide collection
trialled for heat tolerance in southern Australia (Collins et al.,
2017). They included commercial durum varieties and breeding
lines, along with tetraploid wheat landraces sourced from heat-prone
regions by using the FIGS (Street et al., 2016). They have been
shown to exhibit significant variability for tolerance/intolerance to
late-sown heat stress (Sissons et al., 2018) and natural heat waves
(Emebiri et al., 2024). Hereafter referred to as ‘Durum_Elite’.

Bread wheat near-isogenic lines
The near-isogenic (NI) lines were created from a cross of wheat
varieties Drysdale and Waagan. Both parents are semi-dwarf
varieties and carry genetic loci for intolerance and tolerance,
respectively, to both booting and grain filling stage heat stress
(Shirdelmoghanloo et al., 2016; Erena et al., 2021). The NI lines
were created by using molecular markers to identify single
Drysdale ×Waagan F2:8 plants that were heterozygous for genetic
loci located on wheat chromosomes 2B, 3B and 6B; then theTa
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progeny of these plants was screened to identify plants homozy-
gous for each allele at the respective loci (Erena et al., 2021).
Hereafter referred to as ‘BreadWheat_NILines’.

Soil water balance

Rainfall, ET, runoff and drainage are key factors that affect how
much water is available to crops (Unkovich et al., 2018, 2023).
In this study, temperature, rainfall, irrigation, simulated initial
soil water content and simulated soil water content at harvest
were used to calculate the soil water balance following the proced-
ure of He and Wang (2019). We used the pre-validated APSIM
(version 7.10) that simulates the key biophysical processes related
to crop growth and production, water, carbon and N cycling in
the soil–plant system (Holzworth et al., 2014). Published studies
have also used the APSIM model to calculate hydraulic variables
for wheat cropping systems (such as, soil water content at sowing
and harvest, water use [WU], runoff, drainage and soil evapor-
ation). The variables in the Soil Water module of APSIM were
the same for our sites as those used in other published work
(Liu et al., 2014; Wang et al., 2017; Xing et al., 2017; Zeleke
and Nendel, 2019). To estimate the initial soil water content at
the start of the experimental period (2011), we assumed that
the starting soil water on 1 January 2002 was equal to LL15
(water content at 15 bar suction). Then by running APSIM for
the 2002–11 period using actual weather data we simulated the
initial soil water in 2011 (He and Wang, 2019). The LL15 value
was determined in the Wagga Wagga Agricultural Institute soil
moisture analysis laboratory (Anwar et al., 2022). The APSIM
model was then run continuously until the end of the experimen-
tal period (31 December 2019), without resetting soil water con-
ditions, to obtain the ‘initial soil water at sowing’ and the ‘soil
water at harvest’ for each of the wheat experiments (Sissons
et al., 2018). The APSIM crop sequence used in the 10-year
run-up period before the wheat experiments commenced was a
typical one used in the wheat growing regions in Australia:
wheat(W)-canola(C)-chickpea (CP)-W-C-CP-W-C-CP-W.

Total crop WU expressed as ET was calculated by subtracting
the final soil water content at harvest from the initial soil water
content at sowing and adding the amount of irrigation and rain-
fall received during the growing season:

ET = P+ I+ SWs− SWh− R − D (1)
where P, I, R and D are cumulative rainfall, irrigation, runoff and
deep drainage from the day of sowing to harvest, and SWs and
SWh are soil water at the sowing and harvest dates, respectively
(Yang et al., 2016).

In contrast, transpiration (T), which does not include soil
evaporation (E) (Eqn (1)), was calculated using the following
soil water balance equation (Yang et al., 2016):

T = P+ I+ SWs− SWh− R − D− E (2)
The APSIM soil water module also calculates daily potential

ET using the Priestley–Taylor method (Priestly and Taylor,
1972; APSIM, 2023), which is based on the physiological relation-
ship between crop yield and ET (Paredes et al., 2014; Trout and
DeJonge, 2017; Akumaga and Alderman, 2019).

Water supply–demand ratio (SDR)

The APSIM model calculates a water-deficit index (Chapman
et al., 1993; Chenu et al., 2011), also known as the ‘water supply’

and ‘water demand’ ratio, which indicates how well the water
extractable by the crop’s roots (water supply) meets the crop’s
potential transpiration (water demand). The crop water supply
is calculated for each layer of the soil where roots are present
and depends on the root growth and soil property of each layer.
The water demand is the amount of water the crop would have
transpired in the absence of soil water constraint. It is estimated
daily based on the amount of crop growth on that day and the
atmospheric saturation vapour pressure deficit.

