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Abstract
In July 2017, an investigation into the cause of neurological signs in a black flying fox (Pteropus alecto, family Pteropodidae) 
identified a putative novel hantavirus (Robina virus, ROBV, order Bunyavirales, family Hantaviridae, genus Mobatvirus) 
in its brain. Analysis of the evolutionary relationship between other hantaviruses using maximum-likelihood, a systematic 
Bayesian clustering approach, and a minimum spanning tree, all suggest that ROBV is most closely related to another Mobat-
virus, Quezon virus, previously identified in the lung of a Philippine frugivorous bat (Rousettus amplexicaudatus, also family 
Pteropodidae). Subsequently, between March 2018 and October 2023, a total of 495 bats were opportunistically screened for 
ROBV with an experimental qRT-PCR. The total prevalence of ROBV RNA detected in Pteropus spp. was 4.2% (95% CI 
2.8–6.4%). Binomial modelling identified that there was substantial evidence supporting an increase (P = 0.033) in the detec-
tion of ROBV RNA in bats in 2019 and 2020 suggesting of a possible transient epidemic. There was also moderate evidence 
to support the effect of season (P = 0.064), with peak detection in the cooler seasons, autumn, and winter, possibly driven by 
physiological and ecological factors similar to those already identified for other bat-borne viruses. This is Australia’s first 
reported putative hantavirus and its identification could expand the southern known range of hantaviruses in Australasia.
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Introduction

Rodents, belonging to the order Rodentia (families Muri-
dae and Cricetidae), have long been recognised as hosts of 
hantaviruses (order Bunyavirales, family Hantaviridae), 
the etiological agents of serious human illnesses including: 
haemorrhagic fever with renal syndrome (HFRS) in Asia and 
Europe, and hantavirus cardiopulmonary syndrome (HCPS) 
in the Americas [1–3]. Historically, a close association 

between rodents and hantaviruses was observed, leading to 
the hypothesis that the two had co-evolved over millions of 
years [4, 5]. However, recent discoveries of other geneti-
cally distinct hantaviruses (genera Loanvirus, Mobatvirus 
and Thottimvirus), identified in moles (order Eulipotyphla, 
subfamilies Scalopinae and Talpinae), shrews (order Eulipo-
typhla, subfamilies Crocidurinae, Myosoticinae, and Sorici-
nae) and bats (order Chiroptera, families Hipposideridae, 
Molossidae, Nycteridae, Phyllostomidae, Pteropodidae, 
Rhinolophidae and Vespertilionidae), have challenged this 
hypothesis [4, 6–13]. The basal positioning of bat- and mole-
borne mobatviruses and selected shrew-borne thottimviruses 
(from maximum-likelihood and Bayesian analysis), suggests 
that bats, moles and/or shrews, rather than rodents may have 
served as the mammalian hosts of ancient hantaviruses [5, 
14, 15].

Bats possess unique characteristics that allow them to 
maintain and transmit viruses [16]. These include flight, 
their ability to enter into torpor or hibernate, a relatively 
long-life span, roosting in large, dense groups and a unique 
immunology [6, 9, 16–18]. Additionally, being ancient 

Edited by Joachim J. Bugert.

Craig S. Smith and Darren J. Underwood have contributed equally 
to the work.

 *	 Craig S. Smith 
	 craig.smith@daf.qld.gov.au

1	 Biosecurity Sciences Laboratory, Department of Agriculture 
and Fisheries, Biosecurity Queensland, Brisbane, QLD, 
Australia

2	 Currumbin Wildlife Hospital Foundation, Currumbin, QLD, 
Australia

http://orcid.org/0000-0002-5923-7921
http://orcid.org/0000-0003-1103-9819
http://orcid.org/0009-0003-2707-3963
http://orcid.org/0000-0003-1105-3741
http://orcid.org/0000-0001-9564-9176
http://crossmark.crossref.org/dialog/?doi=10.1007/s11262-024-02113-3&domain=pdf


72	 Virus Genes (2025) 61:71–80

(evolving 50–65 million years ago), bats have changed rela-
tively little in comparison to other mammals [16, 19]. This 
conservation of physiological attributes, including cellular 
receptors and biochemical pathways, could enhance the 
transmission of bat-borne viruses to other mammals which 
share related receptors and pathways [16].

