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Context. Many invasive animals are typically active across large areas, making monitoring and 
control programs expensive. To be efficacious, monitoring devices and control tools need to be 
strategically located to maximise the probability of encounter. This requires an understanding of 
how the target species uses the landscape, through identifying key habitat or landscape features 
that are preferred and used disproportionately more frequently by the species. Spatial analysis of 
animal movements can help identify high use areas. Aims. The variability introduced by different 
range calculation methods can lead to uncertainty in subsequent habitat analyses. We aimed 
to determine which method is superior for accurate delineation of core areas for feral cats. 
Methods. We analysed spatial data from 35 collared feral cats across four Australian study sites 
between 2016 and 2019, and compared the core areas generated using seven commonly used 
home range estimation methods. Key results. We found that the α-hull method provided a 
higher precision of polygon placement, resulting in lower Type I and II errors and higher conformity 
to landscape features than other methods. The α-hull used a single default parameter and required 
no subjective input, making it a more objective, superior method. Conclusions. We recommend that 
the α-hull method be used to define core activity areas for feral cats, enabling more robust habitat 
analysis, and identification of key habitat and landscape features to strategically target for monitoring 
and control programs. Implications. This strategic approach could significantly improve cost efficien-
cies, particularly where existing management is widely dispersed, and core activity areas are clumped. 
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Introduction 

Invasive animals are a significant global threat to biodiversity (Doherty et al. 2016), 
primary production (Schley et al. 2008) and human health (Chinchio et al. 2020). Many 
invasive animals are active over large areas (e.g. feral pig), or else are solitary and elusive 
(e.g. feral cat). These challenges make monitoring and control programs resource hungry 
and if not planned well, ineffective. Density and abundance are often determined by the 
placement of monitoring devices at defined intervals (e.g. Allen et al. 2013) or else at 
random (e.g. Guerrasio et al. 2022). However, in these situations, target species detection 
is reliant upon random encounters with monitoring devices. Similarly, large numbers of 
poison baits are often scattered broadly with the intent to saturate the landscape to 
increase the likelihood of bait encounters (e.g. Fancourt et al. 2021). In Fancourt et al. 
(2021)’s case, bait placement along tracks proved insufficient to significantly reduce the 
feral cat population, highlighting that in such cases, an over-reliance upon random 
encounters is likely to be both ineffective and inefficient. This was not the case in Ballard 
et al. (2020), where landscape saturation of baits resulted in a 90% mortality rate in collared 
wild dogs. However, such saturation may also increase the likelihood of nontarget species 
mortality. As such, improving monitoring or control tool placement to target locations of 
likely higher use of the intended species (Harriott et al. 2021; Wilson et al. 2023a), is likely 
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to improve encounter rates in monitoring and control 
programs, while simultaneously reducing the probability of 
nontarget encounters. 

Home range areas are widely reported in invasive animal 
literature (Amos et al. 2014; McGregor et al. 2015; Wilson 
et al. 2023b) but have limited practical value for improving 
monitoring or control programs. Animal-borne global posi-
tioning system (GPS) units are often used to collect spatial 
information about an animal’s movements, with location 
fixes being recorded by the GPS at predetermined time 
intervals. An animal’s home range calculation typically 
encompasses 90–100% of the location fixes, but in doing 
so, it fails to identify key areas of higher use. Most animals 
do not use the landscape uniformly, but instead have core 
areas where they spend disproportionately more time. For 
example Edwards et al. (2001) demonstrated that 50% of 
feral cat location fixes could be found in just 25% of the cat’s 
home range area. By defining and interrogating these core areas, 
we can gain better insight into which features (e.g. vegetation, 
water, landscape features) are preferred by the target animal, 
allowing us to strategically focus our monitoring and control 
efforts into these preferred features across the landscape. 

An animal’s core area is often defined as the area 
encompassing the densest 50% of location fixes (Getz et al. 
2007). There are many range calculation methods available 
to analyse spatial data and discriminate these core areas 
that produce different area estimations for the same animal. 
For example, Molsher et al. (2005) found that the mean 
95% minimum convex polygon (MCP) area was over 33% 
smaller than the mean 95% fixed kernel density estimate 
for the same group of feral cats. Several factors contribute 
to such differences in area estimation, with some methods 
being more sensitive to different factors than others. For 
example, it has been shown that excessive bandwidth of 
the hREF smoothing parameter overestimates home range 
size (Naef-Daenzer 1993; Seaman and Powell 1996) in  
comparison to least-squares cross validation (LSCV) and MCP. 
Notwithstanding, MCP bias increases with sample size 
(Burgman and Fox 2003) and is very sensitive to outlying 
points (Burgman and Fox 2003). By understanding how each 
of these calculation methods can be influenced by different 
variables in our data, we can identify which methods more 
accurately discriminate core areas for the target species, 
and therefore which method can be used to better inform 
future research into resource selection and consequently 
monitoring and control programs. 

We used a feral cat GPS collar dataset collected from three 
geographically distinct areas in Queensland across four years, 
to estimate home range and core areas using seven commonly 
used estimation approaches. We compared activity range 
polygon construction across methods and evaluated each 
output to identify strengths and limitations for each method. 
We discuss our findings and make recommendations for the 
most appropriate method to define core areas to improve 
monitoring and control of feral cats. 

Methods 

Ethics approvals 
This study was approved by the DAF Community Access 
Animal Ethics Committee (Permit CA 2016-02-946). 