Water SDR is the ratio between water supply and water
demand, bounded between 0 and 1, which indicates if the plant
is water-stressed:

SDR = min
Supply
Demand

, 1

( )
, Demand . 0

1, Demand = 0

⎧⎨
⎩ (3)

When SDR = 1, there is no water stress. Otherwise, the plant is
stressed. Based on SDR, we define water deficiency (D) such that:

D = 1− SDR (4)

The interpretation is the opposite of SDR.WhenD = 0, there is no
water stress. Positive D indicates stress. Daily deficiency values were
calculatedandwere accumulatedwithin the following fourcropdevel-
opment periods, each spanning approximately 30 days (see below).

Wheat developmental period

Abiotic stress during the reproductive stage of plants (anthesis
and grain filling) has a significant effect on grain yield and qual-
ity. The critical period for abiotic stress is the time when plants
are most sensitive to these stresses. Some previous studies have
defined the critical period as 30 or 45 days before to 0 days
after 50% anthesis (Fischer, 1985). Other studies have found
that the critical period is narrower, spanning only about 20
days before to 10 days after anthesis (Ortiz-Monasterio et al.,
1994; Abbate et al., 1995). More recently, Slafer et al. (2023)
found that the critical period for wheat is from 30 days before
to 10 days after anthesis.

In this study, we defined and examined four contrasting crop
growth periods based on previously published studies:

Period 1: from sowing to the day of flowering (varying lengths)
Period 2: from 30 days before flowering to the day of flowering (30

days total)
Period 3: from 20 days before flowering to 10 days after flowering

(30 days total)
Period 4: from 15 days before flowering to 15 days after flowering

(30 days total)

We chose these 30-day intervals based on the findings of previous
studies (Fischer, 1985; Slafer et al., 2023). There is considerable
chronological overlap between these periods, but we wanted to
test which of these periods might be most sensitive to stress effects
on grain yield. By definition, period 2 overlaps with period 3 by
67%; period 2 overlaps with period 4 by 50% and period 4 overlaps
with period 3 by 83%. The degree to which period 1 overlaps with
the others depends on the interval from sowing to flowering (in
days). The means and ranges for the sowing-to-flowering interval
for each genotype group across each site/year/sowing-time combin-
ation are given in Table S2 in the Supplementary materials. The
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overall mean of this duration was 106.0 days. The mean overlap (and
the ranges) between periods 1 and 2 was 28.8% (21.5–38.8%). For
periods 1 and 3 the corresponding data were 19.2% (14.3–25.9%).
For periods 1 and 4 they were 14.4% (10.8–19.4%).

Statistical techniques and LASSO

First, we examined several summary statistics for each genotype
set and each sowing time (across both sites and all years). Since
the ‘early’ (coded ‘1’) and ‘late’ (coded ‘2’) sowing times were
designed to present the crops with contrasting stress environ-
ments, we expected to see quite large differences in means and
ranges for the traits of interest.

Second, to investigate the impact of daily abiotic stress indices
(heat stress, water deficit and ET) on wheat yield, accumulated
over four key growth stages, we used the following approach.

Pearson correlation coefficients were calculated to assess the
relationship between yield, 1000-grain weight (TGW), ET, tran-
spiration (T), accumulated water deficit (water SDR) and heat
stress (number of days with temperatures >30°C). Correlation
analysis was restricted to period 3 only (20 days before flowering
to 10 days after flowering, see above) because this flowering period
has proven to be the most important with respect to yield in other
published papers (see above). All data were normalized to zero
mean and unit variance prior to analysis.

Third, to study the relationship between wheat yield (the target
trait) and daily stress indices (the explanatory variables) accumu-
lated over critical periods of growth (the four ‘periods’) and across
different sets of genotypes groups, we undertook LASSO regres-
sion analysis. In linear models such as multiple linear regression
models, it is often assumed that the explanatory variables are
independent (Monahan, 2011). When explanatory variables are
correlated, multicollinearity is said to exist (Kutner et al., 2005).
As a result of multicollinearity, the estimation of coefficients
can become unstable, leading to unreliable estimates. In some
extreme cases, the regression coefficients do not reflect the inher-
ent relationship between the explanatory variable and the
response variable. For example, a negative coefficient may be
obtained although the relationship should be positive.

For better interpretability, many statistical methods have been
proposed to deal with multicollinearity, many of which are aimed
at minimizing the prediction error while forcing (i.e. ‘shrinking’)
some of the regression coefficients to zero, hence effectively
removing some of the explanatory variables and highlighting
the most influential ones (Dormann et al., 2013). Among these
methods, LASSO is a popular choice. In this work, we used LASSO
to find the best subset of explanatory variables from the large initial
number. To obtain scientifically sensible regression coefficients, con-
strains were imposed on them in the estimation procedure.
Specifically, the coefficients of variables related to heat and water
stresses were set to be non-positive. The computations were per-
formed using the ‘glmnet’ package in R (Friedman et al., 2010).