The hantavirus virion is enveloped, small (80–120 nm) 
and generally spherical or pleomorphic in shape. The neg-
ative-sense, single stranded RNA genome is tri-segmented 
and approximately 12,000 nucleotides in length [20–22]. 
The segments, small (S), medium (M) and large (L) encode 
for a nucleocapsid protein (N), envelope glycoproteins that 
are post-translationally cleaved (Gn and Gc), and the RNA-
dependent RNA polymerase (RdRp) [23, 24]. In a revised 
taxonomic classification, using concatenated S and M amino 
acid coding regions, hantaviruses are now classified into 
four new genera [25]. Members of Orthohantavirus (which 
include the only hantaviruses shown to cause serious human 
illness) are predominantly hosted by rodents, with additional 
detections in moles and shrews. Thottimvirus are hosted by 
shrews, and both Loanvirus and Mobatvirus are hosted pre-
dominantly by bats [14, 25]. However, studies of genetically 
diverse bat-borne hantaviruses have been hampered by the 
limited availability of complete genomes. Partial coding 
sequences produce discrepancies in phylogenetic analysis 
and limit development of diagnostic tools [9, 24, 26, 27].

Here, we report the complete coding sequence of the first 
putative hantavirus identified in Australia, contributing to 
the advancement of hantavirus taxonomy and expanding the 
known geographic range of the Mobatvirus genus. Addition-
ally, we describe the development of an experimental qRT-
PCR, which was subsequently used in passive molecular 
surveillance of flying foxes to identify potential risk factors 
for detection.

Materials and methods

Sample submission

In July 2017, a black flying fox (Pteropus alecto, family 
Pteropodidae), a large frugivorous bat with a history of neu-
rological signs was admitted to a wildlife hospital (Queens-
land, Australia). The bat was euthanised and submitted to 
the Biosecurity Sciences Laboratory (BSL, Queensland, 
Australia) where the rabies-like Australian bat lyssavirus 
(ABLV) was excluded using a modified qRT-PCR [28]. 
Histopathology of the brain identified a mild encephalitis. 
Additional bats, also submitted to BSL for ABLV exclusion, 
were included in this investigation. Experienced veterinary 
pathologists identified the species of bats using available 
keys [19], and performed necropsies to remove the brain. 

Occasionally, and on an ad hoc basis, additional tissues not 
required for ABLV exclusion were also collected.

High throughput sequencing

For further investigations using high throughput sequencing 
(HTS), total RNA was extracted from the brain using the 
RNeasy Mini Kit (QIAGEN) and an on-column RNase-free 
DNAase digestion (QIAGEN), both performed following 
manufacturer’s instructions, except for a final elution vol-
ume of 30 μL. The RNA concentration was measured using a 
Qubit Fluorometer with the Qubit RNA HS Assay Kit (Ther-
moFisher Scientific). The sequence library was prepared 
using the TruSeq Stranded mRNA Library Preparation Kit 
(Illumina) following the manufacturer’s instructions except 
for the substitution of Oligo-dT capture beads with those 
from the Ribo-ZeroTM rRNA Removal Kit (Human/Mouse/
Rat, Illumina) to deplete the ribosomal RNA. The size and 
purity of the sequence library was quantified using the 2200 
TapeStation (Agilent), with the final concentration quanti-
fied using the Qubit dsDNA HS Assay Kit (ThermoFisher 
Scientific). The library was sequenced on a NextSeq 500 
Sequencing Platform using a NextSeq Mid Output Kit v2 
300 (Illumina).

Quality control and FASTQ file generation was initially 
performed using the online server BaseSpace Sequence 
Hub (Illumina). Additional trimming was performed using 
Geneious (Biomatters) [29], and the plugin BBDuk (Bush-
nell, B., https://​sourc​eforge.​net/​proje​cts/​bbmap/). Continu-
ing with Geneious, 12.6 million paired reads were mapped 
to a viral genome resource (NCBI) [30], and fine-tuned with 
additional mapping iterations.