Study sites 
We collected spatial data from GPS collars fitted to feral cats 
across three geographically distinct national parks in Queensland, 
Australia (Fig. 1) over four years  (2016–2019) as part of a larger 
feral cat baiting efficacy study (Fancourt et al. 2021, 2022a, 
2022b). Detailed site descriptions including location coordinates, 
bioregion, environ and dominant vegetation communities at each 
site are provided in Fancourt et al. (2022b). 

Taunton National Park (Scientific) (TNP) is located in the 
subtropical, Brigalow-belt region of central Queensland, 
approximately 150 km west of Rockhampton (Department 
of Environment and Resource Management 2011a). During 
the study period, rainfall at the site varied between years, 
with above average rainfall of 418 mm received during the 
five month study period in 2016, but below average rainfall 
of 88 mm received over the same period in 2017 (Bureau 
of Meteorology 2020a). 

Currawinya National Park (CNP) is located in the semiarid 
region of south-west Queensland, approximately 25 km north-
west of Hungerford. The site encompasses a range of different 
landscapes ranging from sand dunes and open plains to lakes, 
saltpans and riparian zones (Queensland Parks and Wildlife 
Service 2001). The study season was very dry and the site 
received just 11 mm of rainfall across the five month study 
period (Bureau of Meteorology 2020b). 

Moorrinya National Park (MNP) is located 85 km south 
of Torrens Creek in the Desert Uplands region of central 
Queensland (Department of Environment and Resource 
Management 2011b). During the three-month study period, 
the study site received a slightly below average rainfall of 
22 mm (Bureau of Meteorology 2020c). 

Data collection 
Between 2016 and 2019, we captured 56 feral cats (36 male, 
20 female) using a mix of cage traps and padded soft-jaw 
foothold traps lured with a range of food and scent lures, as 
described in Fancourt et al. (2021) and Fancourt et al. (2022a). 
Captured cats were sedated and fitted with Quantum 4000E 
(Telemetry Solutions, Concord, California, United States) 
collars equipped with both VHF and GPS capabilities (see 
detailed methods in Fancourt et al. (2021)). To reduce 
autocorrelation of data points, GPS collars were programmed 
to take location fixes every 12 h (at 10:00 hours and 22:00 
hours daily). Cat movements were recorded continuously for 
between 10 and 155 days. Detailed information for all 56 
cats are listed in Supplementary Table S1. Of the 56 cats 
collared, 35 cats (24 male, 11 female) provided adequate data 
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Fig. 1. Map showing the location of the three study sites used in the current study within Queensland. Insets on left show (a) Moorrinya National 
Park, (b) Taunton National Park (Scientific) and (c) Currawinya National Park. Inset at top right shows location of Queensland within Australia. 

(>40 days as per Leo et al. (2016)) for further analysis. The GPS collar positional accuracy test 
number of collared cats per site, number of days collared 

We used the test collar data collected by Fancourt et al. (2021) 
to determine the most appropriate criteria for identifying and 
removing inaccurate and imprecise points from our dataset. 
We investigated precision of points with horizontal dilution 
of precision (HDOP) values ranging between 3 and 9 and 
number of satellites between 2 and 3. These test data were 
collected using the same GPS collar make and model fitted
to the cats in the current study. However, as we were not 
investigating fine scale cat movements, we adopted a coarser 
resolution (i.e. fix >50 m away from the true position) 
than adopted by Fancourt et al. (2021) to classify a fix as  
imprecise. 

and date ranges of GPS data for these 35 cats are presented 
in Table 1. 

Table 1. The number, sex and date range for data collection for GPS-
collared feral cats used in the current study. 

Site Year No. of 
cats 

collared 

No. of cats
used for 
analysis 

 No. of days 
GPS data 

Date range 

M F M F Mean Range 

TNP 2016 6 4 5 4 88 20–155 May–September 
(1 cat to October) 

TNP 2017 10 5 7 3 69 19–112 May–September 

CNP 2018 11 6 5 3 67 10–143 April–September Data clean-up 
MNP 2019 9 5 7 1 57 34–130 July–September 

(1 cat to December) 
GPS collar data collected in the current study were truncated 
to retain only those fixes commencing 24 h after collaring (to 
allow the sedative drugs used during collaring to wear off and 
the cat to resume normal activity) and up to the known date of 
death (e.g. shot, see Table S1). For cats that were not shot, an 
estimated date of death was recorded, as determined by the 

Total 36 20 24 11 

For details of individual cats, see Table S1. 
M, male; F, female; TNP, Taunton National Park; CNP, Currawinya National Park; 
MNP, Moorrinya National Park. 
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cat’s final fix location before obvious movements ceased. All 
remaining fixes were reviewed to identify and remove any 
potentially imprecise fixes and GPS measurement errors 
following the three-step process outlined in Fancourt et al. 
(2021). First, all attempted fixes that did not successfully 
record a northing coordinate were classified as a ‘failed fix’ 
and removed from the dataset. Second, all remaining fixes 
that met the criteria for ‘imprecise’ (based on the GPS collar 
positional accuracy test) were identified and removed. Third, 
the remaining fixes were loaded into ArcMap® and visually 
inspected to identify and remove any obvious outliers (i.e. fixes 
located in impossible to reach locations, such as the ocean). 