The ‘tidyverse’ R package (Wickham et al., 2019), the RStudio
GUI (RStudio Team, 2023) and the R software suite (R Core Team,
2023) were used for data preparation, summarization and graphics.

Results

Data summaries across sites, genotype groups and sowing
time

The Wagga Wagga soil, compared to Leeton, is a shallower and
more dense soil, with lower pH, which holds much less water

than Leeton (Table 1). Both sites face sizeable year-to-year varia-
tions in the climate variables (rain, solar and temperatures).
Wagga Wagga gets more rain, both overall and during the grow-
ing season, with Wagga Wagga’s temperatures being slightly
cooler than Leeton.

While there was a large variation within each genotype cat-
egory, the grain yield (Table 2) was always substantially lower
in sowing-time_2 due to higher stress levels with an overall
range of nearly 9 t/ha to less than 0.2 t/ha. Grain size was similarly
reduced in sowing-time_2 except for the ‘Durum_Biparent’ cat-
egory (Table 2).

The mean total transpiration and mean total ET were always
higher in sowing-time_2 (Table 3) due to the crops growing in
a hotter and drier period of the year, with ET always greater
than T (as expected). WUE, both for transpiration (WUE_T)
and evapotranspiration (WUE_ET), was much reduced in
sowing-time_2 compared to sowing-time_1, often by more than
50%. The WUE_T ranged overall for individual genotypes from
57.5 to 0.92 kg of grain/ha/mm, whereas WUE_ET ranged from
33.5 to 0.6 kg of grain/ha/mm (Table 3).

Correlation analysis

Correlation coefficients between yield, TGW, ET, transpiration
(T), accumulated water deficit (SDR = supply–demand ratio)
and heat stress (H > 30 = number of days with temperatures
>30°C) (see Tables 4–9). Generally, the correlations between traits
were highly significant (either positively or negatively) within
each genotype category but significance levels were much lower
(or non-existent) in the ‘BreadWheat_Landraces’ and the two
durum categories. The T and ET variables were always highly
positively correlated (as expected). The H > 30 (index of heat
stress) was usually highly positively correlated with both T and
ET but was not significant in the ‘BreadWheat_Landraces’ cat-
egory (Table 6) nor for ET in the ‘Durum_Elite’ category
(although the number of values was small, n = 10, Table 9).

The TGW and grain yield were generally positively correlated
but again not within the ‘BreadWheat_Landraces’ group
(Table 6), and were strongly negative in the ‘Durum_Biparent’
material (Table 8). The SDR (index of water stress) was usually
negatively correlated (when significant) with the other traits but
a contrasting positive correlation was seen in the
‘BreadWheat_ABDLines’ material with TGW (Table 4), and
with T and ET in the ‘Durum_Biparent’ material (Table 8).

T and ET were generally significantly negatively correlated with
both yield and TGW, except in the ‘BreadWheat_Landraces’ group
(Table 6) and in ‘Durum_Biparent’ (Table 8). As expected, the
numerous genotypes in the ‘BreadWheat_Landraces’ category pro-
vided the greatest range in performance (yield and TGW), water
use (T and ET) and water use efficiency (WUE_T and
WUE_ET), plus less rigid inter-trait correlations.

Distributional characteristics of water and heat stress and ET

For each of the four growing periods in this study, the intensity
and frequency of water stress (calculated via SDR) and heat stress
including ET are summarized below for individual genotypes
within six genotype groups.

Boxplots show the distribution of accumulated values of SDR
for a single genotype group and growing period combination
(Fig. 1). There is a considerable amount of variability in SDR
within each genotype group and growing period. The boxes,
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which represent the interquartile range (IQR), span a wide range
of values in most cases. The whiskers, which extend to the most
extreme data points not considered outliers, also show a wide
range of values for many of the groups and periods. The medians
(represented by the horizontal lines within the boxes) are gener-
ally lower for groups and periods with higher SDR. For example,
in the first growing period, the median SDR for the
BreadWheat_Elite group is around 10, while the median SDR
for the same group at third growing period decreased to about
4.8. The dispersion, or spread, of the data is also influenced by
SDR. The boxes tend to be wider for groups and periods with
higher SDR, indicating that there is a greater range of SDR values
within those groups. For example, in the second growing period,
the box for the BreadWheat_Elite group is wider than the third

growing period. In contrast, the BreadWheat_NILines group
didn’t show dispersion but higher SDR values in the first and
fourth growing periods compared to the second and third grow-
ing periods. SDR decreases from growing period 1 to growing per-
iod 4 for the genotypes in all the groups (Fig. 1). For three of the
genotype groups (BreadWheat_ABDLines, BreadWheatNILines,
Durum_Wheat), the lowest SDR is in growing period 2.