Phylogeny

The evolutionary relationship between the putative novel 
hantavirus identified using HTS, and other hantaviruses, 
previously classified by International Committee on Tax-
onomy of Viruses (ICTV) [25, 31], was performed using 
the concatenated amino acid sequence for the complete 
coding sequence of both the S and M segments, (Table 1, 
Supplementary material). To maximise the number of 
available reference sequences the L segment was excluded, 
aligning analysis with previous studies [25]. A maximum-
likelihood tree was created using a method described by 
Hall [32]. Briefly, codons for the concatenated nucleo-
tide sequences were aligned using Muscle in the program 
MEGA X [33], and the sequences translated into amino 
acids. The most appropriate substitution model was identi-
fied by testing all available models and selecting the one 
that had the best fit for the available data, as measured by 
the Bayesian information criterion [33]. The chosen model 
(Le Gascuel with gamma distribution and a proportion of 

https://sourceforge.net/projects/bbmap/
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invariable sites, LG + G + I) was bootstrapped 1,000 times 
to estimate the reliability of the nodes. Nodes < 0.7 were 
considered to be unreliable [32].

Hierarchical clustering

Hierarchical clustering or inference of population struc-
ture of hantaviruses was performed using the concat-
enated amino acid sequences, and a systematic Bayesian 
clustering approach applying Markov Chain Monte Carlo 
(MCMC) estimation, available in the program STRU​
CTU​RE [34]. The following parameters were adopted; 
no admixture, independent allele frequencies, a 10,000 
burn-in period, 100,000 MCMC steps, assumed population 
number (K) 1 to 10, and 30 iterations [35]. The appropri-
ate K value was identified using the rate of change in the 
log probability of data between successive K values [36], 
implemented in the program STRU​CTU​RE HARVESTER 
[37]. The posterior probability that an individual hanta-
virus belonged to population k was calculated using the 
‘Greedy algorithm’ in the program CLUMPP [35, 38].

Minimum spanning tree

A minimum spanning tree (MST) that connects hantaviruses 
by the minimum genetic distance, was created using multi-
locus sequence typing (MLST) of the concatenated amino 
acid sequences with the eBURST algorithm implemented in 
the program PhyloViZ [39]. The reliability of the tree was 
tested in the program MSTgold [40].

qRT‑PCR

An experimental qRT-PCR targeting a 78 bp region of the S 
segment (MK165655, nucleotide position 852-909) of the 
putative novel hantavirus identified using HTS. The nucle-
ocapsid gene encoded for by the S segment is a well-estab-
lished target for molecular assays of orthohantaviruses and 
primers were designed using Primer3 software Version 4.1.0 
[41–44]. Specificity of the probe (5’-[FAM]-AGG​GTG​TAA​
GCT​TGT​TAA​AGACA-[TAMRA]-3’, 873-895) and primers 
(FWD 5’-CTA​CGA​AGC​TGC​AAA​GGT​GG-3’, 852-871 and 
REV 5’-CAA​GCA​AAT​ACC​CAA​GGA​GCA-3’, 909-929) 
were assessed in silico using Primer-BLAST (NCBI), and 

Table 1   Descriptive and 
univariate statistics from 495 
Australian bats tested for a 
putative novel hantavirus 
Robina virus (ROBV) by an 
experimental qRT-PCR

Adjusted prevalence and standard error from a fitted binomial logistic regression model (Year + Season)

Variable Category Detected
(Total)

Prevalence
(95%CI)

Adjusted
(SE)

P

Year 2018 0 (53) 0.0 (0.0–5.8) 0.0 (0.0) 0.033
2019 10 (180) 5.6 (2.9–10.0) 5.6 (1.8)
2020 7 (85) 8.2 (3.8–16.3) 7.7 (2.9)
2021 2 (49) 4.1 (0.4–14.5) 13.1 (12.9)
2022 1 (86) 1.2 (0.1–6.9) 1.1 (1.1)
2023 1 (62) 1.6 (0.1–9.4) 1.1 (1.1)

Season Spring 5 (177) 2.8 (1.0–6.6) 3.3 (1.2) 0.064
Summer 3 (138) 2.2 (0.5–6.5) 1.4 (1.0)
Autumn 7 (100) 7.0 (3.2–14.0) 8.4 (3.6)
Winter 6 (101) 5.9 (2.5–12.6) 8.5 (3.8)