Home range and core area estimations 
We quantified the home range and core area using the 90% 
and 50% isopleths, respectively. We adopted these isopleths 
as Börger et al. (2006) has demonstrated reduced accuracy 
using isopleths above 90% and below 50%. All calculations 
were performed using the adehabitatHR package 0.4.16 
(Calenge 2006) in R ver. 3.6.2 (R Core Team 2019). Maps 
showing location fixes, 90% home range and 50% core area 
isopleths were generated using ArcMap® ver. 10.7.1 (ESRI 2019). 
Details of the seven estimation methods used to quantify home 
range and core area for each cat are outlined below: 

1. Minimum Convex Polygon – all default values used. 
2. Fixed Kernel Density Estimates – we used the two most 

common smoothing parameters: reference value (hREF) 
and least-squares crossvalidation (LSCV), to quantify 
fixed kernel density estimates. The default value of both 
parameters was used to avoid subjectivity. The smallest 
grid size (100 pixels) and the default resolution (extent) 
were used, as recommended by Seaman and Powell (1996). 

3. Local Convex Hull – we estimated home range and core 
areas using all three local convex hull methods; nearest 
neighbour (k), fixed sphere-of-influence (r) and adaptive 
(a) (as described in Getz et al. (2007)), using the 
following relative parameters: p
� K = n, where n = sample size 
� r = half the maximum nearest-neighbour distance 
� a = maximum distance between any two points. 

The k parameter was determined by implementing the 
formula suggested by Getz et al. (2007). To calculate 
the r and a parameters, the dataset was loaded into 
ArcMap® and the maximum nearest-neighbour and 
maximum distance between any two points was measured. 
Individual parameter values were calculated for each 
individual cat. An average value across all cats was 
not considered representative, given large variations 
in point distribution across years, study sites, sex, age 
and habitats. Although the minimum spurious hole 
covering (MSHC) method can account for large physical 
and inhospitable landscape features that cannot be used 
by the study animal, such as lakes, shorelines, cliffs, etc. 

(Getz and Wilmers 2004), such obvious features were 
not present at our study sites during the study period, 
and so the MSHC rule was not adopted in our calculations. 

4. Alpha-hull (α-hull) – we used the CharHull method as 
described in Calenge (2011), adopting the default alpha 
(α) value to avoid the potential for bias and to facilitate 
comparisons with other studies. 

Comparison of home range (90% isopleth) and core 
area (50% isopleth) estimations 
The relationship between home range size and core area size 
was determined by taking the mean proportions of core area 
to home range for each cat, with both sexes and all sites 
combined. 

Comparison and evaluation of core area polygon 
construction 
The estimated core area and the corresponding polygon 
construction were evaluated for efficiency and effectiveness 
by interrogating outputs for: (1) area estimation variability 
across methods; (2) Type I errors (excluded points) and 
Type II errors (unused area included within the polygon); 
(3) the influence of parameter values; (4) consistency across 
nonuniform datasets and distributions; and (5) landscape 
feature conformity. 

Results 

GPS collar positional accuracy test 
Fancourt et al. (2021) recorded 396 attempted positional fixes 
across three test locations, including 46 failed fixes. Of the 
350 successful fixes, a further 46 were considered imprecise 
for our study (>50 m away from the true collar position). The 
number of satellites used for each fix was the largest 
contributor to positional error, with 43 of the 46 (93%) 
imprecise fixes only securing ≤3 satellites to record the 
collar position. By removing all fixes with ≤3 satellites from 
the dataset, 32 of the 304 precise fixes (11%) would also be 
removed (Table S2), reducing the number of fixes retained for 
subsequent analyses. However, the loss of some accurate fixes 
was considered necessary to ensure as many imprecise 
fixes were removed from the dataset as possible, thereby 
maximising the precision of points in the retained dataset. 

Data clean-up 
Results of the data clean-up process for each dataset are 
displayed in Table 2. 

Home range estimations (90% isopleth) 
Mean home range estimates for each method are shown in 
Table 3. Individual estimates for each cat are presented in 
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Table 2. Results of cleaning data of failed, inaccurate, impossible GPS 
fixes. 

TNP TNP CNP MNP 
2016 2017 2018 2019 

Attempted fixes 1565 1776 1568 1054 

Remove: fixes outside of truncated date 19 158 20 11 
range 

Remove: failed fix attempts 51 66 178 0 

Remove: imprecise fixes using ≤3 102 123 28 221 
satellites 

Remove: impossible outliers 0 1 29 1 

Total fixes removed 172 348 255 233 

Total fixes retained (no.) 1393 1428 1313 821 

Total fixes retained (%) 89 80 84 78 

No of collared cats 9 10 8 8 

No of fixes retained per cat: 

Mean 155 143 164 132 

Range 129–208 70–220 81–221 81–177 

TNP, Taunton National Park; CNP, Currawinya National Park; MNP, Moorrinya 
National Park. 

Table 3. Mean (±s.d.) home range area estimation (90% isopleth) for all 
feral cats across sites and years. 