The potential ET (Fig. 2) exhibits considerable variability within
each genotype group and growing period, as evidenced by the
IQRsandwhiskers of the boxes.Thedegreeofdispersion inETvalues
differs across genotype groups and growing periods. For instance,
Durum_Elite lines generally demonstrate a more compact distribu-
tion of ET values compared to BreadWheat_ABDLines, suggesting
greater consistency in WU within the Durum_Elite group. The

Table 2. Mean grain yield and grain weight of six wheat genotype groupings (across two wheat species, bread wheat and durum) sown at one or two different times

Category
Sowing
time

Number of
genotypes

Mean sowing
date (Julian day)

Mean
yield
(t/ha)

Range in
yield (t/ha)

Mean
TGW (g)

Range in TGW
(g)

BreadWheat_ABDLines 1 72 156 5.66 3.17–8.96 41.9 26.80–50.38

BreadWheat_ABDLines 2 61 217 3.85 1.86–5.75 33.3 21.38–42.65

BreadWheat_Elite 1 217 156 5.33 2.13–8.73 39.1 27.92–52.25

BreadWheat_Elite 2 219 217 3.33 0.19–5.46 31.2 na

BreadWheat_Landraces 1 196 157 3.74 2.00–6.35 40.3 30.68–58.0

BreadWheat_Landraces 2 201 218 2.07 0.44–4.23 31.9 22.28–48.40

BreadWheat_NILines 1 61 137 2.62 2.30–2.92 33.6 25.52–39.30

Durum_Biparent 1 232 152 2.78 2.25–3.43 35.1 26.51–44.20

Durum_Biparent 2 322 216 1.48 0.88–2.03 40.4 31.82–47.76

Durum_Elite 1 4 152 4.73 2.59–7.22 42.0 38.34–45.30

Durum_Elite 2 6 215 2.49 0.86–4.61 39.8 32.05–44.95

The number of genotypes of each genotype category and the range of genotype means for grain yield (t/ha) and 1000-grain weight (TGW, g) are also presented.
na, not available.

Table 3. Water use and water-use efficiency based on transpiration (T and WUE_T) and evapotranspiration (ET and WUE_ET), respectively for six wheat genotype
groupings sown at one or two different times

Category
Sowing
time

Mean
T

(mm)

Range
in T
(mm)

Mean
ET

(mm)

Range
in ET
(mm)

Mean
WUE_T
(kg

grain/
ha/mm)

Range in
WUE_T

(kg grain/
ha/mm)

Mean
WUE_ET
(kg grain/
ha/mm)

Range in
WUE_ET
(kg grain/
ha/mm)

BreadWheat_ABDLines 1 155 136–187 245 219–277 36.6 20.1–49.9 23.0 13.7–33.5

BreadWheat_ABDLines 2 222 194–255 308 272–346 17.3 7.8–23.1 12.5 5.8–16.8

BreadWheat_Elite 1 158 136–188 249 219–299 33.9 15.6–57.5 21.4 9.1–34.9

BreadWheat_Elite 2 222 187–258 310 262–363 15.2 0.92–24.6 10.9 0.6–17.6

BreadWheat_Landraces 1 157 136–188 260 219–313 24.5 13.7–46.6 14.6 7.9–28.2

BreadWheat_Landraces 2 220 191–258 313 268–370 9.7 1.69–21.7 6.8 1.2–15.2

BreadWheat_NILines 1 159 158–159 269 265–270 16.5 14.4–18.4 9.7 8.5–10.8

Durum_Biparent 1 146 138–156 257 239–287 18.9 15.8–21.9 10.8 9.1–12.1

Durum_Biparent 2 189 141–232 279 223–332 7.8 5.7–9.9 5.3 3.7–6.4

Durum_Elite 1 163 142–186 258 245–275 27.8 18.3–38.9 17.9 10.6–26.3

Durum_Elite 2 211 151–254 299 236–342 11.1 5.7–18.2 7.9 3.6–13.6

Overall mean values are presented along with the corresponding ranges for individual genotype means.
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Table 4. Pearson correlation coefficients between yield, TGW, ET, transpiration (T), accumulated water deficit (SDR = supply–demand ratio) and heat stress (H > 30 =
number of days with temperatures >30°C) during growth period 3 (see text for explanation) in the ‘BreadWheat_ABDLine’ genotype category for both sites (Wagga
Wagga and Leeton) combined, including all sowing times

BreadWheat_ABDLines genotype group

Yield TGW ET T SDR H > 30

Yield 0.52*** −0.38*** −0.37*** −0.15** −0.62***

TGW −0.61*** −0.62*** 0.16** −0.60***

ET 0.99*** −0.59*** 0.70***

T −0.60*** 0.68***

SDR −0.23***

Significance levels are indicated as follows: *0.01 < P < 0.05, **0.001 <P < 0.01, ***P < 0.001.