Region Central Queensland 1 (20) 5.0 (0.1–25.4) 6.2 (5.9) 0.281
Darling Downs 2 (23) 8.7 (1.3–28.0) 12.7 (7.8)
Far North Queensland 0 (28) 0.0 (0.0–10.5) 0.0 (0.1)
North Queensland 1 (31) 3.2 (0.1–17.6) 4.0 (4.1)
South East Queensland 17 (389) 4.4 (2.7–6.9) 5.0 (1.5)
Wide BayBurnett 0 (25) 0.0 (0.0–11.6) 0.0 (0.1)

Species Insectivorous bat 0 (41) 0.0 (0.0–7.4) 0.0 (0.1) 0.317
Pteropus alecto 16 (332) 4.8 (2.9–7.7) 5.3 (1.6)
Pteropus conspicillatus 0 (16) 0.0 (0.0–17.1) 0.0 (0.4)
Pteropus poliocephalus 2 (52) 3.96 (0.3–13.7) 4.4 (3.1)
Pteropus scapulatus 3 (75) 4.0 (0.9–11.6) 5.1 (3.0)

Total 21 (495) 4.2 (2.8–6.4)
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against other viral RNA held at BSL (Hendra virus genotype 
1, Hendra virus genotype 2, ABLV, Kunjin virus, Murray 
Valley encephalitis virus, Ross River virus and Japanese 
encephalitis virus). The brains of bats (both frugivorous and 
insectivorous) routinely submitted to BSL for ABLV exclu-
sion were opportunistically screened. Nucleic acid extraction 
was performed using either the EZ-1 Advanced XL (QIA-
GEN) or KingFisher DUO Prime (Thermo Fisher Scien-
tific) following manufacturer’s instructions. Template RNA 
(5 µL) was added to 20 µL master mix containing either 
SuperScript III Platinum One-Step qRT-PCR Kit (Invitro-
gen) or Path-ID Multiplex One-Step RT-PCR Kit (Applied 
Biosystems), with primers at a final concentration of 1.6 µM 
each, and probe at a final concentration of 0.2 µM as deter-
mined by checkerboard optimisation. Thermal cycling was 
performed with an initial RT step of 50 °C for 15 min, an 
initial denaturation of 2 min (SuperScript III) or 10 min 
(Path-ID) prior to 2-step cycling at 95 °C for 15 s and 60 °C 
for 30 s, repeated 44 times. Cycling was performed on the 
Rotor-Gene Q real-time PCR cycler (QIAGEN) and results 
were analysed with the Rotor-Gene Q software (QIAGEN). 
Hantavirus RNA was considered to have been detected when 
samples reported a cycle threshold (Ct) of < 40.

Confirmatory nested RT‑PCR

A nested RT-PCR targeting a 498 bp region (MK165655, 
nucleotide position 687-1185, 381 bp internal, 744-1125) 
that flanked the expected qRT-PCR amplicon, was used to 
confirm the nucleotide sequence of hantavirus RNA detected 
by the qRT-PCR. It was also designed using Primer3 soft-
ware Version 4.1.0 [41], and the specificity of the primary 
(FWD 5’-CCT​TGC​GGA​GAA​ATG​GGA​TG-3’, nucleotide 
position 687-707, and REV 5’-TGG​TCT​GTC​ATT​GCT​TTG​
CC-3’, 1165-1185) and secondary primers (FWD 5’-CAT​
AGA​TGC​TGG​CCC​CAC​TA-3’, 744-764, and REV 5’-TGT​
ATT​CCC​ATG​GAC​TGC​GT-3’, 1105-1125) assessed in-sil-
ico using Primer-BLAST (NCBI). Nucleic acid previously 
extracted for the experimental qRT-PCR was used in the 
nested RT-PCR. Five (5) µL of nucleic acid template was 
added to a 20 µL primary reaction master mix containing 
SuperScript III One-Step RT-PCR Kit (Invitrogen) as per 
the manufacturer’s instructions scaled to a final volume of 
25 uL. Thermal cycling conditions for the primary reaction 
consisted of a 30 min reverse transcription step at 55 °C, a 
denaturation step at 95 °C for 2 min followed by 35 cycles 
of 95 °C for 15 s, 55 °C for 30 s and 72 °C for 45 s. Follow-
ing this, a final extension of 5 min at 72 °C. Five (5) µL of 
the primary PCR product was used as the template in the 25 
µL nested PCR master mix containing MyTaq HS red mix 
(Bioline) as per the manufacturer’s instructions. The nested 
cycling conditions consisted of a 5 min denaturation step at 
95 °C prior to 35 cycles of 95 °C for 15 s, 60 °C for 30 s and 