Sex Method TNP 2016 
(km2) 

TNP 2017 
(km2) 

CNP 2018 
(km2) 

MNP 2019 
(km2) 

Male Sample size n = 5 n = 7 n = 5 n = 7 

Kernel (hREF) 49.0 ± 66.2 18.2 ± 12.0 48.2 ± 22.3 18.6 ± 4.7 

Kernel (LSCV) 6.5 ± 7.9 7.4 ± 6.6 8.0 ± 5.7 5.9 ± 5.3 

MCP 27.3 ± 35.0 11.2 ± 7.7 24.6 ± 9.6 10.9 ± 3.5 

a-LoCoH 12.3 ± 13.6 5.7 ± 3.5 12.6 ± 4.7 6.5 ± 2.5 

r-LoCoH 8.5 ± 9.5 2.8 ± 1.4 3.8 ± 2.5 3.4 ± 2.1 

k-LoCoH 8.9 ± 8.3 4.7 ± 3.1 8.3 ± 3.8 5.8 ± 1.9 

α-hull 15.9 ± 13.4 8.7 ± 6.9 20.5 ± 8.9 10.8 ± 4.0 

Female Sample size n = 4 n = 3 n = 3 n = 1 

Kernel (hREF) 16.1 ± 9.7 4.4 ± 3.0 31.6 ± 12.4 24.2 

Kernel (LSCV) 2.7 ± 1.7 1.9 ± 2.1 3.4 ± 2.7 2.1 

MCP 9.2 ± 5.5 2.5 ± 1.7 19.2 ± 4.8 9.6 

a-LoCoH 4.4 ± 2.2 1.5 ± 1.4 10.6 ± 5.9 8.5 

r-LoCoH 1.5 ± 1.1 0.4 ± 0.3 8.6 ± 7.7 2.4 

k-LoCoH 3.5 ± 1.9 1.4 ± 1.3 7.7 ± 4.3 8.4 

α-hull 6.2 ± 1.6 1.8 ± 1.5 13.9 ± 6.7 11.3 

TNP, Taunton National Park; CNP, Currawinya National Park; MNP, Moorrinya 
National Park; a-LoCoH, adaptive local convex hull; r-LoCoH, fixed-sphere-of-
influence local convex hull; k-LoCoH, nearest-neighbour local convex hull. 

Table S3. As data were only available for one female cat at 
MNP, this data source was excluded from further analyses. 
Across TNP and CNP, the mean home range size for male 
cats was consistently larger than the corresponding female 

home range size for each of the seven estimation methods, 
with only one exception (r-LoCoH at CNP). For all years 
and sites combined, female ranges approximated between 
38 and 74% of the size of male home ranges. Female cats at 
CNP had larger home ranges than both TNP years for all 
estimation methods. With the exception of male kernel 
(LSCV) ranges, all methods across both sexes demonstrated 
smaller ranges at TNP in 2017 than 2016. Besides this, 
there was no clear effect of site on male home ranges, with 
estimation method influencing the result. 

Core area estimations (50% isopleth) 
Mean core area estimates for each method are shown in Table 4. 
Individual estimates for each cat are presented in Table S4. As 
data were only available for one female cat at MNP, this data 
source was excluded from further analyses. Male cats 
demonstrated larger core areas than females for all range 
calculation methods at TNP (both years), with female 
ranges between 24 and 44% of the size of male ranges. CNP 
demonstrated slightly different results according to 
calculation method, with r-LoCoH, k-LoCoH and α-hull all 
demonstrating larger female core areas than males. With the 
exception of kernel (LSCV), female cats at CNP demonstrated 
larger core areas than both TNP years. As with the home range 
estimations, TNP 2017 ranges were typically smaller than 
2016 ranges, with the exception of male kernel (LSCV) and 

Table 4. Mean (±s.d.) core area (50% isopleth) for all feral cats across 
different sites and years. 

Sex Method TNP 2016 
(km2) 

TNP 2017 
(km2) 

CNP 2018 
(km2) 

MNP 2019 
(km2) 

Male Sample size n = 5 n = 7 n = 5 n = 7 

Kernel (hREF) 13.0 ± 16.2 5.8 ± 4.4 14.0 ± 7.4 5.2 ± 2.2 

Kernel (LSCV) 0.7 ± 0.8 1.7 ± 2.0 0.4 ± 0.3 1.3 ± 1.8 

MCP 8.5 ± 9.7 4.1 ± 3.0 9.5 ± 6.0 3.2 ± 2.0 

a-LoCoH 2.6 ± 2.3 1.8 ± 1.4 3.1 ± 1.7 1.8 ± 1.2 

r-LoCoH 3.1 ± 3.2 1.2 ± 0.6 1.6 ± 0.8 1.5 ± 0.8 

k-LoCoH 1.1 ± 1.0 1.1 ± 0.8 0.9 ± 0.7 1.1 ± 0.7 

α-hull 1.0 ± 0.9 1.1 ± 0.9 0.8 ± 0.7 1.2 ± 0.7 

Female Sample size n = 4 n = 3 n = 3 n = 1 

Kernel (hREF) 4.6 ± 3.1 1.4 ± 1.1 8.8 ± 4.5 5.0 

Kernel (LSCV) 0.5 ± 0.4 0.5 ± 0.7 0.4 ± 0.3 0.3 

MCP 3.9 ± 3.3 0.8 ± 0.6 4.9 ± 2.9 2.5 

a-LoCoH 0.9 ± 0.5 0.6 ± 0.5 2.5 ± 1.7 1.5 

r-LoCoH 0.7 ± 0.2 0.2 ± 0.2 4.5 ± 4.5 1.4 

k-LoCoH 0.5 ± 0.3 0.4 ± 0.4 1.0 ± 0.4 0.5 

α-hull 0.5 ± 0.2 0.3 ± 0.3 1.1 ± 0.9 0.8 

TNP, Taunton National Park; CNP, Currawinya National Park; MNP, Moorrinya 
National Park; a-LoCoH, adaptive local convex hull; r-LoCoH, fixed-sphere-of-
influence local convex hull; k-LoCoH, nearest-neighbour local convex hull. 
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α-hulls. There was no clear effect of site on male core area, 
with estimation method influencing the result. 