Table 5. Pearson correlation coefficients between yield, TGW, ET, transpiration (T), accumulated water deficit (SDR = supply–demand ratio) and heat stress (H > 30 =
number of days with temperatures >30°C) during growth period 3 (see text for explanation) in the ‘BreadWheat_Elite’ genotype category for both sites combined,
including all sowing times

BreadWheat_Elite genotype group

Yield TGW ET T SDR H > 30

Yield 0.59*** −0.62*** −0.66*** 0.20*** −0.73***

TGW −0.28*** −0.37*** −0.11* −0.49***

ET 0.97*** −0.61*** 0.82***

T −0.55*** 0.77***

SDR −0.29***

Significance levels are indicated as follows: *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001.

Table 6. Pearson correlation coefficients between yield, TGW, ET, transpiration (T), accumulated water deficit (SDR = supply–demand ratio) and heat stress (H > 30 =
number of days with temperatures >30°C) during growth period 3 (see text for explanation) in the ‘BreadWheat_Landraces’ genotype category for both sites
combined, including all sowing times

BreadWheat_Landraces genotype group

Yield TGW ET T SDR H > 30

Yield −0.10 0.24 0.27 −0.93*** −0.85**

TGW −0.59 −0.56 0.25 0.26

ET 0.99*** −0.33 −0.18

T −0.32 −0.13

SDR 0.97***

Significance levels are indicated as follows: *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001.

Table 7. Pearson correlation coefficients between yield, TGW, ET, transpiration (T), accumulated water deficit (SDR = supply–demand ratio) and heat stress (H > 30 =
number of days with temperatures >30°C) during growth period 3 (see text for explanation) in the ‘BreadWheat_NILines’ genotype category for both sites combined,
including all sowing times

BreadWheat_NILines genotype group

Yield TGW ET T SDR H > 30

Yield 0.57*** −0.18* −0.20* −0.40*** −0.30***

TGW −0.31*** −0.34*** −0.34*** −0.07

ET 0.99*** −0.50*** 0.36**

T −0.48*** 0.30***

SDR −0.40***

Significance levels are indicated as follows: *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001.
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median ET values vary across genotype groups and growing periods.
Notable trends include BreadWheat_ABDLines tend to have higher
median ET values than other groups across most growing periods.
Durum Elite lines generally exhibit lowermedian ET values, particu-
larly in growing periods 2 and 3. BreadWheat_Landraces display a
wider range ofmedian ET values across growing periods. The poten-
tial ET of growing period 1 > 4 > 3 > 2. Growing period 1 has the
highest potential ET and growing period 2 has the lowest potential
ET. Compared to the other genotypes, BreadWheat_Landraces has
the highest potential ET for each of the respective growing periods
and high variability in ET across growing periods, suggesting that
water-use strategies of genotypes may vary depending on environ-
mental conditions and crop developmental stages.

There was a wide range of variability in heat stress within each
genotype group and growing period (Fig. 3). The boxes show the
middle 50% of the data, with the whiskers extending to the 10th
and 90th percentiles. For example, in the BreadWheat_ABDLines
group, the heat stress ranges from 0 to 15 days across the growing
period. The median heat stress is also different for each genotype
group and growing period. For example, the median heat stress
for the BreadWheat_ABDLines group is about 7 days in the
third growing period, while the median heat stress for the
Durum_Biparent group is higher (about 15 days) in the same
growing period. Figure 3 shows that heat stress growing period
1 < 2 < 3 < 4. Growing period 1 has the lowest heat stress and
growing period 4 has the lowest potential ET. Durum_Biparent
had the highest stress for a given growing period compared to
the other genotypes.

LASSO feature selection

Our wheat data consisted of six genotype categories (Table S2 in
the Supplementary materials); however, when fitting a LASSO
model, specific criteria must be met. In our case, the
‘BreadWheat_NILines’ category only had one sowing time at
one location; hence there was no variation in the explanatory vari-
ables, and this category was excluded from the final modelling.
Similarly, the ‘Durum_Elite’ category had too few observations
(two genotypes only) to allow the fitting of the explanatory vari-
ables. The interpretation of coefficients from LASSO is almost the
same as in multiple regression models. The only difference is that
LASSO ‘forces’ some of the coefficients to zero. Table 10 shows
the estimated coefficients from LASSO and overall model
performance.

In all four major genotype categories, the effect of ET on yield
was effectively zero except in period 1 (where it presumably influ-
enced vegetative biomass, which led to more yield), and in period
4 for ‘Durum_Biparent’ genotypes. Notably, in period 1, the effect
of ET on yield was higher for ‘BreadWheat_ABDLine’ and
‘BreadWheat_Elite’ compared to the other two genotype groups.
Heat stress (H ) was damaging in all periods for the first two
bread wheat categories and the ‘Durum_Biparent’ set, but less
so for the ‘BreadWheat_Landraces’ set in period 3. Yet, heat stress
in period 2 was found to be highly damaging for the
‘BreadWheat_Landraces’ group. The results were more mixed
for the water stress index (D), particularly detrimental in
‘BreadWheat_ABDlines’ and in period 3.