72 °C for 45 s. A final extension of 72 °C for 5 min. Prod-
ucts from the nested PCR were purified using AMPure XP 
Beads-Based Reagent (Beckman Coulter), sequenced using 
BigDye 3.1 (Applied Biosystems), cleaned with Sephadex 
(Sigma-Aldrich), and resolved using a 3500 Series Genetic 
Analyser (Applied Biosystems), all following manufacturer’s 
instructions. Sequences were proofread and examined using 
Geneious (Biomatters) and Sequencher (Gene Codes).

Statistics

Descriptive statistics, including mean prevalence and the 
calculations of 95% confidence intervals for binomial popu-
lations [45], were calculated in Excel. Identification of risk 
factors was performed using a generalised linear model [46], 
with the binomial distribution and logit link, using Gen-
stat (VSN International, 2023). Adjusted mean proportions 
and their standard errors were estimated. P values were also 
estimated, but rather than focusing solely on their threshold 
for significance, subjective assessment terms based on the 
strength of the evidence were used: minimal, moderate, sub-
stantial and overwhelming evidence.

Virus isolation

Virus isolation was attempted using both Vero and BSR 
cells lines on a sample of fresh brain homogenised in virus 
transport media, with sterile sand and a mortar and pes-
tle. Cells were maintained for seven days in Eagle’s mini-
mal essential medium (Merck Life Science Pty Ltd) sup-
plemented with 10% heat inactivated foetal bovine serum, 
2 mM L-glutamine, 0.2% penicillin–streptomycin sulphate, 
0.2% fungizone at 37 °C in the presence of 5% CO2. Two 
additional passages were performed.

Immunohistochemical staining

Immunohistochemical staining was attempted on brain tissue 
that had been fixed in 10% formalin for 48 h, dehydrated, 
paraffin-embedded, and 4 µm sections cut onto slides. Sec-
tions were then deparaffinised and pretreated in microwave 
oven in citrate buffer pH 6.0. Polyclonal antibodies against 
Puumala virus and Hantaan virus, were used in 1∶100 
dilution.

Results

High throughput sequencing

Assembly of the HTS data (with a Phred quality 
score > 30), identified the complete coding sequences for 
three segments (S, M and L), of a putative novel hantavirus 
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(MK165653–MK165655) [47]. The segments had a read 
depth of 3147, 4211 and 1464, and had greatest nucleo-
tide sequence similarity (70%, 64% and 72%), and amino 
acid sequence similarity (80%, 63% and 78%) to the S, 
M and L segments from the bat-borne mobatvirus, Que-
zon virus (QZNV), identified in the lung of a Rousettus 
amplexicaudatus (a frugivorous bat), from the Philippines 
in 2016 [13]. They then had 67%, 60% and 51% nucleo-
tide sequence similarity also to the bat-borne mobatvirus, 
Láibīn virus, identified in Taphozous melanopogon from 
China and Myanmar in 2015 and 2109. This data sug-
gests the presence of a putative novel Mobatvirus, hereby 
designated Robina virus (ROBV), in Australian bats. In 
addition, a novel retrovirus was also identified and has 
been discussed elsewhere [48].

Phylogeny

Analysis of the evolutionary relationships of the concat-
enated amino acid sequences using maximum-likelihood 
analysis produced major clades that were identical to the 
existing genera, i.e. Orthohantavirus, Loanvirus, Mobatvi-
rus and Thottimvirus (Fig. 1A and B). ROBV aligned most 
closely to QZNV within the Mobatvirus genus. In addition, 
it was evident that Orthohantaviruses could be subdivided 
into two clades (clade 1 and 2).