Table 5. Pairwise comparison indicating the proportional difference in 

Comparison of home range (90% isopleth) and core 
area (50% isopleth) estimations 
Despite the core area containing 50% of fixes, each method 
estimated a core area that was disproportionally smaller 
than the corresponding home range estimate (see Fig. 2). 
R-LoCoH demonstrated the largest proportional core area at 
46% of the home range size, whereas the α-hull demonstrated 
the smallest proportional core area at just 9.5% of the 
corresponding home range size. 

Comparison and evaluation of core area polygon 
construction 

Area estimation variability across methods 
Proportional differences in core area between methods are 

shown in Table 5. Across all cats, the kernel (hREF) method 
demonstrated the largest mean core area of all methods 
examined. MCP method produced the second largest core 
area estimate, at 66% of the size of the kernel (hREF). The 
a-LoCoH was considerably smaller than either kernel (hREF) 
or MCP and on average, yielded estimates similar to those 
derived using r-LoCoH. Both r-LoCoH and a-LoCoH estimates 
were approximately twice as large as the α-hull, k-LoCoH and 
kernel (LSCV) estimates. The smallest core area estimations 
(α-hull, k-LoCoH and kernel (LSCV)) were just 12% the size 
of the kernel (hREF). 

mean core area size between methods (row estimate method as a 
proportion of column estimate method), for all cats combined. 

Method Kernel (hREF) MCP a-LoCoH r-LoCoH α-hull k-LoCoH 

MCP 0.66 

a-LoCoH 0.26 0.39 

r-LoCoH 0.22 0.34 0.87 

α-hull 0.12 0.18 0.47 0.54 

k-LoCoH 0.12 0.18 0.46 0.53 0.98 

Kernel (LSCV) 0.12 0.18 0.46 0.53 0.98 1 

Type I and Type II errors 
The majority of cats (69%) demonstrated multiple discrete 

areas of high activity within their core area, represented by 
dense clusters of points. Because the MCP is unable to split 
polygons, it failed to distinguish these high use areas 
effectively, typically excluding all or part of a dense cluster 
of points (Type I error) while simultaneously including large 
unused areas (Type II error) (Fig. S1A). All other estimation 
methods were able to split the core area into discrete 
polygons (Fig. S1B–F) and thus outperformed the MCP 
when individuals displayed multiple discrete areas of high 
use. The r-LoCoH occasionally excluded some dense clusters 
(Fig. S1F), but this was not as pronounced as the MCP, nor 
did it occur for every cat. The inclusion of Type II errors in 
r-LoCoH was more extreme than in other hull methods 
(Fig. S1D, E, G), despite covering (on average) a similar core 

Fig. 2. Mean proportional differences between home range (90% isopleth) and core area (50% isopleth) estimations for all cats in this study 
across all seven calculation methods. The white text on bars indicates the percentage of the home range that the core area encompasses. 
Error bars indicate standard deviation. 
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area to a-LoCoH (Table 5). The k-LoCoH method connected to 
distant, solitary points less frequently than other methods, 
often yielding the smallest core area (Table S4). The α-hull 
was the most efficient at constructing core area polygons, 
always including dense clusters (Fig. S1G). Despite often 
connecting dense clusters to distant points, the Delauney 
triangulation of the α-hull method created very thin polygons 
between distant points, minimising any exaggeration of the 
estimated core area and reducing Type II error. The kernel 
(LSCV) method occasionally demonstrated Type I errors 
when a grid intersection (used to estimate density – see 
Seaman and Powell (1996)) fell within a reasonably close 
group of points (e.g. Fig. S2), occasionally excluding valid 
points and simultaneously including unused area. This occurred 
for 11 cats (31%) and appeared to be more prevalent in those 
cats displaying high numbers of fixes. The smoothing 
parameter of the kernel (hREF) forced this method to include 
vast unused areas into the estimation (Type II error), thus 
inflating the size of the core area and generating the largest 
area estimation of all methods (Table 4). 

Parameter influence 
Where the parameter was suboptimal in LoCoH methods, 

the size of the core area was sometimes overinflated due to 
an increase in the connection to distant, solitary points 
(Type II error). This appeared to be more exaggerated in a-
LoCoH and r-LoCoH estimates than in k-LoCoH estimates 
across all data distribution types (i.e. large/small sample 
size; clustered/scattered distribution of fix locations) but 
particularly when there were fewer data points (Fig. S3A–C), 
resulting in much larger area estimations (Table 4). All cats in 
this study demonstrated fewer Type II errors in k-LoCoH than 
in a-LoCoH and r-LoCoH estimates, which suggests that at 
datasets of this size, the heuristic value for k is closer to the 
optimal than is the heuristic value for a and r. Although it 
is impossible to confirm the true optimal parameter value for 
real ecological data, core area estimations that demonstrate 
large Type II errors (Fig. S3B, C) suggest that their parameter 
is farther from the optimal. The minimum spurious hole-
covering (MSHC) method could be implemented in this 
situation (Getz and Wilmers 2004), but this technique can 
be subjective. The greatest consistency was seen with the 
α-hull method, where the default value (α = 3 as per Calenge 
(2006)) was used across the entire dataset. This allowed for a 
more objective and comparable analysis across cats, given 
fewer and more consistent variables. The use of the default 
parameter for α-hull estimations resulted in core area polygons 
with minimal error and increased consistency across all data 
distribution types observed in this study. This simplicity and 
objectivity was not seen in kernel methods, where both kernel 
(LSCV) and (hREF) were  influenced by three parameters: a 
smoothing parameter, grid size, and grid resolution (Seaman 
and Powell 1996). The default smoothing parameter in kernel 
(hREF) produces very large area estimations but the impact of 
grid size and resolution was not as evident in kernel (hREF) 