For BreadWheat_ABDLines (Table 10), wheat grain yield was
found to be most severely affected by water stress in period 3, fol-
lowed by heat stress in period 1. For each unit increase in water
stress in period 3, yield is expected to decrease by 0.789 t/ha,
assuming all other factors remain unchanged. Water stress in per-
iod 4 and ET in periods 2–4 were found to be relatively less influ-
ential to the grain yield. In the ‘BreadWheat_Landraces’ genotype
category, heat stress during period 2 had the strongest negative
impact on wheat grain yield, reducing it by 0.725 t/ha. In contrast,
water stress and ET in all periods had minimal to no effect on
grain yield. Among the genotype categories in period 2,
BreadWheat_Elite experienced the greatest yield reduction due to
water stress, with an expected decrease of 0.501 t/ha and heat stress
followed closely (yield decline of about 0.449 t/ha). Notably, ET
had no impact on grain yield for BreadWheat_Elite in periods
2–4. Durum_Biparent appears to be less sensitive to water stress
and heat stress than BreadWheat_ABDLine. In Durum_Biparent,
heat stress had the greatest impact in period 2, with an expected

Table 8. Pearson correlation coefficients between yield, TGW, ET, transpiration
(T), accumulated water deficit (SDR = supply–demand ratio) and heat stress
(H > 30 = number of days with temperatures >30°C) during growth period 3
(see text for explanation) in the ‘Durum_Biparent’ genotype category for both
sites combined, including all sowing times

Durum_Biparent genotype group

Yield TGW ET T SDR H > 30

Yield 0.16 −0.06 −0.06 0.13

TGW 0.06 0.03 0.05

ET 0.90*** 0.33**

T 0.34**

SDR

Significance levels are indicated as follows: *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001.

Table 9. Pearson correlation coefficients between yield, TGW, ET, transpiration (T), accumulated water deficit (SDR = supply–demand ratio) and heat stress (H > 30 =
number of days with temperatures >30°C) during growth period 3 (see text for explanation) in the ‘Durum_Elite’ genotype category for both sites combined,
including all sowing times

Durum_Elite genotype group

Yield TGW ET T SDR H > 30

Yield 1.00 −0.75*** 0.18*** −0.16*** −0.22*** −0.87***

TGW 1.00 −0.17*** 0.11* 0.08 0.62***

ET 1.00 0.93*** −0.07 0.05

T 1.00 −0.10* 0.31***

SDR 1.00 0.57***

Significance levels are indicated as follows: *0.01< P < 0.05, **0.001 < P < 0.01, ***P < 0.001.
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Figure 1. Boxplots of mean SDR (supply–demand ratio
= water stress) for individual genotypes within six geno-
type groups and for each of the growing periods (period
1 = from sowing to the day of flowering; period 2 = from
30 days before flowering to the day of flowering; period
3 = from 20 days before flowering to 10 days after flower-
ing and period 4 = from 15 days before flowering to 15
days after flowering, see text for details). Data include
all sowing times. The number of genotypes in each
group and sowing time is given in Table 3.

Figure 2. Boxplots of potential ET for individual geno-
types within six genotype groups and for each of the
growing periods (period 1 = from sowing to the day of
flowering; period 2 = from 30 days before flowering to
the day of flowering; period 3 = from 20 days before
flowering to 10 days after flowering and period
4 = from 15 days before flowering to 15 days after flow-
ering, see text for details). Data include all sowing times.
The number of genotypes in each group and sowing
time is given in Table 3.

The Journal of Agricultural Science 253

https://doi.org/10.1017/S0021859624000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859624000479


yield decrease of 0.361 t/ha. This was followed by water stress with
a decrease of 0.241 t/ha. ET had a positive effect on grain yield in
periods 1 and 4, with increases ranging from 0.224 to 0.278 t/ha.
However, it had no impact on yield in periods 2 and 3.

Yield prediction

LASSO modelling predicted yield reasonably well (Fig. 4) with
highly significant positive regression between the observed and
predicted values: the ‘Durum_Biparent’ relationship being par-
ticularly strong. There are some outlying groups of genotypes,
for example in the ‘BreadWheat_Elite’ category but these were
very low yielding genotypes. As shown in Table 4, the root
mean squared errors (RMSE) ranged from 0.119 to 0.976 t/ha
across the four genotypes and the adjusted R2 ranged from 0.57
to 0.98. So, overall, the LASSO approach worked well at predicting
crop outcomes, especially for ‘Durum_Biparent’, from weather-
based and soil-based indices. Some other explanatory variables
(not considered in this study) are required to improve further
the goodness of fit, such as disease scores, lodging scores, weed
measurements and crop plant density.