Hierarchical clustering

Hierarchical clustering identified three discrete clusters 
(K = 3, Fig. 1D). Cluster 1 was identical to clade 1 (identified 
using maximum-likelihood analysis), cluster 2 was identi-
cal to clade 2 (also identified using maximum-likelihood 
analysis), and cluster 3 contained the three remaining gen-
era Loanvirus, Mobatvirus and Thottimvirus. The posterior 
probability that each individual hantavirus belonged to its 
cluster was always one.

Minimum spanning tree

Analysis indicated only one reliable tree (Fig. 1E). The 
genetic distances between different hantaviruses reflected 
grouping of the existing genera, i.e. the greatest distance 
was between Thottimvirus and Orthohantavirus, the sec-
ond between Mobatvirus and Orthohantavirus, the third 
between Mobatvirus and Loanvirus. The smallest distance 
was between what was described as clade 1 and 2 when 
using maximum-likelihood analysis, or between cluster 1 
and 2 when using hierarchical analysis, i.e. the subgroups 
in Orthohantaviruses.

Experimental qRT‑PCR

Although validation of the described qRT-PCR was not 
undertaken, an initial investigation suggested specificity 
of the assay with the only significant alignment returned 
from Primer-BLAST (NCBI) being the segment of inter-
est (MK165655, E value 2–9), and no reaction with other 
viral RNA held at BSL. Between March 2018 and October 
2023, a total of 495 bats were opportunistically screened 
for ROBV using the qRT-PCR. (qRT-PCR results, Supple-
mentary material, and Table 1. Descriptive and univariate 
statistics). ROBV RNA was detected in the brain tissues of 
21 bats. These included detections in 16 of 332 P. alecto, 3 
of 75 P. scapulatus and 2 of 52 P. poliocephalus. There were 
no detections in 16 P. conspicillatus or 41 insectivorous bats.

Confirmatory nested RT‑PCR

Eight (8) samples (brain tissue) in which ROBV RNA was 
detected using an experimental qRT-PCR, with Ct val-
ues low enough to likely produce a PCR product (< 30), 
were sequenced using the confirmatory nested RT-PCR 
(data not shown). Seven of the sequences, six of which had 
100% nucleotide sequence similarity and one with 99.2% 
similarity to the reference sequence (MK165655), were 
all derived from bats of the same species (P. alecto). The 
eighth sequence, which had the lowest nucleotide similarity 
(97.9%), was from a different bat species (P. poliocepha-
lus). All nucleotide polymorphisms were synonymous. 
While the primer regions for the experimental qRT-PCR 
were conserved across all sequences, single nucleotide poly-
morphisms were identified in the secondary nested RT-PCR 
primers (T753C and A1119G) from the P. poliocephalus 
sequence.

Statistics

Although no ROBV RNA was detected in the insectivorous 
bats, the total prevalence of ROBV RNA in Pteropus spp. 
was 4.2% (95% CI 2.8–6.4%, Table 1). Binomial model-
ling identified that there was substantial evidence to sup-
port the effect of year (P = 0.033), with a peak of detection 
in 2019 (5.6%, SE 1.8%) and 2020 (7.7, SE 2.9%). There 
was also moderate evidence to support the effect of sea-
son (P = 0.064), with peak detection in the cooler seasons, 
autumn (8.4%, SE 3.6) and winter (8.5%, SE 3.8%). There 
was minimal evidence to support the effect of region or spe-
cies (P = 0.281 and 0.317).

Virus isolation

No cytopathic effect was observed in either of the cell lines, 
and ROBV RNA was detected by qRT-PCR in successive 
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Fig. 1   Analysis from the evolutionary relationship of a putative novel 
Australian hantavirus, Robina virus (ROBV) and 48 other classified 
hantaviruses performed using the concatenated amino acid sequence 
for the complete coding sequence of both the small and medium seg-
ments. A The current accepted genera. B and C A maximum-likeli-
hood tree with clades representative of the current accepted genera 
and two smaller clades (clade 1 and clade 2), evident within Ortho-
hantavirus. D Hierarchical clustering using a Bayesian methodology 
that produced three clusters (K = 3), the first, cluster 1 being identical 
to clade 1 from the maximum-likelihood analysis, the second, cluster 

2 being identical to clade 2, and the third encompassing the remain-
ing genera, Loanvirus, Mobatvirus and Thottimvirus. E A minimum 
spanning tree that connects hantaviruses by the minimum genetic 
distance (nucleotide differences), the greatest distance is between 
Orthohantaviruses and Thottimvirus (838 nucleotide differences), 
Mobatviruses and Orthohantaviruses (775 nucleotide differences), 
Mobatviruses and Loanviruses (760 nucleotide differences), and 
finally between the two Orthohantaviruses clades/clusters (644 nucle-
tide differences)
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passages at increasing Ct values, suggesting that no virus 
was isolated.