as it was in kernel (LSCV) due to the excessive influence of 
the smoothing parameter. The default smoothing parameter 
used in kernel (LSCV) estimations resulted in smaller and more 
distinct polygons depicting the core area in a more refined 
manner, however, it was more susceptible to influence by 
grid size and resolution, due to the reduced width of the 
smoothing parameter (Supplementary Material 4). Tweaking 
all three parameters to achieve the best outcome for each 
individual cat was exceptionally time-consuming, introduced 
the potential for bias, and increased the number of variables 
that had to be considered when comparing individuals. 

Consistency across nonuniform datasets and 
distributions 
The influence of nonuniform data distributions and 

sampling intensities on the output of the estimation varied 
depending on the method used. Where sample size was large, 
and the distribution of points was spatially scattered with few 
clusters (i.e. not concentrated along landscape features), the 
MCP and both kernel methods appear to do a reasonable job 
of estimating the core area (Fig. S5A, B and S6A). However, 
this combination of a large sample size and an even 
distribution was observed in less than 6% of cats. Where 
sample size was large but data demonstrated a clustered 
distribution, the MCP displayed both Type I and Type II 
errors (Fig. S1A) and the kernel (hREF) displayed very high 
Type II errors (Fig. S1B). In this situation, the kernel (LSCV) 
method would occasionally create a core area polygon with 
very high Type I errors (Fig. S4.1A). Small sample size and 
scattered data distribution forced the MCP and both kernel 
methods to include large Type II errors (Fig. S6B (kernel 
(LSCV)) and Fig. S7A, B (MCP and kernel (hREF))). LoCoH 
and α-hull appeared to produce more consistent core area 
estimates across different data distribution types than the 
MCP and kernel methods, and placed polygons with more 
precision, clearly highlighting the densest activity areas 
(Fig. S1D–G and S5C-D). Due to high variability with r-LoCoH, 
it sometimes produced a reasonably accurate core area 
estimation, despite a small sample size (Fig. S7C) but most 
of the time (74%) it produced an estimate considerably 
larger than other LoCoH methods (Fig. S8C), regardless of 
the data distribution. Of the three LoCoH methods, the 
k-LoCoH produced a smaller and more precise estimation 
than the other LoCoH methods across the following data 
distribution types: high n, clustered (Figs A1D and A9A); 
high n, scattered (Fig. S5C) and low n, scattered. The α-hull 
appeared to be marginally better than k-LoCoH at producing 
refined polygons with the inclusion of only small amounts of 
vacant land (Type II error) when the distribution had a high n 
and was clustered (Fig. S9B) but was comparable with other 
distribution types (Fig. S5). 

Landscape feature conformity 
The majority of cats (69%) in this study exhibited either 

tight clusters of GPS points or aligned their points with 
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landscape features like creek lines. However, both the MCP 
and kernel (hREF) methods performed poorly in accurately 
representing landscape feature conformity for such distribu-
tions. This was mainly due to issues related to Type I and II 
errors and, for kernel (hREF), the influence of the smoothing 
parameter. The kernel (LSCV) method appeared to struggle 
to draw appropriate polygons when the dataset followed 
linear landscape features (e.g. creek, road), often placing 
polygons between points rather than over the top of the core 
clusters (Fig. S2), though it outperformed MCP and kernel 
(hREF) estimates where point distribution was not linear. 
The k-LoCoH appeared to conform well to landscape features, 
either when the distribution of points followed linear 
(Fig. S9A) or irregular features (Fig. S3A). Almost all cats at 
CNP demonstrated high activity concentrated along creek 
lines, and the k-LoCoH discerned these areas well. The 
a-LoCoH and r-LoCoH methods connected to more distant 
solitary points than k-LoCoH, therefore failing to produce a 
polygon with a commensurate degree of conformity to 
landscape features. Because of the sharp distinction of the 
core area polygons, the α-hull method also did well at defining 
the shape of landscape features that were of high use (Fig. S9B). 
Much like the k-LoCoH, α-hull ranges appeared to conform 
well, regardless of the distribution of points. 

Discussion 

We compared and contrasted the reliability and suitability of 
seven home range calculation methods to robustly describe 
core areas for feral cats. The choice of method had a strong 
influence on the size and accuracy of the core area (50%) 
estimation and any comparisons made thereafter. Five of 
the seven methods were plagued by high variability, high 
error rates, inconsistency across nonuniform datasets and 
irregular distributions resulting in inappropriate polygon 
placement and potential over/under exaggeration of core 
area estimations. The k-LoCoH and the α-hull appeared 
superior to the other methods due to their ability to overcome 
variations in data distribution and sample size, resulting in 
consistent, sharply defined polygons. However, the generally 
higher precision of the 50% polygon placement, resulting in 
lower Type I error inclusion, more definite landscape feature 
conformity and a uniform parameter value (α) suggested that 
the α-hull was preferable to k-LoCoH. Our findings suggest 
that the α-hull method is the most suitable choice for 
determining high activity areas for feral cats, facilitating more 
robust habitat analyses. Enhancing the cost effectiveness 
and efficacy of monitoring and control programs could be 
achieved by identifying preferred vegetation or landscape 
features of feral cats and strategically placing monitoring 
and control devices in these locations. 