Discussion

Climate change throws a complex web of challenges at crop pro-
duction, weaving together water deficits, scorching heat and fluc-
tuating evaporative demands (Anwar et al., 2015; Kerr et al.,
2022). These interwoven environmental stresses act like a multi-
pronged attack, inflicting far more damage on plant growth and
yield than individual stressors do in isolation (Pandey et al.,
2017). This ‘synergistic effect’ can significantly cripple crop pro-
duction, exceeding initial projections, as evidenced by numerous

studies (Mittler, 2006; Prasad et al., 2011). Additionally,
environmental factors like water shortages and high temperatures
significantly impact global wheat production through plant

Figure 3. Boxplots of heat stress for individual geno-
types within six genotype groups and for each of the
growing periods (period 1 = from sowing to the day of
flowering; period 2 = from 30 days before flowering to
the day of flowering; period 3 = from 20 days before
flowering to 10 days after flowering and period
4 = from 15 days before flowering to 15 days after flow-
ering, see text for details). Data include all sowing times.
The number of genotypes in each group and sowing
time is given in Table 3.

Figure 4. Plots of predicted wheat yield (t/ha) derived from LASSO modelling against
observed yield for four wheat genotype categories. The best fitted straight line,
together with the R2 and P-value of the slope term, are provided for better visual
assessment.
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phenotypic and physiological changes (Abhinandan et al., 2018).
Not only the degree of these environmental factors but also the
timing of occurrence during the crop growing season is important.
These environmental stressors might occur at different times or
simultaneously.

This study investigated the combined effects of abiotic stresses:
heat, water deficit (SDR) and ET, on six wheat genotype
categories in Australia. The findings highlight the intricate and
multifaceted nature of understanding how multiple stressors can
impact crop performance.

Table 10. Estimated coefficients from LASSO and model performance for Leeton and Wagga Wagga (all sowing times pooled), as measured by estimated
coefficients, RMSE, adjusted (Adj.) R2 and lambda (λ)

BreadWheat_ABDLines BreadWheat_Elite

Item LASSO coefficients Item LASSO coefficients

Intercept 4.834 Intercept 4.327

D_period1a −0.498 −0.036

D_period2 −0.341 −0.501

D_period3 −0.789 0

D_period4 0 −0.261

H_period1 −0.575 −0.227

H_period2 −0.432 −0.449

H_period3 −0.073 −0.337

H_period4 −0.312 −0.227

ET_period1 0.431 0.344

ET_period2 0 0

ET_period3 0 0

ET_period4 0 0

RMSE 0.846 0.976

Adj. R2 0.66 0.57

λ 0.0011 0.0054

BreadWheat_Landraces Durum_Biparent

Item LASSO coefficients Item LASSO coefficients

Intercept 2.893 Intercept 2.027

D_period1a −0.102 −0.207

D_period2 0 −0.241

D_period3 −0.064 0

D_period4 0 0

H_period1 −0.143 0

H_period2 −0.725 −0.361

H_period3 0 −0.215

H_period4 −0.247 −0.135

ET_period1 0.161 0.224

ET_period2 0 0

ET_period3 0 0

ET_period4 0 0.278

RMSE 0.605 0.110

Adj. R2 0.70 0.98

λ 0.0063 0.000

The explanatory variables consisted of water stress (D), heat stress (H; number of days with temperatures >30°C), ET (Priestley–Taylor method) and the response variable was wheat grain
yield (t/ha) for each of the four growing periods (periods 1–4, see text for details).
aExplanatory variables (D, H, or ET) plus period number.
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Delayed sowing resulted in longer crop emergence time, slower
growth, less ground cover, lower biomass and higher non-
productive (evaporation) component of water balance. Late
sown crops were exposed to higher temperature and ET during
the critical crop development stage. Previous studies have
shown that an early sown crop has a deeper rooting system to
access subsoil water during the reproductive growth stage
(Zeleke and Nendel, 2019). For all the growth periods considered
in this study (periods 1–4), the correlation between explanatory
variables (TGW [1000-grain weight], ET, T [transpiration],
SDR, H > 30 [number of days with temperatures >30°C]) and
dependent variable (grain yield) is different for different genotype
groups (results shown for only period 3). This can be due to the
inherent difference of the genotypes or due to pooled data from
two sites and two sowing times. Heat, ET, and transpiration are
negatively correlated with yield. One would expect that the
more a crop transpires, the higher the yield will be. However, in
our data higher rainfall (or higher ET or T) years were affected
by lodging, resulting in lower yield.

Our research confirms that climate change presents significant
challenges for wheat production. The different growing periods
exhibited variations in water stress, ET, and heat stress (H > 30
days), demonstrating the potential for diverse climatic pressures
throughout the growing season (Nuttall et al., 2018). These stres-
ses were found to significantly impact grain yield and plant char-
acteristics like 1000-grain weight.