Immunohistochemical staining

Immunohistochemical staining using polyclonal antibodies 
against both Puumala virus and Hantaan virus resulted in 
non-specific binding and did not resolve any features.

Discussion

Robina virus (ROBV), species Mobatvirus robinaense, is a 
novel hantavirus first identified in the brain of a black flying 
fox (Pteropus alecto, family Pteropodidae), a large frugivo-
rous bat. Whilst the complete coding sequence for this virus 
has been elucidated, and additional detections in other bats 
have been sequenced, the virus has not yet been isolated or 
visualised. Until this is achieved, it should be acknowledged 
that ROBV is a putative novel hantavirus.

The identification of Australia’s first reported putative 
hantavirus could extend the known southern range of han-
taviruses into Australasia [5]. ROBV has the greatest amino 
acid sequence similarity (63%-80%) to another Mobatvirus, 
Quezon virus (QZNV), previously identified in the lung of 
a Philippine frugivorous bat (Rousettus amplexicaudatus, 
also family Pteropodidae) [13]. There is also a reported 
similarity of ROBV to Kiwira virus, recently identified in 
Angolan free-tailed bats (Mops condylurus, family Molossi-
dae) from Tanzania and the Democratic Republic of Congo, 
however, this similarity is based on partial sequences of the 
S and L segments only and would benefit from additional 
sequence data, specifically from the S and M segments, to 
increase confidence in this relationship [12]. In addition to 
the identification of ROBV in P. alecto, at a prevalence of 
5.3% (SE 1.6%, Table 1), ROBV RNA was also detected by 
experimental qRT-PCR in two other species of Australian 
bats from the same genus, P. poliocephalus (4.4%, SE 3.1%) 
and P. scapulatus (5.1%, SE 3.0%).

The equal prevalence of ROBV RNA in these three bat 
species could suggest either cross-species transmission or 
the presence of an ancient virus that evolved across all three 
species. Although small and acknowledging the limited 
sample size (n = 8), the equal prevalence of ROBV in our 
bats, and the differences in their nucleotide sequence simi-
larity (100% and 99.2% between P. alecto vs. 97.9% when 
compared to P. poliocephalus) could suggest an evolution-
ary divergence of ROBV, with significant implications for 
both molecular biology and viral evolution. This divergence 
may also reflect species-specific adaptation, previously 
observed with Orthohantaviruses [14], and similar to what 
has been observed with Hendra virus, also in Pteropus spp. 
[49–51]. Efforts continue into acquiring a sequence from P. 

scapulatus, since this bat, which is a more distant relative 
of P. alecto and P. poliocephalus may host a more divergent 
hantavirus.

ROBV RNA was not detected in the fourth of Australia’s 
mainland Pteropus spp. (P. conspicillatus), or any insec-
tivorous bats. However, due to the low sample size of P. 
conspicillatus (n = 16), and because of detections in the par-
aphyletic P. alecto, which has an overlapping home range, 
future detections of ROBV RNA in P. conspicillatus could 
be expected [52].

Discovery of hantaviruses are often made by PCR and 
the availability of complete coding sequence for the larg-
est segment (L) is limited [5]. Exclusion of the L segment 
and concatenation of the S and M segments has been sug-
gested as a suitable alternative for phylogenetic analysis until 
additional sequence information can be provided for clas-
sified viruses [25, 27]. Using only complete concatenated 
sequences from ROBV and 47 other previously classified 
hantaviruses (Table 1, Supplementary material), three types 
of phylogenetic analysis were performed, maximum likeli-
hood, hierarchical, and minimum spanning tree (Fig. 1). All 
three analyses reliably predicted the current existing hantavi-
rus genera, i.e. Orthohantavirus, Loanvirus, Mobatvirus and 
Thottimvirus. In addition, all three analyses predicted two 
subgroups (clades 1 and 2), within the genus Orthohantavi-
rus. Whilst not proposing a new classification for the genus 
Orthohantaviruses, we do highlight these subgroups to aid 
further discussion into the source of ancient primordial han-
taviruses and the forces driving their evolution [15, 26].