This study supports previous research indicating that male 
cats typically exhibit larger home ranges compared to females 

(Liberg et al. 2000; McGregor et al. 2015; Bengsen et al. 2016). 
However, there was an isolated exception observed at CNP, 
where the estimation of one female cat (2018_Cat04, as seen 
in Table S3) significantly amplified the mean differences 
of r-LoCoH range size between males and females. This 
exaggeration in results was unique to the r-LoCoH and high-
lights this methods’ inherent variability. The generally larger 
size of female ranges at CNP (most arid site) aligns with 
landscape productivity assessments reported by Bengsen et al. 
(2016). Likewise, the generally smaller range estimations 
at TNP in 2017–2016, reflect higher productivity during 
2017, attributed to high rainfall prior to the study period, 
due to Cyclone Debbie. 

Our findings are consistent with other studies (Konecny 
1987; Edwards et al. 2001) that cats have multiple core areas, 
particularly in drier regions where the spatial separation of 
waterholes drives separation of prey, shelter and breeding 
females. In our study, male cats at the driest site (CNP) 
demonstrated the largest MCP, kernel (hREF) and a-LoCoH 
core area estimations across all study sites. In contradiction, 
male cats at CNP also demonstrated the smallest k-LoCoH, 
α-hull and kernel (LSCV) estimations across all study sites. 
The sensitivity of the MCP and kernel (hREF) to satellite 
data clusters (Burgman and Fox 2003) can lead to greatly 
exaggerated and inaccurate core area estimations (e.g. MCP – 
Fig. S1A), so the use of these methods for species exhibiting 
this type of activity is not advised. The smaller and more 
refined nature of polygons created by hull methods and the 
kernel (LSCV) demonstrated greater precision in the differen-
tiation between high and low use areas, even when they were 
greatly dispersed, demonstrating greater accuracy in core area 
estimations. The use of fixed time interval programming in 
collars, causing GPS recordings to occur at the same time 
each day, may result in misleading or biased data clusters 
due to the capture of repetitive behaviours associated with 
the time of day/night. To mitigate this potential bias, a 
rolling fix interval of 11 or 13 h, instead of 12-h intervals, 
would ensure that fixes are recorded at different times 
each day. However, repetitive behaviour patterns can also 
indicate the utilisation of specific landscape features, which 
can provide valuable insights for management purposes 
(Bracis et al. 2018; Campbell et al. 2021; Wilson et al. 2023a). 

The influence of subjective input through parameter 
manipulation was of concern for some methods, where 
parameter selection greatly affected the occurrence of Type 
I and II errors. The introduction of these error types primarily 
stems from three factors: inappropriate polygon placement, 
parameter influence, and nonuniform datasets or distribu-
tions. These error types are often negatively associated, 
where the avoidance of one can lead to an increase in the 
other. However, minimising both error types is crucial for 
accurately depicting high activity areas. Kernel methods, 
which rely on three parameters, present a considerably 
higher risk of subjective input and error. Grid intersections 
in kernel methods can be adjusted by modifying the grid 
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size and resolution (extent), whereas the degree of overlap 
between kernels at the intersections can be altered by 
changing the smoothing parameter. The default smoothing 
parameter in kernel (hREF) is larger than in kernel (LSCV), 
resulting in area estimations and polygons that are excessively 
large for accurately representing the core area and the fine-
scale habitat use analysis required (Calenge 2006). Refining 
all three parameters described above to achieve optimal 
outcomes for each individual cat is exceptionally time-
consuming and increases the number of variables that need 
to be considered during data analyses. Our results demonstrate 
that r-LoCoH, which readily portrays high error levels, is 
somewhat erratic and therefore the least reliable LoCoH 
method, consistent with the findings of Getz et al. (2007). 
But Getz et al. (2007) also suggest that a-LoCoH outperforms 
both r-LoCoH and k-LoCoH due to its heuristic parameter 
being closer to the optimal value across a wider range of 
datasets. Because we used real ecological data in this study, 
we cannot know for certain what the optimal value for any 
of the LoCoH methods were, and it is difficult to draw 
conclusions from the data without any level of subjectivity. 
However, given the optimal LoCoH parameter is defined as 
the value that minimises the total error for the corresponding 
method (Getz et al. 2007), it is apparent that the heuristic k 
value for k-LoCoH is closer to the optimal value than for 
other LoCoH methods due to substantially fewer Type I and 
II errors at the sample sizes used in this study. Furthermore, 
employing a single parameter value derived from a mathe-
matical formula like k-LoCoH reduces the risk of subjective 
input. In contrast to Bengsen et al. (2012), we did not 
utilise averaged LoCoH parameter values across all cats due 
to substantial variations in the dataset between individuals 
and study sites, leading to average parameters that yielded 
larger and more frequent errors. Additionally, we did not 
employ the Minimum Spurious Hole Covering (MSHC) rule 
(Getz and Wilmers 2004), as this technique can be less 
effective in landscapes with few inhospitable features, as 
observed in our study sites, and can therefore introduce a 
significant level of subjective input. The α-hull avoids 
subjective input by using a default, uniform parameter (α) 
across the entire dataset, making it a preferable choice over 
most other methods examined in this study. 