Interestingly, this study emphasizes that the combined effect of
these stressors is not simply additive. Interactions between factors
like heat and water deficit can be complex and vary depending on
the specific genotype category and growing period. For example,
while heat stress generally reduced yield in most wheat genotype
categories tested here, its impact was less pronounced in the
‘BreadWheat_Landraces’ group in period 3, while water stress in
period 2 had the largest detrimental effect for this group.
Conversely, the ‘Durum_Biparent’ group seemed less sensitive
to stress overall, even showing a positive response to increased
ET in some periods. Similar results were found by other studies
including Sinha et al. (2021) and Ru et al. (2023).

These findings underline the need for nuanced approaches to
managing wheat crops under increasing climate variability
(FAO, 2016). Selecting stress-tolerant varieties and implement-
ing targeted strategies based on specific environmental condi-
tions and genotype characteristics will be crucial for ensuring
food security in a changing climate. This study highlights the
need for genotype specific management strategies to minimize
the impact of these stresses. Further research exploring add-
itional stress factors and their interactions will also be vital for
optimizing wheat production and resilience. One such add-
itional stress factor is frost, especially when it occurs during
the flowering period.

While the LASSO model effectively captured the main stress
effects (Shafiee et al., 2021), it is important to acknowledge the lim-
itations. The observed stress–yield relationships likely involve intri-
cate interactions that the model might not fully capture. For
instance, the contrasting response of ‘BreadWheat_Landraces’ to
heat stress across different periods suggests potential moderating
factors or complex physiological mechanisms may have been at
play. Further research delving deeper into these interactions and
incorporating additional stress factors like salinity or nutrient defi-
ciency could provide a more comprehensive understanding of how
multiple stresses collectively can impact wheat performance
(Teixeira et al., 2013; Ru et al., 2023).

Despite these known limitations, the LASSO model demon-
strated promising results in predicting yield based on weather
and soil-based indices, particularly for the ‘Durum_Biparent’
group. This highlights its potential as a tool for:

(1) Identifying stress-tolerant genotypes: by analysing the LASSO
coefficients and stress responses across diverse genotype,
researchers can prioritize genotypes with inherent resistance
or resilience to specific stress combinations. This can be
achieved by identifying genotype categories that exhibit con-
sistently lower yield reductions under various stress
combinations.

(2) Targeted stress mitigation strategies: understanding which
stress factors are most critical for specific genotypes and
growth periods allows for tailored interventions. The relative
importance of these stress factors at different periods around
the flowering time helps to implement appropriate stress
management strategies. For example, if water stress is the pri-
mary limiting factor for a particular genotype category during
a specific growth period, implementing irrigation scheduling
strategies can be crucial. Conversely, for genotype categories
sensitive to heat stress, exploring heat stress management
techniques such as by earlier sowing or by growing earlier
maturing varieties or breeding for heat tolerance can be
prioritized.

To summarize, the LASSO analysis provided valuable insights into
the diverse and complex ways that abiotic stresses impact wheat
yield across different genotype categories. While further research
is needed to fully understand the intricate interactions between
stresses, this study demonstrates the potential of LASSO as a tool
for predicting and managing stress impacts, ultimately contributing
to improved wheat production and food security in a changing cli-
mate. This study highlights the significant impact of heat stress and
drought as potential causes of yield losses. Compound stressors
(heat and drought) can have more severe impacts on crops than
individual impacts. The findings are significant for breeders, farm-
ers and policymakers. The genotypes screened using this technique
can be used in breeding for yield stability under dry, normal and
wet seasons and different heat stress scenarios. This can help in
screening, genetic development and improvements in phenotyping.
Depending on the suitability of soil moisture, seed availability and
farming operations, farmers can decide which genotype to sow in
the sowing window. This information is useful for farming system
planners and policymakers in making resource allocation decisions
and in the delivery of incentives to mitigate the impacts of climate
change.

Conclusion

In this study, we demonstrated how LASSO can be used to iden-
tify bread wheat and durum wheat genotypes with stress-tolerance
ability within genotype groupings using data from multi-site and
multi-year field experiments grown in NSW, Australia. Grain
yield, soil characteristics and daily weather data were recorded
to predict grain yield using stress indices. LASSO predicted
grain yield well but adding other variables like lodging score, dis-
ease incidence, weed incidence and insect damage could improve
prediction accuracy. Not all growing periods were predicted well.
We found that the growth period 30 days pre-flowering up to
flowering was sensitive for yield loss from heat and water stress
as compared to other three periods of similar duration. The
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study confirms the usefulness of statistical modelling in identify-
ing genotypes worthy of investigation by breeders.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859624000479.
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