Previous studies have identified hantavirus in the brain, 
intestine, liver, lung, kidney and spleen from bats [6, 9–14, 
24, 53]. This study opportunistically used brains predomi-
nantly, which had previously been tested at BSL for ABLV. 
However, in one instance (data not shown), when ROBV 
RNA was detected in the brain of a bat, it was also detected 
in the kidney and spleen of that bat, with a lower Ct in the 
spleen, a result similar to that previously reported by oth-
ers [12]. Whilst acknowledging the limitations of using the 
brain as a screening tool, the convenience of using existing 
tissue, regularly submitted to BSL, allowed us to perform the 
largest temporal analysis of a putative hantaviruses in bats 
to date (6 years) and identified ecological factors potentially 
involved in infection dynamics.

The total prevalence of a putative ROBV in Austral-
ian bats, tested by an experimental qRT-PCR, was 4.2% 
(95%CI 2.8–6.4%, Table 1), similar to that of QZNV in R. 
amplexicaudatus (6.7%; 95% CI 1.2–29.8%) [13]. However, 
binomial modelling indicated that there was substantial evi-
dence supporting an increase (P = 0.033) in the detection 
of ROBV RNA in bats in 2019 (5.6%, SE 1.8%) and 2020 
(7.7%; SE 2.9%), declining to 1.1% (SE 1.1%) in 2022 and 
2023. This infection dynamic is suggestive of a transient 
epidemic that occurs as ROBV, as with other bat borne 
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viruses, are transmitted among bat populations [5, 13, 54, 
55]. After recovery from infection, the subsequently devel-
oped population immunity will wane and allow reinfection 
with the virus producing the peaks observed in 2019 to 2020 
[54]. Binomial modelling also identified moderate evidence 
(P = 0.064) that the prevalence of ROBV was greater in the 
cooler seasons, autumn (8.4%; SE 3.6%) and winter (8.5%; 
SE 3.8%), than spring (3.3%; SE 1.2%) and summer (1.4%; 
SE 1.0%). This seasonal variation in prevalence is a risk fac-
tor that has also been identified for another bat borne virus, 
specifically Hendra virus, also found in P. alecto [55, 56]. 
It is hypothesised that increased viral infection and excre-
tion of Hendra virus is mediated by the physiological cost 
of thermoregulation, whilst others suggest that recent food 
shortages and displacement of bat populations into novel 
habitats predict the pronounced winter pulses [57, 58]. If 
season is significant, then these physiological and ecological 
factors may also underpin the infection dynamics that drive 
ROBV, and possibly other hantavirus infection in bats.

With the putative identification of Australia’s first hanta-
virus, future investigations are warranted. Firstly, previous 
surveillance in Australia detected antibodies to hantavirus 
in rodents, without ever identifying the responsible antigen 
[59]. It is now prudent to understand the role, if any, that 
ROBV may have played in generating those antibodies. 
Moreover, any future investigations should also include the 
surveillance of marsupials, given the detection of hantavirus 
in opossums in Brazil [10]. Secondly, ROBV was identified 
in the brain of a P. alecto during an investigation into the 
cause of neurological symptoms. The mild inflammatory 
changes observed in the brain's histology suggested a pos-
sible viral infection; however, it is premature to attribute 
encephalitis in this bat to ROBV. Determining any causal 
link between ROBV and the disease will require further 
investigations, which can only commence after the success-
ful isolation of ROBV. These efforts continue at BSL.

Conclusions

The discovery of ROBV, Australia's first reported putative 
hantavirus, marks a significant milestone in the understand-
ing of hantaviruses, particularly in the context of Austral-
ian bat populations. The reporting of a complete coding 
sequence contributes to the advancement of hantavirus 
taxonomy and the development of diagnostic tools. Addi-
tionally, the identification of possible infection dynamics 
and seasonal variation raise intriguing questions about the 
physiological and ecological factors influencing hantaviruses 
in bats.
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