The influence of inconsistency in sample size and data 
distributions (scattered vs clustered) varied according to 
method. For instance, kernel methods do not converge on 
the true extent of a home range as sample size increases 
(Seaman et al. 1999; Getz and Wilmers 2004). These methods 
also demonstrate higher error rates under such circumstances 
(Naef-Daenzer 1993; Worton 1995). Our findings of large 
sample sizes with clustered distributions (Fig. S4.1A) support 
this hypothesis. However, it is inappropriate to infer that 
kernels will perform well at small sample sizes, as the 
increased likelihood of a scattered distribution is likely to 
yield large Type II errors (see Figs S7B for kernel (hREF) and 
S6B for kernel (LSCV)). In practical scenarios, such as this, 

we cannot know for certain that the cat did not use areas 
we consider as Type II errors, and lower sample sizes may 
be the cause of the scattered distributions, rather than the 
habits of the cat or the nature of the landscape. But it was 
evident that low sample size with scattered distributions 
greatly inflate kernel core area size. Autocorrelated kernel 
density estimate (aKDE) home ranges have been demonstrated 
to perform well in these scenarios (Fleming et al. 2015). 
However, because previous studies on feral cat ranges have 
predominantly focused on kernel (hREF) methods (Table S5), 
and aKDE core ranges in our study were nearly identical to 
kernel (hREF) (Supplementary Fig. S10), we excluded aKDE 
from further analysis. Datasets with high sample size and 
scattered distributions may allow for reasonable MCP core 
area estimations (Fig. S5A) but this deteriorates rapidly when 
the distribution becomes clustered (Fig. S1A) or scattered 
with low sample sizes (Fig. S7A). The high variability 
demonstrated by the MCP and both kernel methods do not 
promote confidence in their use for core range estimations 
(Table S5). 

The high variability in core area estimations observed with 
r-LoCoH was consistent with findings by Getz et al. (2007), 
although the source of variability was unconfirmed. The 
ability of the remaining hull methods to produce consistent 
core area estimation across multiple data distribution types 
seen in this study (high sample size and clustered; high sample 
size and scattered; and low sample size and scattered) further 
demonstrates their superiority over kernel methods, the MCP 
and r-LoCoH. In our view, opting for a-LoCoH instead of 
k-LoCoH or α-hull, as observed in Bengsen et al. (2012) and 
Recio and Seddon (2013), likely results in exaggerated 
estimations of core area size. The k-LoCoH and α-hull 
produced estimations that were smaller and more precise 
across all distribution types seen in this study. However, the 
α-hull demonstrates lower Type II error when applied to 
datasets with high sample size and clustered distributions 
(Fig. S8D) and demonstrates a finer conformity to landscape 
features (Fig. S9B). Burgman and Fox (2003) state that the 
α-hull converges on the true distribution with higher sample 
sizes, but we found that it performed remarkably well across 
all data distribution types observed in this study. 

Our research suggests that the α-hull method is superior for 
accurately delineating core areas for feral cats. The α-hull’s 
strength lies in its high precision of polygon placement, low 
Type I and II errors, strong conformity to landscape features, 
repeatability and avoidance of subjective input. On average, 
α-hull core areas demonstrated the smallest comparative size 
(i.e. 9.5%, see Fig. 2) to corresponding home ranges of all 
methods studied here. This generates confidence in estimates 
of core area placements, which in turn instils confidence in 
subsequent assessments of habitat preference. If the MSHC 
rule is not applied to the LoCoH estimations, the default α 
value by adehabitatHR’s CharHull method (Calenge 2011) is  
more consistently accurate than the LoCoH heuristic values, 
introduces less potential bias, and is easier to implement. 
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However, due to the process of polygon construction, the α-
hull requires considerably longer computing time than 
other methods studied here. Nevertheless, the utilisation of 
the α-hull method provides representative information for 
subsequent analysis of critical habitat types and landscape 
features selected by cats in these core areas. 

There are additional important considerations that 
may influence the outcomes of home range estimation. 
Autocorrelation is believed to influence the estimation of 
range distributions (Swihart and Slade 1985). To reduce 
such influence, previous feral cat studies have relied upon 
subsampling of data or low frequency location fixes (Table S5). 
Accordingly, we restricted location fixes to twice daily to 
reduce the effects of autocorrelation on estimates, although 
some likely remain. Methods that account for autocorrelation 
may permit a higher frequency of fixes to be included in 
analyses, although the impact on home range estimation in 
this study is likely to be minimal (Supplementary Material 
10). We concur with Noonan et al. (2019) that developing 
estimators that account for autocorrelation with the precision 
of polygon placement of such methods such as LoCoH’s or  
α-hulls, would be highly beneficial. Additionally, temporal 
variability may influence the results of this study. Cats may 
alter their space use over time, likely in response to resource 
abundance, which may affect the outcomes of such studies. 

The effectiveness of current control strategies is dependent 
upon encounter and interaction rates of feral cats with control 
tools (Fancourt et al. 2021). Therefore, understanding 
resource selection and behaviour of cats in identified core 
areas is crucial for improving encounter and interaction rates. 
Utilising an appropriate method to accurately describe a 
species’ high use areas is critical for informing future 
assessments of resource selection. By discerning core areas 
in a way that best reflects the true high use areas, critical 
landscape features or vegetation types that are selected for can 
be more reliably identified and used to inform monitoring 
and control strategies. By comparing and contrasting the 
methodological weaknesses and limitations of the seven 
most frequently used home range calculation methods, this 
study helps to identify appropriate home range estimation 
methods to accurately delineate high use areas. 

Supplementary material 

Supplementary material is available online. 
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